
FROM CLASSICAL TO NON-COMMUTATIVE IWASAWA THEORY
AN INTRODUCTION TO THE GL2 MAIN CONJECTURE

OTMAR VENJAKOB

This paper, which is an extended version of my talk ‘The GL2 main conjecture for
elliptic curves without complex multiplication’ given on the 4ECM, aims to give a sur-
vey on recent developments in non-commutative Iwasawa theory. It is written mainly
for non-experts and does not contain neither proofs nor any new results, but hope-
fully serves as introduction to the original articles [4, 33]. Also, technical details are
sometimes placed into footnotes in order to keep the main text as easily accessible as
possible.

1. Classical Iwasawa theory

For the motivation of non-commutative Iwasawa theory it might be helpful to first go
back to the origin of classical Iwasawa theory starting in some sense with the work of
Kummer on cyclotomic fields.

The ideal class group Cl(K) of a number field K measures the failure of unique fac-
torisation into prime elements in its ring of integers OK . It was Kummer who observed
that the vanishing of Cl(Q(ζp)), where ζp denotes a primitive pth root of unity for a
fixed odd prime p, implies that the famous equation

xp + yp = zp

only has trivial solutions in Z.1 In fact, it is even sufficient that only the p-primary part
A1 := Cl(Q(ζp))(p) of the ideal class group vanishes; in this case p is called regular,
otherwise irregular. Thus, if all prime number would be regular the proof of Fermat’s
last theorem would have been rather easy. Hence, it was important for Kummer to be
able to tell the regular from the irregular primes and he found the following criterion
which reveals a mysterious relationship between A1 and certain special values of the
complex Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

1
1− p−s

,
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1Indeed, after adjoining ζp the right hand side decomposes into the product of pairwise prime
elements x + ζi

py, i = 0, . . . , p − 1, in Z[ζp]; the ideal class group being zero we can now consider the
equation prime by prime showing that z must be the product of p pairwise prime numbers zi which
leads to a contradiction as is easily shown, see [35].
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where the Euler product ranges over all prime numbers and converges for <(s) > 1.

Theorem 1.1 (Kummer). A1 is trivial if and only if p does not divide any of the
numerators of the values ζ(−1), ζ(−3), . . . