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Abstract. This paper is a natural continuation of the study of skew power series rings
A = R[[t;σ, δ]] initiated in [11]. We construct skew Laurent series rings B and show the
existence of some canonical Ore sets S for the skew power series rings A such that a certain
completion of the localisation AS is isomorphic to B. This is applied to certain Iwasawa
algebras. Finally we introduce subrings of overconvergent skew Laurent series rings.

Introduction

In [11] we introduced the general notion of a skew power series ring A = R[[t;σ, δ]] over a
pseudocompact ring R (see section 1 for details) and we studied basic properties of it. This
was motivated by and applied to the study of Iwasawa algebras of certain p-adic Lie groups.
It is a very important step in non-commutative Iwasawa theory to pass from the Iwasawa
algebra to its localisation in a specific rather big Ore subset (cf. [4]). The starting point of
the present paper is the discovery that a natural completion of this localisation can be viewed
as a skew Laurent series ring. This means in particular that this completed localisation can
be constructed by inverting a single element t with subsequent completion.

In fact we will develop our results in the context of a general skew power series ring
A = R[[t;σ, δ]]. In section 1 we want to formally invert the element t, i.e. construct a skew
Laurent series ring

B = R((t;σ, δ)).

It turns out that for a (left of right) Artinian ring R the ring B exists in form of the localisation
AT of A with respect to T = {1, t, t2, . . .}, see subsection 1.1. But for general R and non-
trivial δ one sees easily that a ring extension of A in which t is invertible in general contains
series

∑
i∈Z rit

i with infinite negative part. Due to this observation we define in subsection
1.2 a, in both directions, infinite skew Laurent series ring

B = R�t;σ, δ]]

consisting of formal infinite sums
∑

i∈Z rit
i such that the negative part satisfies some growth

condition; in fact the commutative version, i.e. for trivial σ and δ, with for example R = Zp
is a well-known ring in p-adic analysis. The multiplication law is given by explicit formulae
(1.9). In order to see that they actually define a (topological) ring structure we identify B
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with the projective limit of skew Laurent series rings with Artinian coefficients

B ∼= lim←−
k

(
R/Ik

)
((t;σ, δ))

for a certain filtration I• of R which is needed to grant the existence of B. In Proposition 1.16
we prove a criterion under which the ring B is Noetherian and flat as a left and right A-module.

Then we generalise and axiomatise the localisation technique from [4] so that it applies in
our context. Assuming that δ(R) is contained in the Jacobson radical Jac(R) of R we consider
the canonical projection

π : A = R[[t;σ, δ]]� (R/Jac(R))[[t;σ]].

Theorem 2.25, the main result of section 2, states that S = CA(ker(π)) is an Ore set of A
consisting of regular elements. In particular, the localisation AS of A with respect to S exists.
The proof is again reduced to the Artinian case which is dealt with in subsection 2.2 after
discussing in subsection 2.1 a general method how to attach Ore sets to a ring homomorphism
R→ A of arbitrary rings R and A, which might be of its own interest.

As alluded to above the remarkable fact is that the two ring extensions B and AS of A are
in fact closely related: The filtration I• induces a filtration on AS such that the completion
of AS with respect to it is isomorphic to B, see Proposition 2.27, i.e. after completion it is in
some sense sufficient to just invert t ∈ S instead of the much bigger set S.

In section 3 we investigate the G- and K-theory of the localisation AS in degrees 0 and
1 assuming that A is Noetherian, that δ(R) is contained in Jac(R), and that σ is induced
by inner conjugation with a unit in A. In particular we show - following an idea of David
Burns in the case of Iwasawa algebras - that the connecting homomorphism from degree 1 to 0
of the long exact localisation sequence splits, for details see Proposition 3.1 and Corollary 3.2.

In section 4 we apply our results to Iwasawa algebras. In this context the existence of the
localisation AS , of course, is known from [4], see also [2]. The main result is the existence
of the skew Laurent series ring B in this setting and the fact that it is a pseudocompact
Noetherian ring, flat over A and AS , see Theorem 4.7.

Finally in section 5 we discuss different convergence conditions for our skew Laurent series
which leads to the definition of overconvergent skew Laurent series rings generalising again a
concept from p-adic Hodge theory as studied by Cherbonnier and Colmez. We expect that
our constructions and results will have important applications in non-commutative Iwasawa
theory, but also in the theory of p-adic representations (see the forthcoming work of the first
author with M-.F. Vigneras).

We are deeply grateful to the referee for reading our manuscript so thoroughly, correcting
some errors, and suggesting a couple of improvements.

1. Infinite skew Laurent series rings

Let R be a Noetherian pseudocompact ring together with the following data:
(i) a topological ring automorphism σ of R,
(ii) a continuous left σ-derivation δ : R→ R which is σ-nilpotent in the sense of [11, §1].
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In particular there exists the pseudocompact skew power series ring

A := R[[t;σ, δ]],

see [11, §1], where the ring structure is given by the following relation

(1.1) tr = σ(r)t+ δ(r), ( or by rt = tσ′(r) + δ′(r))

and continuity. Here we set σ′ := σ−1 and δ′ := −δ ◦ σ−1, i.e. δ′ is a right σ′-derivation.
The aim of this section is to introduce also a skew Laurent series ring version which contains

a formal inverse t−1 of the element t. For non-trivial δ this involves in general series
∑

i∈Z rit
i

with infinitely many nonzero coefficients ri for negative i, as can be seen easily from the
formulae (1.6) below.

But if δ and δ′ are nilpotent those formulae are actually finite and we will show in the
following subsection that then the skew Laurent series ring with finite negative part exists.
Afterwards we shall construct for rather general δ a skew Laurent series ring with infinite
negative part but which satisfies a certain convergence condition.

1.1. Skew Laurent series rings in the nilpotent case. In this subsection we assume in
addition that both δ and δ′ are nilpotent, say of degree M, i.e.

δn ≡ 0, δ′n ≡ 0 for all n ≥M.

Note that for a (left or right) Artinian ring R the nilpotence of δ and δ′ follows already from
σ-nilpotence of δ.
For any integers k, l ≥ 0, Mk,l(Y, Z) denotes the sum of all noncommutative monomials in two
variables Y, Z with k factors Y and l factors Z. Consider the multiplicatively closed subset

T := {1, t, t2, t3, · · · }
of A consisting of all powers of t.

Lemma 1.1. Suppose that δM = 0 for some M ≥ 0. Then:
(i) For all r ∈ R, we have

tM · r =
(M−1∑

k=0

tM−1−kσδk(r)
)
· t.

(ii) For all a ∈ A there exists b ∈ A such that tMa = bt.
(iii) T is a left Ore set.

Proof. (i) This is proved by a simple telescope sum argument using the second relation in
(1.1).
(ii) Writing a ∈ A in the form a =

∑∞
i=0 t

iri we have tMa = bt by (i) where

b =
∞∑
n=0

tn
M−1∑
k=0

σδk(rn+k+1−M ),

provided we interpret rl = 0 for negative indices l; observe that since the multiplication in the
pseudocompact ring A is continuous the multiplication from the left by tM commutes with
the summation in a.
(iii) Assume inductively that for all a ∈ A and all integers n ≥ 1 there exists b ∈ A such that

tMna = btn,
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the case n = 1 being part (ii). By part (ii) again, tMb = ct for some c ∈ A, so

tM(n+1)a = tMbtm = ctn+1.

�

Proposition 1.2. The set T satisfies the (right and left) Ore condition, i.e. the localisation
AT of A at T exists. Moreover, for all r ∈ R and all j ≥ 1 we have

tjrt−j =
∞∑
k=0

t−kσMk,j−1(δ, σ)(r)(1.2)

inside AT .

Proof. By the previous lemma T satisfies the left Ore condition. The right Ore condition
follows from an analogous argument, and thus the localisation exists by [9, thm. 2.1.12] and
the fact that all elements in T are regular. For the asserted identity we first note that, for
k � 0, any monomial containing k δ’s and j − 1 σ’s must contain a string of at least M δ’s,
and is therefore zero. In fact the sum on the right hand side stops at k = j(M − 1) and
therefore makes sense inside AT . Now the case j = 1 follows immediately from part (i) of the
above lemma, and the general case follows by induction as follows:

tj+1rt−j−1 = t

( ∞∑
l=0

t−lσMl,j−1(δ, σ)(r)
)
t−1

=
∞∑
l=0

t−l
∞∑
k=0

t−kσδkσMl,j−1(δ, σ)(r)

=
∞∑
n=0

t−nσ
∑
k+l=n

δkσMl,j−1(δ, σ)(r)

=
∞∑
n=0

t−nσMn,j(δ, σ)(r)

where we used the case j = 1 for the second equation and the relation
n∑
k=0

Y kZMn−k,j−1(Y,Z) = Mn,j(Y, Z)

for the last equation. �

Clearly all elements in the skew Laurent series ring

B := R((t;σ, δ)) := AT

can be written as series
∑

i�−∞ rit
i and

∑
i�−∞ t

iri with finite negative part
∑
−∞<i<0 rit

i

and
∑
−∞<i<0 t

iri, respectively.

Remark 1.3. The same argument shows that T is also an Ore set in the skew polynomial ring
R[t;σ, δ] and thus also the skew Laurent polynomial ring

R(t;σ, δ) := R[t;σ, δ]T

exists under the hypothesis of this subsection.
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It follows from the identity (1.2) that in the ring R((t;σ, δ)) the relations

(1.3) rtj =
∑
m≤j

tmσMj−m,−1−j(δ, σ)(r)

and

(1.4) tjr =
∑
m≤j

σ′Mj−m,−1−j(δ′, σ′)(r)tm

hold for j < 0. In particular, we have

(1.5) rt−1 =
∑
i≤−1

tiσδ−i−1(r),

and

(1.6) t−1r =
∑
i≤−1

σ′δ′−i−1(r)ti.

For j ≥ 0 we recall the formulae

(1.7) tjr =
∑

0≤m≤j
Mj−m,m(δ, σ)(r)tm

and

(1.8) rtj =
∑

0≤m≤j
tmMj−m,m(δ′, σ′)(r).

Finally, the multiplication in R((t;σ, δ)) and in R(t;σ, δ) is explicitly given by the following
formula

(1.9) (
∑
j∈Z

ajt
j)(
∑
l∈Z

blt
l) =

∑
m∈Z

cmt
m with

cm := c+
m + c−m,(1.10)

c+
m :=

∑
j≥n≥0

ajMj−n,n(δ, σ)(bm−n) and(1.11)

c−m :=
∑
n≤j<0

ajσ
′Mj−n,−1−j(δ′, σ′)(bm−n).(1.12)

An analogous formula holds for right Laurent series:

(1.13) (
∑
j∈Z

tjaj)(
∑
l∈Z

tlbl) =
∑
m∈Z

tmdm

with

dm := d+
m + d−m,(1.14)

d+
m :=

∑
j≥n≥0

Mj−n,n(δ′, σ′)(am−n)bj and(1.15)

d−m :=
∑
n≤j<0

σMj−n,−1−j(δ, σ)(am−n)bj .(1.16)
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For the notion of the Krull-dimension κ we refer the reader to [9, chap. 6]. If we consider
a ring S as left or right module over itself we write SS or SS , respectively. For a left (right)
module M we denote by L(M) the lattice of all left (right) submodules of M.

Lemma 1.4. Suppose that δ = 0. We then have κ(BB) ≤ κ(RR) and κ(BB) ≤ κ(RR). In
particular, if R is a (left or right) Artinian ring, so is B.

Proof. The ‘left’-version following by symmetry we only consider the ‘right’-version. For the
purposes of this proof we call i(b) := min{i : ai 6= 0} the order of any element b =

∑
i�−∞ ait

i

in B and l(b) := ai(b) its leading coefficient (with l(0) := 0). If J is a right ideal of B we write
l(J) for the set of leading coefficients of elements in J. Using that δ = 0 it is easy to check that
l(J) is a right ideal of R, thus we obtain a map of partially ordered sets l : L(BB)→ L(RR).
We just have to show that this map l preserves ‘proper containment’. Thus let J1 $ J2 be
right ideals of B. Then there exists an element b ∈ J2 ∩ A which is not contained in J1. We
shall derive a contradiction assuming that l(J1) = l(J2) : then we find j1 ∈ J1 with l(j1) = l(b)
and, after possibly multiplying from the right by a suitable power of t, with i(j1) = i(b); in
particular j1 belongs to J1 ∩ A. Similarly we find j2 ∈ J1 ∩ A such that l(j2) = l(b− j1) and
i(j2) = i(b − j1) and inductively a sequence of elements jn ∈ J1 ∩ A with strictly increasing
order and such that the series

∑
n≥1 jn converges to b, which thus is an element of the closed

ideal J1 ∩A (A is pseudocompact and Noetherian), a contradiction. �

Let I be a two-sided ideal of R which is σ-, σ′- and δ-stable. We define the left R-submodule
IB of B to consist of all b =

∑
bit

i ∈ B with bi ∈ I for all i ∈ Z.
Lemma 1.5. Let I, J be σ-, σ′- and δ-stable two-sided ideals of R. Then

(i) IB = IB = BI is a two-sided ideal of B.
(ii) JB · IB = (JI)B.

Proof. (i) Since I is finitely generated as a right ideal in R we have IB = IB. The formula
(1.9) implies that BI ⊆ IB = IB. By symmetry we must even have BI = IB. (ii) follows
immediately from (i). �

In [11, §1] we constructed a descending exhaustive ring filtration Ik, k ≥ 0, by two-sided
ideals in R which are σ- and σ′-stable and satisfy δ(Ik) ⊆ Ik+1, which we refer to as the
standard filtration. By Lemma 1.5 the filtration I• of R induces a ring filtration J• of B by
setting Jk := (Ik)B for all k ≥ 0.

Suppose that R is (left or right) Artinian. Then the filtration I• and thus also J• stabilises.
Furthermore, as R is Noetherian, the Jk are finitely generated (left and right) B-modules
by Lemma 1.5. Hence the subquotients Jk/Jk+1 are finitely generated modules over B/J1 =
R/I1 ⊗R B ∼= (R/I1)((t; σ̄)) and thus have finite length by Lemma 1.4. We have shown the
following

Proposition 1.6. Suppose that the standard filtration is separated, i.e. Ik = 0 for k � 0.
Then, if R is (left or right) Artinian, so is B.

Remark 1.7. Let R be (left or right) Artinian. Note that the standard filtration is separated
if and only if there exist any separated descending ring filtration Ik, k ≥ 0, by two-sided ideals
in R which are σ- and σ′-stable and satisfy δ(R) ⊆ I1.

Proof. Assume that such a filtration I• is given and let k be any natural number. For l ≥ 1
the lth ideal of the standard filtration is generated by all subgroups

(1.17) Mm1(R) · . . . ·Mmr(R)
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where m1 + . . . + mr = l is any partition of l with mj > 0, 1 ≤ j ≤ r, and Mmj is a
non-commutative monomial in δ, σ and σ′ with at least mj factors δ. Since R is Artinian
and due to the σ-nilpotence of δ we find a positive number m such that M(R) = 0 for all
such monomials M with at least m factors δ. Choosing l > km we see that the lth step of
the standard filtration is contained in Ik because the only non-zero contributions of the form
(1.17) have at least k factors, which all belong to I1 by assumption. �

1.2. Skew Laurent series rings with infinite negative part. The following definition
leads to a reasonable, in both directions infinite, skew Laurent series ring: Let

B := R�t;σ, δ]]

consist of all formal infinite sums
∑

i∈Z rit
i such that rj tends to zero in the pseudocompact

topology of R for j ≤ 0 running to −∞.
B is naturally endowed with the exhaustive and separated descending filtration (F kB)k≥0

of left R-modules defined as

F kB :=
(∏
i∈Z

Jac(R)kti
)
∩B,

where Jac(R) denotes the Jacobson radical of R. The topology induced by this filtration will
be called the strong topology: There is another interesting topology on B but which will not
be used in this paper. This weak topology is given by the system of open zero neighbourhoods
{F kB +Atm}k,m≥0.

Remark 1.8. B is a complete R-module with respect to the strong topology.

Note that σ(Jac(R)) = Jac(R), in particular the Jac(R)-adic filtration is σ- and σ′-stable.
In general we are not assuming that Jac(R) is also stable under δ, but the continuity of δ
implies that there is a natural number s ≥ 1 such that

(1.18) δ(Jac(R)s), δ′(Jac(R)s) ⊆ Jac(R).

By induction one shows immediately that

(1.19) δ(Jac(R)sk), δ′(Jac(R)sk) ⊆ Jac(R)k

for all k ≥ 0. If M(Y, Z) denotes a noncommutative monomial with m factors Y and arbi-
trarily, but finitely many factors Z, we obtain

(1.20) M(δ, σ)(Jac(R)s
mk), M(δ′, σ′)(Jac(R)s

mk) ⊆ Jac(R)k

for all k ≥ 0.
Let In, n ≥ 0, be a σ-, σ′- and δ-stable separated exhaustive descending filtration of R,

in particular satisfying Ik · Il ⊆ Ik+l, consisting of (closed two-sided) ideals. We define the
exhaustive and separated filtration

Jk :=
(∏
i∈Z

Ikt
i
)
∩B

of B consisting of strongly closed left R-submodules.

Assumption (I): There exists a filtration (Ik)k as above where the ideals Ik are all open in R.

A slightly stronger version is the following
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Assumption (SI0): There exists a filtration (Ik)k as above where the ideals Ik are all open
in R and such that δ(R) ⊆ I1.

Later we shall also consider the strong version in which the analogous condition holds in
all degrees.

Assumption (SI): There exists a filtration (Ik)k as above where the ideals Ik are all open
in R and such that δ(Ik) ⊆ Ik+1 for all k ≥ 0.

Remark 1.9. If δ(Jac(R)) ⊆ Jac(R) holds, then (I) is satisfied (with I• the Jac(R)-adic
filtration). If, in addition, δ(R) ⊆ Jac(R) or even both δ(R) ⊆ Jac(R) and δ(Jac(R)) ⊆
Jac(R)2 hold, then (SI0) and (SI) are satisfied, respectively.

If we assume (I), then the filtrations Jk and F kB are compatible by [5, IV.3, prop. 11],
in particular also the filtration (Jk)k induces the strong topology on B and we obtain an
isomorphism

(1.21) B ∼= lim←−
k

B/Jk

of topological R-modules. On the other hand we then have an isomorphism of left R-modules

(1.22) B/Jk ∼= (R/Ik)((t;σ, δ)),

where σ, σ′, δ and δ′ denote the induced maps on R/Ik. Note that since Ik is open in R the
σ-nilpotence of δ implies that both δ and δ′ are nilpotent and thus the latter ring exists by
proposition 1.2.

Below we shall show that the formula (1.9) defines an obviously distributive multiplication
law on B, which, for every k, induces by construction the ring structure of (R/Ik

)
((t;σ, δ))

and thus coincides with the ring multiplication of the projective limit ring. In particular, the
multiplication law on B is also associative.

Proposition 1.10. If (I) is satisfied, then the formula (1.9) defines a topological ring struc-
ture on B with respect to the strong topology. Moreover, if (SI0) holds, then B is a pseudo-
compact ring.

Proof. We will first show that (1.9) (actually without even assuming (I)) gives a well-defined
map B × B → B. To this end we check for the positive and negative parts c+

m and c−m
separately, that the defining sums in (1.11) and (1.12) converge, independently of the order
of summation, and that for m tending to −∞ the c±m converge to zero: Let k be any given
positive number and m be any fixed integer. Then by the σ-nilpotence of δ there is a constant
N1 � 0 such that Mj−n,n(δ, σ)(R) (and for later purposes Mj−n,−1−j(δ′, σ′)(R)) and thus also
ajMj−n,n(δ, σ)(bm−n) lies in Jac(R)k for all j − n ≥ N1. On the other hand, by the definition
of B, there exists a constant N2 � 0 such that bm−n ∈ Jac(R)s

N1k for all m − n ≤ −N2.
Thus it follows from (1.20) that the summand ajMj−n,n(δ, σ)(bm−n) ∈ Jac(R)k whenever
n ≥ N2 +m or j − n ≥ N1. Hence all but possibly the finitely many summands of (1.11) for
n ≤ j < N1 + N2 + m and 0 ≤ n < N2 + m lie in Jac(R)k. This implies the convergence of
the positive part. Now we will show that c+

m belongs to Jac(R)k if m is small enough: We
have already seen that all summands outside this finite set of exceptions lie in Jac(R)k. Now
we assume m ≤ −N2. Then n ≥ N2 +m for any n ≥ 0 and so the exceptional set is empty.
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For the negative part we assume m again to be fixed but arbitrary. By the definition of B
there exists a constantN0 � 0 such that aj and thus the summand ajσ′Mj−n,−1−j(δ′, σ′)(bm−n)
lies in Jac(R)k for all j ≤ −N0. On the other hand we have Mj−n,−1−j(δ′, σ′)(bm−n) ∈ Jac(R)k

for all j − n ≥ N1, see above. Thus apart from possibly the indices −N0 − N1 < n < 0 all
summands belong to Jac(R)k which implies convergence of the negative part. Moreover, as-
suming m ≤ −N0 −N1 −N2 we have - as for the positive part - bm−n ∈ Jac(R)s

N1k whence
Mj−n,−1−j(δ′, σ′)(bm−n) ∈ Jac(R)k for all n > −N0 −N1. It follows that c−m ∈ Jac(R)k.

Finally, we show that the multiplication is continuous with respect to the strong topology.
As the addition is continuous and the multiplication is distributive it suffices to check this
in a neighbourhood of 0. But from the formula (1.9) one sees that F kB · B ⊆ F kB for any
given k ≥ 0. By (1.22), (1.21), Remark (1.7) and Proposition 1.6 the ring B is pseudocompact
provided (SI0) holds. �

Remark 1.11. Assume (I) (respectively (SI0)). Then, a posteriori the isomorphism

(1.23) B ∼= lim←−
k

(
R/Ik

)
((t;σ, δ))

induced by (1.21) and (1.22) is an isomorphism of topological (pseudocompact) rings if the
rings (R/Ik

)
((t;σ, δ)) are endowed with the discrete topology. Moreover, the Jk are two-sided

ideals of B because they are kernels of the natural ring homomorphisms B → (R/Ik
)
((t;σ, δ)).

Henceforth we assume that (I) holds. Let I be a two-sided ideal of R which is σ-, σ′- and
δ-stable. For C = A or B we define as before the left R-submodule IC of C to consist of all
c =

∑
cit

i ∈ C with ci ∈ I for all i ≥ 0, resp. i ∈ Z.

Lemma 1.12. Let I, J be σ-, σ′- and δ-stable two-sided ideals of R and let C = A or B.
Then

(i) IC = IC = CI is a two-sided ideal of C.
(ii) JC · IC = (JI)C .

In particular, B is a filtered ring with respect to J•.

Proof. For C = A the proof is identical with the one of Lemma 1.5. In case C = B we
have to modify the former argument. Fix generators u1, . . . , um of I as a right ideal in R.
All homomorphisms of pseudocompact R-modules are strict. Hence the quotient topology
from Rm � I coincides with the subspace topology from I ⊆ R. We therefore find a strictly
increasing sequence of natural numbers j(1) < j(2) < . . . such that

m∑
i=1

uiJac(R)k ⊇ I ∩ Jac(R)j(k) for any k ≥ 1.

This implies that IB = IB : for b =
∑
bit

i ∈ IB we can write bi =
∑m

j=1 ujc
(j)
i , i ∈ Z, such

that c(j) :=
∑

i∈Z c
(j)
i ti belongs to B, whence b =

∑m
j=1 ujc

(j) ∈ IB; the other inclusion is
obvious. The rest of the proof is exactly the same as the one of Lemma 1.5. �

Remark 1.13. Using the construction in [8, chap. IV§1] it is not difficult to show that the
filtered ring (B, J•) is the algebraic microlocalisation of the filtered ring (A, J• ∩ A) in the
multiplicative subset {1, t, t2, . . .}.
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Lemma 1.14. We have

grJ•B ∼= grI•R⊗R/I1 (R/I1)((t;σ, δ)) ∼= (R/I1)((t;σ, δ))⊗R/I1 grI•R

where the ring multiplication on the right hand side is given by formulae (1.9) and (1.13),
respectively, if we view the elements in the right side as Laurent series in the variable t over
the ring grI•R.

Proof. Under the isomorphism (1.22) the ideal Jk−1/Jk of B/Jk corresponds to the ideal
(Ik−1/Ik)(R/Ik)((t;σ,δ)) which is isomorphic to (Ik−1/Ik) ⊗R/I1 (R/I1)((t;σ, δ)) as Ik−1/Ik is
finitely generated over R/I1. The result follows. �

Lemma 1.15. B is faithfully flat as a left or right R-module.

Proof. By symmetry it suffices to consider the left module case. We have to show that, for
any proper right ideal Q ⊂ R, the natural map Q⊗R B −→ B is injective but not surjective.
The non-surjectivity is clear. To establish the injectivity we fix generators u1, . . . , um of the
right ideal Q. Then any element x ∈ Q⊗R B can be written as

x =
m∑
j=1

uj ⊗ b(j) with b(j) =
∑
i∈Z

b
(j)
i ti ∈ B.

We suppose now that the image
∑

j ujb
(j) of x under the above map is zero. Then the

tuple (b(1)
i , . . . , b

(m)
i ), for any i ∈ Z, lies in the right submodule N := {(a(1), . . . , a(m)) ∈

Rm :
∑m

j=1 uja
(j) = 0} of Rm. Since R is Noetherian N has finitely many generators α1 =

(a(1)
1 , . . . , a

(m)
1 ), . . . , αs = (a(1)

s , . . . , a
(m)
s ). Write

(b(1)
i , . . . , b

(m)
i ) = α1c

(1)
i + . . .+ αsc

(s)
i for any i ∈ Z

with c(1)
i , . . . , c

(s)
i ∈ R. In fact, since by the pseudocompactness of R (cf. the comment in the

proof of Lemma 1.12) we have a strictly increasing sequence 0 < j(1) < j(2) < . . . such that
s∑

k=1

αkJac(R)` ⊇ N ∩ (Jac(R)j(`)Rm) for any ` ≥ 1

(cf. [15, cor. 3.8]) we may choose the c(k)
i in such a way that c(k) :=

∑
i∈Z c

(k)
i ti lies in B for

each 1 ≤ k ≤ s. Then b(j) =
∑s

k=1 a
(j)
k c(k) in B and hence

x =
m∑
j=1

uj ⊗ b(j) =
m∑
j=1

uj ⊗
s∑

k=1

a
(j)
k c(k) =

s∑
k=1

(
m∑
j=1

uja
(j)
k )⊗ c(k) = 0.

�

Proposition 1.16. Assume that (SI) holds, that σ induces the identity map on grI•R, and
that grI•R is an almost normalising extension of its subring R/I1 in the sense of [9, 1.6.10].
Then B = R�t;σ, δ]] is Noetherian and is flat as a left and a right A-module.

Proof. By (SI) we have δ = 0. Using Lemma 1.14 we see that grJ•B ∼= grI•R⊗R/I1 (R/I1)((t))
is a subring of the Laurent series ring (grI•R)((t)) and is an almost normalising extension of
(R/I1)((t)). The latter is well-known to be Noetherian. Hence the former is Noetherian as
well by [9, thm. 1.6.14]. The first assertion now follows from [8, prop. II.1.2.3]. Similarly
we have grJ•∩AA ∼= grI•R ⊗R/I1 (R/I1)[[t]] which is a Noetherian ring as well. Moreover it
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follows that grJ•B is the localisation of grJ•∩AA in t which therefore is a flat ring extension.
The flatness of B over A now follows from [8, prop. II.1.2.1 and prop. II.1.2.3]. �

2. Another canonical Ore set

Keeping the notations and assumptions of the previous section we assume in addition
throughout this section that

δ(R) ⊆ Jac(R).

Then, by Remark 1.9, the assumption (SI0) is satisfied for the Jac(R)-adic filtration.
Note that Jac(R)A is the kernel of the canonical projection

A = R[[t;σ, δ]]� (R/Jac(R))[[t;σ]].

The aim of this section is to show that

CA(Jac(R)A) is an Ore set of A consisting of regular elements,(2.1)

i.e. that the localisation ACA(Jac(R)A) of A with respect to CA(Jac(R)A) exists. In the first
subsection we shall establish a general method how to attach to a ring homomorphism R→ A
of arbitrary rings R and A a left (respectively right) Ore set Sl (Sr). In the second subsection
we return to our above setting under the additional hypothesis that R is Artinian (and later
semisimple and even simple): we show statement (2.1) and that CA(Jac(R)A) equals Sl and
Sr. In the third and last subsection we use the results of the previous ones to lift (2.1) to the
general case.

2.1. Ore sets attached to homomorphisms of rings. Let α : R→ A be a homomorphism
of (unital) rings. A left or right ideal I of A is called R-cofinite if A/I is a Noetherian R-
module (via α.) We define the set Sl of left R-cofinite elements of A as

Sl := Sl(α) := {s ∈ A| As is R-cofinite}.

The set Sr := Sr(α) of right R-cofinite elements of A is defined analogously.

Lemma 2.1. (i) Sl and Sr are multiplicatively closed.
(ii) If as ∈ Sl (resp. sa ∈ Sr) then s ∈ Sl (resp. s ∈ Sr).

Proof. We only discuss the “left” versions. The statement (i) follows immediately from the
following exact sequence

A/As
·t−→A/Ast

pr−→A/At −→ 0 .

The statement (ii) is a consequence of the surjection A/Aas� A/As. �

Consider the following property

PCl(α): Any R-cofinite left ideal I of A is principally cofinite, i.e. contains a principal left
R-cofinite ideal or, in other words, an element in Sl.

The property PCr(α) is defined similarly. In the following we only give “left” versions
of assertions and proofs. But it is understood that in each case the corresponding “right”
version holds as well.

Lemma 2.2. Assume PCl(α). Then, for any s in Sl the left A-module A/As is Sl-torsion.
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Proof. Let c ∈ A be any element and consider the left ideal L := {b ∈ A : bc ∈ As} in
A. Since A/L ·c−→A/As is injective the left ideal L is R-cofinite. Our assumption PCl(α)
therefore ensures the existence of an element t ∈ Sl ∩ L. Then t(c+As) = 0. �

Proposition 2.3. Assume PCl(α) and let M be a Noetherian left A-module; then M is
Noetherian as an R-module if and only if it is Sl-torsion.

Proof. Since Sl is multiplicative an extension of two Sl-torsion A-modules is Sl-torsion as well.
Secondly, since M is Noetherian over A there is a finite exhaustive and separated filtration
on M whose subquotients are cyclic (and Noetherian) A-modules. These observations reduce
us to the case where M is cyclic over A, i.e. of the form M ∼= A/L for some left ideal L of
A. If M is Sl-torsion we find an s ∈ Sl such that s = s · 1 ∈ L. Then M is a quotient of the
Noetherian R-module A/As and therefore is Noetherian over R. Suppose, vice versa, that M
is Noetherian over R which means that L is R-cofinite. By our assumption PCl(α) we have
As ⊆ L for some s ∈ Sl. According to the above lemma A/As and a fortiori A/L ∼= M are
Sl-torsion. �

Proposition 2.4. If PCl(α) is satisfied, then Sl is a left Ore set of A.

Proof. Let s ∈ S and b ∈ A. By the lemma the A-module A/As is S-torsion. Hence tb ∈ As
for some t ∈ S. We therefore find a b′ ∈ A such that tb = b′s. �

Lemma 2.5. Let αi : Ri → Ai, for 1 ≤ i ≤ m, be homomorphisms of arbitrary (unital) rings
and let α : R := R1 × . . .× Rm → A := A1 × . . .× Am be their product. Then PCl(α) holds
if and only if PCl(αi) holds for all 1 ≤ i ≤ m.

Proof. Without loss of generality we assume m = 2. Then every left ideal L of A is of the form
L1×L2 with left ideals Li = eiL of Ai, where ei denotes the central idempotent corresponding
to Ai. Thus A/L = A1/L1×A2/L2 is Noetherian over R if and only if each Ai/Li = ei(A/L)
is Noetherian over Ri = eiR. Now assume that PCl(αi) holds for i = 1, 2 and let L be an
R-cofinite left ideal of A. Then Li contains an element fi such that Aifi is Ri-cofinite for
i = 1, 2. Putting f := (f1, f2) ∈ L1 × L2 = L we obtain an R-cofinite ideal Af ⊆ L, whence
PCl(α) follows. For the converse let L1 be an R1-cofinite left ideal of A1. Then L := L1×A2

is an R-cofinite left ideal of A which thus by assumption contains an R-cofinite element f.
Then f1 = e1f ∈ e1L = L1 is R1-cofinite. Thus PCl(α1), and similarly PCl(α2), follows. �

Lemma 2.6. Let R
β−→ A0

γ−→ A1 be ring homomorphisms and put α := γ ◦ β.
(i) Suppose that we have an surjection Am0 � A1 of A0-bimodules and PCl(β) holds;

then PCl(α) holds and

(2.2) Sl(α) = {s ∈ A1 | as ∈ γ(Sl(β)) for some a ∈ A1}.
In particular, if A0 ⊆ A1 then Sl(β) ⊆ Sl(α).

(ii) If A0 is Noetherian as a left R-module, then PCl(α) holds if and only if PCl(γ) holds.

Proof. Let L be an R-cofinite left ideal of A1. Then A0/γ
−1(L) ⊆ A1/L are Noetherian

R-modules. Thus property PCl(β) grants the existence of an f ∈ γ−1(L) such that A0/A0f
is Noetherian over R. Hence A1/A1γ(f) = A1 ⊗A0 A0/A0f is the image of (A0/A0f)m for
some m and thus is Noetherian over R. This proves the first part of (i). For (2.2) we first
assume that γ(f) = as belongs to γ(Sl(β)). Then by the same argument as above A1/A1as =
A1 ⊗A0 A0/A0f is Noetherian over R. Hence as ∈ Sl(α) and therefore s ∈ Sl(α) by Lemma
2.1(ii). For the converse suppose that s ∈ Sl(α). Since A0/γ

−1(A1s) is an R-submodule of the
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Noetherian left R-module A1/A1s, the left ideal γ−1(A1s) of B is R-cofinite. Thus property
PCl(β) implies that γ−1(A1s) ∩ Sl(β) 6= ∅.
Under the hypothesis of (ii) any finitely generated (left) A0-module M is Noetherian over R,
hence the statement is clear. �

2.2. The Artinian case. In this subsection we assume that, in addition to our standard hy-
pothesis, R is (left and right) Artinian. Then B = R((t;σ, δ)) is Artinian, too, by Proposition
1.6 and Remark 1.7 applied to the Jac(R)-adic filtration of R. Hence, by [9, prop. 3.1.1] B is
a (left and right) quotient ring, i.e. every regular element of B is a unit. Since t is regular in
A, we have a canonical inclusion A ⊆ AT = B. The regular elements of A are also regular in
AT , they thus are all units in B. It easily follows that CA(0) is an Ore set and that

B = ACA(0).

Lemma 2.7. A is Noetherian.

Proof. Since R is Artinian, Jac(R) is nilpotent whence the standard filtration Ik is separated
and thus stabilises at 0. It follows that grI•R is finitely generated over the Noetherian ring
R/I1 and thus is Noetherian itself. The claim follows from [11, lem. 1.5]. �

Now Small’s theorem ([9, cor. 4.1.4]) combined with Lemma 2.7 tells us that

(2.3) CA(0) = CA(N (A)),

where, for a ring C, we write N (C) for its prime radical, i.e. the intersection of all prime
ideals of C. In particular, it contains all nilpotent ideals of C. Since Jac(R) is nilpotent as
R is Artinian, Jac(R)A and Jac(R)B are nilpotent by Lemma 1.12 and thus we obtain the
inclusions

(2.4) Jac(R)A ⊆ N (A) and Jac(R)B ⊆ N (B).

Next we need (ii) of the following Proposition; we are grateful to the referee for pointing
out to us and providing a proof for the fact that even the stronger result (i) holds, thereby
simplifying our earlier proof of (ii).

Proposition 2.8. (i) Let R̃ be a (not necessarily Artinian) semiprime Noetherian ring
with a ring automorphism σ̃. Then Ã = R̃[[t, σ̃]] is also semiprime.

(ii) If R is an (Artinian) semisimple ring, then B is so, too.

Proof. (i) First of all, Ã is Noetherian by [9, thm. 1.4.5(iv)]. By [9, thm. 2.3.7], N (Ã)k = 0
for some k. The automorphism σ̃ of R̃ extends to an automorphism σ̃ of Ã, and this is just
conjugation by t. In particular, σ̃(N (Ã)) = N (Ã), whence tiN (Ã) = N (Ã)ti for all i ≥ 0.
Since Ã/Ãt ∼= R̃ is semiprime, we see that N (Ã) ⊆ Ãt. Now

tk · (N (Ã)t−1)k = N (Ã)k = 0

so (N (Ã)t−1)k = 0 as t is a regular element. Hence N (Ã)t−1 ⊆ N (Ã), and thus N (Ã) =
N (Ã)t. But t ∈ Jac(Ã) and Ã is Noetherian, so N (Ã) = 0 by Nakayama’s Lemma.
(ii) We have already seen above that B is Artinian. By assumption Jac(R) = 0 and hence
δ = 0 by our general hypothesis. So (i) applies and gives that A is semiprime. Then Goldie’s
theorem implies that B = ACA(0) is semisimple. �
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The proposition implies that for R Artinian (but not necessarily semisimple), B/Jac(R)B ∼=
(R/Jac(R))((t, σ)) is semisimple, whence N (B/Jac(R)B) = Jac(B/Jac(R)B) = 0 and thus
N (B) ⊆ Jac(R)B. An argument in the proof of [9, thm. 4.1.4] shows that N (B)∩A = N (A).
Thus we obtain

N (A) = N (B) ∩A ⊆ Jac(R)B ∩A = Jac(R)A,

which combined with (2.4) gives

(2.5) N (A) = Jac(R)A and N (B) = Jac(B) = Jac(R)B.

Taking (2.3) into account we have proven the following

Proposition 2.9. CA(Jac(R)A) = CA(0) is an Ore set of A (consisting of regular elements).

For the rest of this subsection we assume that R is also semisimple, and so in particular
δ = 0 due to our general hypothesis in the present Section 2. Then, by Wedderburn theory,
R decomposes into a product

R = R1 × · · · ×Rm
of full matrix rings

Ri ∼= Mni(Di)

over skew fields Di. The Ri are precisely the minimal ideals of R. Thus, any ring automorphism
σ of R maps Ri again onto some Rσ(i) where we write, by abuse of notation, σ also for the
permutation on the set {1, . . . ,m} induced in this way by the automorphism σ of R. By
taking the products of those Ri which belong to the same σ-orbit, it follows that the pair
(R, σ) decomposes into a product of pairs (Cj , σj), 1 ≤ j ≤ `, each consisting of a ring Cj
with a ring automorphism σj of Cj , i.e.

R = C1 × . . .× C`,

and
σ = σ1 × . . .× σ`,

where σj denotes the restriction of σ to Cj .
The proof of the following result is obvious.

Lemma 2.10. Let (R, σ) be the product of pairs (Cj , σj), 1 ≤ j ≤ `. Then there is a canonical
isomorphism of rings

R[[t;σ]] ∼= C1[[t, σ1]]× . . . C`[[t;σ`]].

Because of Lemma 2.5 the crucial case to consider therefore is the cyclic case, i.e. the
situation where R equals some Cj as above, i.e. we assume that R = R1 × . . .×Rn (with Ri
simple) and that σ is given by τi : Ri → Ri+1 for i = 1, . . . , n − 1 and τn : Rn → R1 in the
following way:

σ(r1, . . . , rn) = (τn(rn), τ1(r1), . . . , τn−1(rn−1)).

We now define isomorphisms of rings

ψ : R = R1 × . . .×Rn → R1 × . . .×R1

(r1, . . . , rn) 7→ (r1, τn ◦ . . . ◦ τ2(r2), . . . , τn(rn))

and
φ = φ0 × idR1 × . . .× idR1 : R1 × . . .×R1 → R1 × . . .×R1
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where φ0 := τn ◦ τn−1 ◦ . . . ◦ τ1 as well as the cyclic permutation

π : R1 × . . .×R1 → R1 × . . .×R1

(r1, . . . , rn) 7→ (rn, r1, . . . , rn−1).

Then the following diagram of isomorphisms of rings is clearly commutative:

R = R1 × . . .×Rn

σ

��

ψ // R1 × . . .×R1

φ
��

R1 × . . .×R1

π

��
R = R1 × . . .×Rn

ψ // R1 × . . .×R1

Note that π ◦ φ 6= φ ◦ π if n ≥ 2, but that

(2.6) (π ◦ φ)n = φ0 × . . .× φ0.

The isomorphism ψ induces therefore a natural identification of rings

R[[t;σ]] ∼= (R1 × . . .×R1)[[t;π ◦ φ]].

Furthermore, we obtain the injective homomorphism of rings

(R1 × . . .×R1)[[x; (π ◦ φ)n]] ↪→ (R1 × . . .×R1)[[t;π ◦ φ]]
x 7→ tn,

and the latter ring is free of rank n over the former (from the left as well as right). By
Lemma 2.10 and (2.6) the ring (R1× . . .×R1)[[x; (π ◦φ)n]] can be identified with the product
R1[[x;φ0]]× . . .×R1[[x;φ0]], and we have shown the following

Proposition 2.11. In the cyclic case R[[t, σ]] is a free (left or right) module of finite rank n
over a subring isomorphic to R1[[x;φ0]]× . . .×R1[[x;φ0]] where x corresponds to tn.

By Proposition 2.11 the case where R is a simple Artinian ring, i.e. R ∼= Mn(D) for some
skew field D, merits special attention. If γ denotes an automorphism of D we write Mn(γ)
for the induced automorphism of Mn(D) given by applying γ to each matrix entry. For our
purposes the following observation will be crucial.

Proposition 2.12. Every automorphism σ of the ring Mn(D) decomposes into the composite

σ = Int(C) ◦Mn(γ)

for some automorphism γ of D and some inner automorphism Int(C) corresponding to an
invertible matrix C ∈Mn(D).

Proof. This is an easy consequence of the Isomorphism Theorem in [6, III. §5] which we
shall explain briefly for the convenience of the reader: Let s be any ring automorphism of
EndD(V ) for some finite dimensional D-vector space V. Then there exists an automorphism
γ of D and a γ-linear bijective map S : V → V such that s(f) = SfS−1. We apply this to
the standard D-vector space V = Dn and to the automorphism s which corresponds to σ
under the identification of EndD(Dn) with Mn(D) by using the standard basis {e1, . . . , en} of
Dn. Consider the γ-linear bijective map Γ : Dn → Dn, (d1, . . . , dn) 7→ (γd1, . . . , γdn). Clearly,
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S◦Γ−1 is a D-linear map of V , say F, given with respect to the standard basis by an invertible
matrix, say C. Thus we obtain that

(2.7) s(f) = F ◦ Γ ◦ f ◦ Γ−1 ◦ F−1

for all f ∈ EndD(V ). Now it is easy to check that under the identification EndD(Dn) = Mn(D)
the automorphism EndD(V ) → EndD(V ), f 7→ Γ ◦ f ◦ Γ−1, corresponds to Mn(γ) and thus
(2.7) becomes

σ(A) = CMn(γ)(A)C−1 = Int(C) ◦Mn(γ)(A)
for all A ∈Mn(D). �

Before we can draw our promised conclusion from this proposition we have to prove the
following

Lemma 2.13. Let C be an arbitrary ring with ring automorphism σ and let u be a unit
in C. If Int(u) denotes the inner automorphism c 7→ ucu−1 of C then there are canonical
isomorphisms of rings

C[[t; Int(u) ◦ σ]]
∼=−→ C[[t;σ]]∑

ant
n 7→

∑
an(ut)n

and

C[[t;σ ◦ Int(u)]]
∼=−→ C[[t;σ]]∑

ant
n 7→

∑
an(σ(u)t)n =

∑
an(tu)n.

Proof. Both maps are obviously bijective and additive. The multiplicativity follows by a
straightforward computation based on the multiplication formula (4) in [11]. E.g., under the
first map the relation ta = uσ(a)u−1t corresponds to uta = uσ(a)u−1ut = uσ(a)t, which is
equivalent to the law ta = σ(a)t that holds in C[[t;σ]]. �

Corollary 2.14. Let σ be any automorphism of Mn(D). Then there are isomorphisms of
rings

Mn(D)[[t;σ]] ∼= Mn(D)[[t;Mn(γ)]] ∼= Mn(D[[t; γ]])
where γ is as in Proposition 2.12.

Proof. The first isomorphism follows from the Proposition 2.12 combined with Lemma 2.13.
The second one is easily checked. �

The following result is certainly well-known.

Proposition 2.15. For a skew field D the power series D[[t;σ]] form a principal left (and
principal right) ideal domain. All its left (right) ideals are two-sided and they are precisely
the ideals of the form D[[t;σ]]tn with n ≥ 0.

Proof. The first statement follows from [9, prop. 1.4.5]. For lack of a reference known to us for
the second statement we give a complete proof using the Weierstrass preparation theorem [16,
cor. 3.2], which says that any element in D[[t;σ]] can be written as a unit times a distinguished
polynomial (or vice versa) in t. But note that in this situation a distinguished polynomial is
just a power tn of t with n ≥ 0. Now, if n is the minimal such exponent among all elements
of a given left (or right) ideal I, then tn certainly generates I. Since t is regular, it follows
that D has no zero divisor, i.e. is a domain. �
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Corollary 2.16. Let σ be any automorphism of Mn(D). Then Mn(D)[[t;σ]] is a principal
left ideal and principal right ideal ring.

Proof. Combine Corollary 2.14 with [9, prop. 3.4.10]. �

Remark 2.17. In the cyclic case (of order n) we have shown that R[[t;σ]] is free of finite rank
as a (left or right) D[[x; γ]]-module. Here x = tn and γ corresponds via Proposition 2.12 to
φ0 which in turn corresponds to σ.

Proposition 2.18. Assuming that R is semisimple we have:
(i) CA(0) = Sl(R ⊆ A) = Sr(R ⊆ A) =: S.
(ii) The set S is an (left and right) Ore set of A consisting of regular elements; in

particular the localisation AS of A with respect to S exists.

Proof. The first claim will follow from Lemma 2.19 below. The second claim is a consequence
either of (i) and Proposition 2.9 or of Proposition 2.4 and Lemma 2.21 below. �

Lemma 2.19. If R is semisimple then, for any f ∈ A, the following implications hold:
(i) If f is left (right) regular, then Af (fA) is R-cofinite.
(ii) If Af (fA) is R-cofinite, then f is right (left) regular.

In particular, the following statements are all equivalent:
(a) f is regular,
(b) f is left regular,
(c) f is right regular,
(d) Af is R-cofinite,
(e) fA is R-cofinite.

Proof. First note that all properties involved in this lemma behave well under finite products
(R, σ) = (R1, σ1) × . . . × (Rm, σm), e.g. f ∈ A being right regular is equivalent to fi = eif
being right regular in Ai = eiA for all i = 1, . . . ,m. Indeed, if one fi0 were a right zero
divisor, say fi0gi0 = 0 for some 0 6= gi0 ∈ Ai , then f were a right zero divisor, too, as
f · (0, . . . , 0, gi0 , 0, . . . , 0) = 0; the other direction is trivial. The compatibility of cofiniteness
with products was shown during the proof of Lemma 2.5.
Thus, in order to prove (i) we may and do assume that we are in the cyclic case. Let f ∈ A
be left regular, i.e. the left A-module map A → A, a 7→ af, is injective. Thus its cokernel
A/Af is a finitely generated (left) D[[x; γ]]-torsion module; here we use again Remark 2.17.
By Lemma 2.20 below A/Af is finitely generated over D. To prove (ii) assume that Af is R-
cofinite and that g ∈ A satisfies fg = 0. Multiplication by g on the right induces a surjective
map A/Af � Ag of A-modules, which shows that Ag is finitely generated over R and hence
over D. Again by Lemma 2.20 below it follows that Ag is a D[[x; γ]]-torsion module. On
the other hand Ag is a submodule of the free (Remark 2.17) and hence torsionfree D[[x; γ]]-
module A, because D[[x; γ]] is a domain by Proposition 2.15. Thus g = 0 which shows that
f is right regular. The rest of the lemma follows by symmetry. �

Lemma 2.20. Let D be a skew field, γ any automorphism of D and N a finitely generated
D[[x; γ]]-module. Then the following statements are equivalent:

(i) N is D[[x; γ]]-torsion,
(ii) N is annihilated by a power of x,
(iii) N is finite dimensional over D when considered as D-module via the natural inclusion

D ↪→ D[[x; γ]].
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Proof. It follows immediately from Proposition 2.15 that (i) and (ii) are equivalent. Also the
implication (ii)⇒(iii) is clear because D[[x; γ]]/(xn) is finite dimensional over D for any n.
For the converse, since the unique simple D[[x; γ]]-module D = D[[x; γ]]/(x) has annihilator
ideal (x), it suffices to show that N has finite length, say n, as D[[x; γ]]-module, because then
N is annihilated by (xn). Assume the contrary. Then the Noetherian D[[x; γ]]-module N is
not Artinian, i.e. it exists a descending sequence of D[[x; γ]]-submodules N = N0 k N1 k
. . . k Ni k . . . with dimD(Ni/Ni+1) > 0 for all i ≥ 0. This implies that dimD(N) is infinite,
a contradiction. �

Lemma 2.21. For semisimple R the properties PCl(R ⊆ A) and PCr(R ⊆ A) both hold.

Proof. By Lemma 2.5 we may and do assume that we are in the cyclic case. Then A is a free
D[[x, γ]]-module of finite rank by Remark 2.17. Now let L be an R-cofinite left ideal of A,
i.e. N := A/L is finitely generated over D. As seen in the proof of Lemma 2.20 the module
N is annihilated by a power of x and thus by some power of t. In particular, tn · 1 ∈ L for
some n ≥ 0. It follows that L contains the R-cofinite principal ideal Atn. The right version is
shown similarly. �

2.3. The general case. We put R̄ := R/Jac(R), Ā := A/Jac(R)A, M̄ := M/Jac(R)M for a
(left) R-module M and we recall the topological Nakayama lemma from [14, lem. 4.9]:

Lemma 2.22. Let M be a pseudocompact R-module. Then M is finitely generated over R if
and only if M̄ is finitely generated over R̄.

Lemma 2.23. The property PCl(R ⊆ A) (respectively PCr(R ⊆ A)) holds if and only if
PCl(R̄ ⊆ Ā) (PCr(R̄ ⊆ Ā)) holds.

Proof. Note that for f ∈ A the R-module Af is pseudocompact being the epimorphic image
of the pseudocompact R-module A under the continuous R-linear map A→ A, a 7→ af, thus
also the quotient A/Af is a natural pseudocompact R-module. Hence it follows from the
topological Nakayama lemma 2.22 that

(2.8) A/Af is finitely generated over R⇔ Ā/Āf̄ is finitely generated over R̄.

Here f̄ denotes the image of f in Ā. Now assume that PCl(R̄ ⊆ Ā) holds and let L be a
R-cofinite left ideal of A. Then A/Jac(R)+L is finitely generated over R̄ and thus there exists
an element f ∈ L such that Ā/Āf̄ is finitely generated over R̄ whence Af is R-cofinite by the
above equivalence. The opposite implication is trivial and the right version follows as usual
by symmetry. �

Proposition 2.24. CA(Jac(R)A) consists of regular elements.

Proof. Let a be in CA(Jac(R)A) and assume that ab = 0 for some b ∈ A. Then we have also
āb̄ = 0 for the images ā and b̄ of a and b in An := A/Jac(R)nA k Rn := R/Jac(R)n. Since
by Proposition 2.9 ā ∈ CAn(Jac(Rn)An) = CAn(0) is regular, b must belong to Jac(R)nA for
all n ≥ 0. But it is easily seen from the definition of (−)A and the fact that the Noetherian
pseudocompact ring R is Hausdorff with respect to the Jac(R)-adic topology (cf. [11, rem.
0.1 i]) that ⋂

Jac(R)nA ⊆
(⋂

Jac(R)n
)
A

= 0.

Thus b = 0 and a is right regular. By symmetry we obtain also left regularity. �

Theorem 2.25. (i) CA(Jac(R)A) = Sl(R ⊆ A) = Sr(R ⊆ A) =: S.
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(ii) The set S is an (left and right) Ore set of A consisting of regular elements; in
particular the localisation AS of A with respect to S exists.

Proof. We set as before R̄ = R/Jac(R) and Ā = A/Jac(R)A ∼= R̄[[t; σ̄]] with σ̄ the automor-
phism of R̄ induced by σ. By Proposition 2.18 we know that CĀ(0) = Sl(R̄ ⊆ Ā) = Sr(R̄ ⊆
Ā) =: S̄. Since CA(Jac(R)A) is the full preimage of CĀ(0) and since, by (2.8), Sl(R ⊆ A)
and Sr(R ⊆ A) are the full preimages of Sl(R̄ ⊆ Ā) and Sr(R̄ ⊆ Ā), respectively, under the
canonical projection A� Ā the first claim follows and S is the full preimage of S̄. Now S is
an Ore set since the conditions PCl(R ⊆ A) and PCr(R ⊆ A) are satisfied by Lemmata 2.23
and 2.21. �

For the sake of completeness we explicitly state the following

Proposition 2.26. (i) Jac(B) = Jac(R)B.
(ii) B/Jac(B) is the quotient ring of A/Jac(R)A.
(iii) Jac(AS) = Jac(R)AS.

Proof. As a consequence of (2.5) the ideal Jac(R)B is equal to the intersection of all open
maximal left ideals in the pseudocompact ring B. But according to [5, IV.4 prop. 13.b] this
intersection in fact coincides with the ordinary Jacobson radical Jac(B). This establishes the
first claim. In view of (i) the second claim was discussed already at the beginning of the
previous subsection. For the third claim we first note that since S = CA(Jac(R)A) consists of
regular elements we have 1 + Jac(R)AAS ⊆ A×S and hence that

Jac(R)AAS = Jac(R)AS ⊆ Jac(AS).

On the other hand, by Proposition 2.8 (ii) the factor ring

AS/Jac(R)AS ∼=
(
(R/Jac(R))[[t; σ̄]]

)
S

=: B̄

is semisimple. Alternatively, part (iii) also follows from [7, thm. 3.2.3(b)]. �

Now let I• be a filtration of R satisfying (I). Then the localisation AS of A with respect
to S is naturally endowed with the filtration I•AS = ASI•. We denote the corresponding
completion simply by (AS)∧. We shall prove the following

Proposition 2.27. B ∼= (AS)∧. Furthermore, for every k ≥ 0 there are canonical isomor-
phisms (A/IkA)S ∼= B/IkB ∼= (R/Ik)((t;σ, δ)).

It is remarkable that the completion of AS arises from A just by ‘inverting one element: t.’

Proof. The statement follows from (1.23) and the following isomorphisms

Bk ∼= (Ak)CAk (Jac(Rk)Ak )
∼= ACA(Jac(R)A)/IkACA(Jac(R)A),

where we put Rk := R/Ik, Ak := Rk[[t; σ̄, δ̄]] and Bk := Rk((t; σ̄, δ̄)) = (Ak)T . �

Since A ⊆ B the natural map AS −→ B given by the above proposition must be injective.
In particular, the filtration I•AS is separated.

Proposition 2.28. Under the assumptions of Proposition 1.16 B is a flat AS-module.

Proof. By Proposition 1.16 B is a flat A-module. But on AS-modules we have the natural
isomorphism of functors B ⊗AS − = B ⊗A −. �
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3. On the K-theory of AS

In the situation of section 2 we assume that A is Noetherian and we write AS for the
localisation in theorem 2.25. By MR(A) we denote the full subcategory of the category of
left A-modules consisting of those modules M which are finitely generated over R. Since the
condition PCl(R ⊆ A) is satisfied by Lemmata 2.23 and 2.21, Proposition 2.3 implies that the
objects in MR(A) are precisely those finitely generated A-modules M which are S-torsion,
i.e. which satisfy AS ⊗AM = 0, or in other words MR(A) is the ‘kernel’ of the functor

F (−) := AS ⊗A − : A−mod→ AS−mod

from the category A−mod of finitely generated (left) A-modules to the corresponding category
over AS . It is well known that F induces an equivalence of categories

A−mod/MR(A) ∼−−→ AS−mod.

Thus, due to the isomorphisms Gi(A−mod/MR(A)) ∼= Gi(AS) we obtain from the long exact
localisation sequence of Quillen G-theory the following exact sequence

· · · // K1(MR(A)) // G1(A) // G1(AS) ∂ // K0(MR(A)) // G0(A) // G0(AS) // 0 ,

where Ki(MR(A)) denotes the ith Quillen K-group of the category MR(A).

We assume from now on that σ is given by conjugation σ(·) = γ · γ−1 with some unit
γ ∈ A×. Then, by [11, rem. 2.3] we obtain an exact sequence

0 // A⊗RM
κ(M) // A⊗RM // M // 0

of A-modules for any M ∈MR(A). Hence applying AS ⊗A − induces an automorphism

κS(M) : AS ⊗RM
∼= // AS ⊗RM

of the AS-module AS ⊗RM.
We denote by GBass

1 (AS) Bass’ first K-group of the category of finitely generated AS-
modules, which is generated by symbols < α|MS > where MS is a finitely generated AS-
module and α is an automorphism of MS , cf. [13, thm. 16.11]. In [3, section VIII.5] a
connecting homomorphism ∂Bass : GBass

1 (AS) → K0(MR(A)) is described. Also Sherman
constructs a natural homomorphism ψ : GBass

1 (AS) → G1(AS) and shows that ∂ ◦ ψ = ∂Bass

holds, cf. [12, prop. 2.4].
It is easy to check that

[M ] 7→ ψ(< κS(M)|MS >)
defines a homomorphism of groups

char : K0(MR(A))→ G1(AS).

Proposition 3.1. Assume that A = R[[t;σ, δ]] is a Noetherian ring such that
(a) σ(·) = γ · γ−1 for some unit γ ∈ A× and
(b) δ(R) ⊆ Jac(R).

Then char is a splitting for the connecting homomorphism of the localisation exact sequence
above. In particular, there are isomorphisms

(i) G0(AS) ∼= G0(A) and
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(ii) G1(AS) ∼= imG1(A) ⊕K0(MR(A)), where imG1(A) denotes the image of G1(A) in
G1(AS).

Proof. By the compatibility of ∂ and ∂Bass and the explicit formula of the latter (see either
the proof of [12, prop. 2.4] or section VIII.5 in [3]) we have

∂ ◦ char([M ]) = ∂Bass(< κS(M)|MS >) = [coker(κ(M))] = [M ].

�

Now assume that A, and hence AS , is regular. Then, by the resolution principle of K-
theory there are canonical isomorphisms K1(A) ∼= G1(A) and K1(AS) ∼= G1(AS), which we
take as identifications.

Corollary 3.2. Assume that A = R[[t;σ, δ]] is a Noetherian ring such that
(a) σ(·) = γ · γ−1 for some unit γ ∈ A×,
(b) δ(R) ⊆ Jac(R) and
(c) A is regular.

Then char is a splitting for the connecting homomorphism of the localisation exact sequence
of K-theory

K1(A) // K1(AS) ∂ // K0(MR(A)) // K0(A) // K0(AS) // 0 .

In particular, there are isomorphisms
(i) K0(AS) ∼= K0(A) and
(ii) K1(AS) ∼= imK1(A) ⊕K0(MR(A)), where imK1(A) denotes the image of K1(A) in

K1(AS).

This proposition holds also in the case of Iwasawa algebras as discussed in the next section;
in this situation it was first observed by David Burns.

4. Iwasawa algebras

We fix a prime p, let G be a compact p-adic Lie group, O the ring of integers of any
fixed finite extension of Qp, and κ its residue field. We write Λ(G) for the Iwasawa algebra
Λ(G) of G, i.e. the completed group algebra of G, with coefficients O, while Ω(G) denotes
the completed group algebra of G with coefficients in κ; both rings are well known to be
Noetherian. Henceforth we assume that G has a closed normal subgroup H such that G/H
is isomorphic to Zp. Recall from [11] that

A := Λ(G)

is isomorphic to a skew power series ring R[[t;σ, δ]] over the Iwasawa algebra R := Λ(H) of
H. For this one picks once and for all a topological generator γ of a subgroup of G which
maps isomorphically onto G/H ∼= Zp and one defines t := γ−1, σ(r) := γrγ−1 for r ∈ R, and
δ := σ− id. As a consequence of [11, lem. 1.6] the σ-derivation δ is topologically nilpotent and
hence σ-nilpotent. In particular, for any k ≥ 1 we find an m ≥ 1 such that δm(R) ⊆ Jac(R)k.
Clearly the ideals Jac(R)k for k ≥ 1 are σ-, σ′-, and δ-stable. Hence the assumption (I) holds
and the topological ring

B := R�t;σ, δ]]
exists by Proposition 1.10.



22 PETER SCHNEIDER AND OTMAR VENJAKOB

The literature we refer to here and later in this section usually assumes O = Zp. But in
every case it is easily checked that the cited results also hold in our slightly more general
situation, for the statements in [4] this is already remarked on the bottom of page 203 (loc.
cit.).

Remark 4.1. The ring B is independent, up to natural isomorphism, of the choice of the
element γ.

Proof. Since this also follows indirectly from the subsequent results we only indicate a direct
argument. First of all we note that O�t; id, 0]] is a discrete valuation ring with residue class
field κ((t)). It follows that with t = γ − 1 all γε− 1, for ε ∈ Zp \ {0}, are units in O�t; id, 0]]
and a fortiori in B. Let now γ̃ be a second choice. It suffices to show that γ̃p

m − 1 is a unit
in B for some m ≥ 0. Write γ̃p

m
= hγε for some h ∈ H and ε = ε(m) ∈ Zp \ {0}. Using

γ̃p
m − 1 = hγε− 1 = h(γε− 1) + (h− 1) one checks that with γε− 1 also γ̃p

m − 1 is invertible
in B provided the powers (h− 1)i tend to zero in R with i→∞. In order to now make our
choice of the exponent m let N be an open subgroup in H which is normal in G and which
is pro-p. We choose m large enough so that γ̃p

m
centralises the finite group H/N . Then

γ̃p
m

and γε commute modulo N . Hence hN generates a p-group in H/N . It follows that h
topologically generates a pro-p-subgroup G′ ⊆ G. Since h− 1 lies in the Jacobson radical of
Λ(G′) its powers tend to zero. �

We fix a closed normal subgroup N of G which is contained in H as an open subgroup and
which is a pro-p-group. By N (H) we denote the preimage of the prime radical N (Ω(G/N))
of Ω(G/N) under the canonical projection

Λ(G) −→ Ω(G/N),

the kernel of which we denote by m(N). The definition of N (H) is independent of the choice
of N by [4, Lem. 2.5]. Then the set

S := CA(N (H)) = CA(m(N))

is a (left and right) Ore set consisting of regular elements of A by [4, prop. 2.6, thm. 2.4] or
[2, thm. G]. The localisation AS of A at S is semi-local [4, prop. 4.2].

Lemma 4.2. (i) N (H) = Jac(R)A; in particular, S = CA(Jac(R)A).
(ii) Jac(AS) = N (H)AS = Jac(R)AS.

Proof. (i) This follows from [1, prop. 6.3] by a simple lifting argument. (ii) The first identity
follows by the same standard argument ([7, thm. 3.2.3(b)]) as in the proof of Proposition
2.26. �

The additional assumption δ(R) ⊆ Jac(R) which we needed in the previous section does
not seem to be satisfied in this generality. But we do have the following.

Lemma 4.3. (i) If H is a pro-p-group then the assumption (SI0) is satisfied for the
Jac(R)-adic filtration. In particular B is pseudocompact and is isomorphic to the
Jac(R)AS-adic completion of AS.

(ii) If G is a powerful pro-p-group then the assumption (SI) is satisfied for the Jac(R)-adic
filtration. In particular σ induces the identity on the associated graded ring.

(iii) If H is an extra-powerful pro-p-group then the associated graded ring for the Jac(R)-
adic filtration is commutative and finitely generated over κ.
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(iv) If G is powerful and H is extra-powerful then B is Noetherian and flat over AS and
A.

Proof. (i) In this case Jac(R) is the unique maximal ideal in R and R/Jac(R) = κ. Hence σ
induces the identity on R/Jac(R) which implies that δ(R) ⊆ Jac(R). Therefore Propositions
1.10 and 2.27 apply. (Note that in this situation we have N (H) = m(H) = Jac(R)A. It then
follows directly from Theorem 2.25 that S is a left and right Ore set consisting of regular
elements.)

(ii) The assumption about G means that [G,G] ⊆ Gp
ε

with ε = 1 and = 2 for p odd and
p = 2, respectively. We in particular have

[γ,H] ⊆ Gpε ∩H = Hpε

where the latter identity comes from the fact that G/H ∼= Zp is torsionfree. For any h ∈ H
we therefore have [γ, h] = gp for some g ∈ H. We now compute

δ(h− 1) = σ(h− 1)− (h− 1) = [γ, h]h− h
= (gp − 1)h = ((1 + (g − 1))p − 1)h

= p(g − 1)h+
(∑
i≥2

(
p

i

)
(g − 1)i

)
h ∈ Jac(R)2.

This shows δ(Jac(R)) ⊆ Jac(R)2 and hence that (SI) is satisfied and that σ induces the
identity on the associated graded ring.

(iii) The quotient Jac(R)/Jac(R)2 as a κ-vector space is generated by the cosets of an
uniformising element π of O and h1 − 1, . . . , hr − 1 where h1, . . . , hr is a minimal system of
topological generators of H. The assumption on H means that [H,H] ⊆ Hp2 . For any two
hi, hj we therefore may write [hi, hj ] = hp

2
for some h ∈ H. We compute

(hi − 1)(hj − 1)− (hj − 1)(hi − 1) = hihj − hjhi = ([hi, hj ]− 1)hjhi

= (hp
2 − 1)hjhi = ((1 + (h− 1))p

2 − 1)hjhi

= p2(h− 1)hjhi +
p2(p2 − 1)

2
(h− 1)2hjhi +

(∑
k≥3

(
p2

k

)
(h− 1)k

)
hjhi ∈ Jac(R)3.

This means that the corresponding cosets commute in the graded ring.
(iv) By (ii) and (iii) the assumptions in Proposition 1.16 are satisfied. �

To establish the same facts about B also for general G and H we use the following descent
technique. Let G′ ⊆ G be an open normal subgroup and put H ′ := H ∩ G′, R′ := Λ(H ′),
and A′ := Λ(G′). We pick an element γ′ ∈ G′ which topologically generates a pro-p-subgroup
of G′ and whose image in G′/H ′ ∼= Zp is a topological generator, and (suspending earlier
notation from §1) we define t′ := γ′ − 1, σ′(r′) := γ′r′γ′−1 for r′ ∈ R′, and δ′ := σ′ − id.
Then A′ = R′[[t′;σ′, δ′]] and we may define B′ := R′� t′;σ′, δ′]]. We introduce the Ore set
S′ := CA′(Jac(R′)A′). As a piece of general notation we denote in the following by Ĉ the
Jac(C)-adic completion of any given ring C.

Lemma 4.4. The Jac(AS)-adic and the m(N)AS-adic filtrations of AS are equivalent.

Proof. Since N (Ω(G/N)) ⊆ Ω(G/N) is nilpotent by [9, thm. 2.3.7] we obtain

N (H)n ⊆ m(N) ⊆ N (H)
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and thus (observing [9, prop. 2.1.16(vi)])

Jac(AS)n ⊆ m(N)AS ⊆ Jac(AS)

for some n ∈ N. The claim follows. �

We thank the referee for suggesting an alternative for our earlier, but erroneous proof of
part (iii) in the next Proposition.

Proposition 4.5. We have the natural identifications as bimodules:
(i) AS = A′S′ ⊗A′ A.
(ii) ÂS = Â′S′ ⊗A′ A.
(iii) B = B′ ⊗A′ A.

Proof. (i) Obviously we have a crossed product representation

A = A′ ∗G/G′.
Since regularity of ring elements is preserved under ring automorphisms S′ is clearly G-stable,
thus by [10, lem. 37.7] S′ is also an Ore set in A consisting of regular elements and it holds
that

AS′ = A′S′ ⊗A′ A
as bimodules. But by the subsequent Lemma 4.6 we have A′S′ = AS . This establishes (i).

(ii) We choose our N in such a way that it is contained in H ′. Let m′(N) be the kernel of
the projection Λ(G′)→ Ω(G′/N), and note that

m(N)n = Am′(N)n = m′(N)nA = m′(N)n ⊗A′ A
for any n ≥ 1. Using again the subsequent Lemma 4.6 we deduce that

m(N)nS = m(N)nS′ = m′(N)nS′ ⊗A′
S′
AS′ = m′(N)nS′ ⊗A′

S′
AS

and
AS/m(N)nS = (A′S′/m

′(N)nS′)⊗A′
S′
AS = (A′S′/m

′(N)nS′)⊗A′ A.
By passing to the projective limit with respect to n and using Lemma 4.4 we obtain (ii).

(iii) With N as in (ii) we let M(N) denote the maximal ideal of Λ(N). We set Rk :=
R/M(N)kR, R′k := R′/M(N)kR′ as well as Ak := Rk[[t; σ̄, δ̄]], A′k := R′k[[t

′; σ̄′, δ̄′]], where σ̄, δ̄
and σ̄′, δ̄′ are induced by σ, δ and σ′, δ′, respectively. Finally we put Bk := (Ak)T and B′k :=
(A′k)T ′ with T = {1, t, t2, . . .} and T ′ = {1, t′, t′2, . . .}. Note that we have M(N)kA = m(N)k

and M(N)kA′ = m′(N)k. Using Lemma 1.12 it follows that

Ak = A/m(N)k = A/m′(N)kA and A′k = A′/m′(N)k

and hence, as above, that
Ak ∼= A′k ⊗A′ A

as bimodules and thus
(Ak)T ′ ∼= (A′k)T ′ ⊗A′ A = B′k ⊗A′ A

as B′k−A-bimodules by Proposition 1.2 (we only know that T ′ is an Ore set of A′k). We claim
that we have a natural isomorphism

(4.1) B′k ⊗A′ A ∼= (Ak)T ′ ∼= (Ak)T = Bk.

To this end, we first show that both Bk and B′k are Artinian rings. Note that this does not
immediately follow from the results in Section 2, because condition (SI)0 need not be satisfied
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for either Ak or A′k, since it is entirely possible for A′k to equal Ak : this happens for example
when G′ = G.
Now Ak is isomorphic to Λ(G)/M(N)kΛ(G) and hence pseudocompact, and σ̄ and δ̄ commute.
Therefore δ̄ is topologically nilpotent, by the remark following [11, lem. 1.6]. Because Rk is
Artinian by construction (being a finite module over the Artinian ring Λ(N)/M(N)k), we see
that the “standard filtration” I• on Rk is separated. Therefore Bk is Artinian by Proposition
1.6. The same argument applied to B′k shows that this ring is also Artinian.
Since T ′ consists of regular elements in A′k, it consists of regular elements in Ak because the
latter ring is a free module over the former. So T ′ consists of regular elements in Bk. Since
Bk is Artinian, T ′ consists of units in Bk by [9, prop. 3.1.1].
On the other hand, B′k is the classical Artinian quotient ring of A′k and Ak = A′k ∗ (G/G′) is
a crossed product, meaning that B′k⊗A′ A is the classical Artinian quotient ring of Ak by [10,
lem. 37.7]. As T consists of regular elements in Ak, it consists of units in B′k ⊗A′ A, again by
[9, prop. 3.1.1].

Putting everything together we have established compatible isomorphisms

Bk ∼= B′k ⊗A′ A

of B′k-modules; one easily checks that this isomorphism also respects the right A-module
structures. Taking the inverse limit with respect to the canonical projections and using
Remark 1.11 we obtain (iii). �

We learned the following Lemma, which we have used in the above proof, from R. Sujatha.
It also follows from [2, lem. 5.1] as was pointed out to us by the referee.

Lemma 4.6. AS = AS′ .

Proof. The claim follows from Lemma 2.6 (i): (2.2) applied to R′ ↪→ A′ ↪→ A says that all
elements of S are already invertible in AS′ ; thus the latter is also the localisation of A with
respect to S. �

Theorem 4.7. We have:

(i) B is pseudocompact and Noetherian.
(ii) B ∼= ÂS.
(iii) B is flat over AS and A.

Proof. We choose an open normal subgroup G′ ⊆ G which is an extra-powerful pro-p-group
([17, prop. 8.5.2]). As G′/H ′ is torsionfree H ′ then is extra-powerful as well. The analogous
assertions of our Theorem for B′ and Â′S′ were already established in Lemma 4.3. Using
Proposition 4.5 the fact that B is Noetherian and is flat over AS then follows immediately by
base extension.

The topology on B, by Lemma 1.12 (i), is given by the filtration Jac(R)nB. Since the
pseudocompact ring R is finite free over the pseudocompact ring R′ the same topology also
is given by the filtration Jac(R′)nB. This shows that the topology on B coincides with the
natural topology of B as a finite free module (by Proposition 4.5 (iii)) over the pseudocompact
ring B′. Hence B is pseudocompact.
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By Proposition 4.5 (i) we have a ring homomorphism B′ −→ B and using Lemma 4.6 then
the commutative diagram of solid arrows

A′

��

// A′S′

��

// B′

��
A // AS = AS′ //___ B.

The dashed arrow then exists by the universal property of localisation. It is continuous for
the Jac(AS)-adic topology on AS since Jac(AS) = Jac(R)AS by Lemma 4.2 (ii). But B is
complete. Hence this arrow extends to a ring homomorphism

ÂS −→ B.

As a homomorphism of bimodules this is, by Proposition 4.5, of course the base extension to
A of the corresponding homomorphism Â′S′ −→ B′. The latter is an isomorphism by Lemma
4.3 (i). Hence the former is an isomorphism as well. �

5. Overconvergent skew Laurent series

In this section R denotes a Noetherian pseudocompact ring. We fix a ring norm | | on R
which defines the pseudocompact topology. To avoid confusion we recall that the function
| | : R −→ R≥0 satisfies the axioms

(i) |a− b| ≤ max(|a|, |b|),
(ii) |a| = 0⇐⇒ a = 0,
(iii) |ab| ≤ |a||b|,
(iv) |1| = 1

for any a, b ∈ R. We also suppose that
(v) |a| ≤ 1 for any a ∈ R.

As before σ is a topological ring automorphism of R and δ is a continuous left σ-derivation.
We assume that

(vi) |σ(a)| = |a| for any a ∈ R.
A standard example for a ring norm on R satisfying (i) – (vi) is given by

|a|Jac := 2−k if a ∈ Jac(R)k \ Jac(R)k+1.

We also assume that there is a constant 0 < D < 1 such that
(vii) |δ(a)| ≤ D|a| for any a ∈ R.

In particular, δ is σ-nilpotent. It also follows that

|Mk,l(δ, σ)(a)| ≤ Dk|a| for any a ∈ R.

If δ(R) ⊆ Jac(R) and δ(Jac(R)) ⊆ Jac(R)2 then | |Jac satisfies this condition (vii) with
D := 2−1.

For any real constant D < u < 1 we now introduce the (left) R-submodule

B(| |;u) := {
∑
i∈Z

ait
i ∈ B| lim

i→−∞
|ai|ui = 0}

of B. It carries the norm |
∑

i∈Z ait
i|u := supi∈Z |ai|ui. By the proof of Proposition 1.10 the

formula 1.9 gives a well-defined “multiplication” map B ×B −→ B.
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Proposition 5.1. This multiplication map restricts to a map

B(| |;u)×B(| |;u) −→ B(| |;u).

Proof. Let x =
∑

i∈Z ait
i and y =

∑
i∈Z bit

i be two arbitrary elements in B(| |;u) and put
xy =

∑
m∈Z cmt

m in B with cm = c+
m + c−m as in (1.9) - (1.12). We have

|c+
m|um ≤ max

j≥n≥0
|aj | · |bm−n|um−n · un ≤ max

n≥0
|bm−n|um−n = max

i≤m
|bi|ui

and
|c−m|um ≤ max

n≤j<0
|aj |uj · |bm−n|um−n ·

(D
u

)j−n
.

The first inequality obviously implies that limm→−∞ |c+
m|um = 0. On the other hand, given

any constant ε > 0, we find natural numbers N0, N1, N2 > 0 such that for n ≤ j we have
|aj |uj · |bm−n|um−n ·

(
D
u

)j−n ≤ |x|u|y|u ·
(
D
u

)j−n ≤ ε for j − n ≥ N1 (since D
u < 1);

|aj |uj · |y|u ≤ ε for j ≤ −N0 (since limj→−∞ |aj |uj = 0);
|x|u · |bm−n|um−n ≤ ε for m− n ≤ −N2 (since limk→−∞ |bk|uk = 0).

But j − n < N1, j > −N0,m− n > −N2 together imply m > −N0 −N1 −N2. It follows that
|c−m|um ≤ ε for m ≤ −N0 −N1 −N2. �

Corollary 5.2. If the assumption (I) is satisfied then B(| |;u), for any D < u < 1, as well
as B†(| |) :=

⋃
uB(| |;u) are subrings of B.

Remark 5.3. (i) In general the ring B†(| |) depends on the choice of the norm, but if one
restricts to ‘ideal norms’ the ring B†(| |) is independent of the particular choice of | |. More
precisely let J1 and J2 be two ideals in R such that the Ji-adic filtrations define the given
topology on R for i = 1, 2. Consider the norms

|a|i := ρmi if a ∈ Jmi \ Jm+1
i ,

where 0 < ρi < 1 are two real constants. Assuming that | |1 and | |2 also satisfy the conditions
(vi) and (vii) above we have

B†(| |1) = B†(| |2).

(ii) The pseudocompact topology of R can always be defined by an ‘ideal norm’.

Proof. In order to prove (i) we write ρ2 = ρν1 for some ν > 0 and note that there exist natural
numbers ni, i = 1, 2, such that

(5.1) Jn1
1 ⊆ J2 and Jn2

2 ⊆ J1.

holds. We shall show the following inequality

(5.2) ρn2
2 | |

n2ν
1 ≤ | |2 ≤ ρ−1

2 | |
ν
n1
1 ,

which easily implies that B†(| |1) = B†(| |2).
Let a ∈ R be arbitrary and assume that |a|1 = ρn1 and |a|2 = ρm2 for some natural numbers

n and m. Then from (5.1) we obtain n < n1(m+ 1), which is equivalent to m > n
n1
− 1, hence

|a|2 = ρm2 < ρ
n
n1
2 ρ−1

2 = ρ
νn
n1
1 ρ−1

2 = |a|
ν
n1
1 ρ−1

2 ,

which proves the second inequality, the first one is proven similarly.
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For (ii) let | | be any ring norm on R (satisfying (i) - (v)) which defines the topology of R.
Then J := {a ∈ R : |a| < 1} is an open ideal in R. Since R is Noetherian J is generated by
finitely many elements a1, . . . , as. We put

ρ := max{|a| : a ∈ J} = max(|a1|, . . . , |as|)

and introduce the ideal norm

|a|′ := ρm if a ∈ Jm \ Jm+1.

For a given 0 < ε < 1 choose an m ∈ N such that ρm ≤ ε. Then

Jm ⊆ {a ∈ R : |a| ≤ ρm} ⊆ {a ∈ R : |a| ≤ ε}.

It follows that the J-adic topology is finer than the given topology. In fact we have

| | ≤ | |′.

On the other hand each Jn/Jn+1 is finitely generated over the Artinian (and Noetherian) ring
R/J . It follows inductively that R/Jm is an R-module of finite length. Using [15, cor. 3.13]
we see that Jm is open in R. Hence the J-adic topology coincides with the given topology of
R.

�
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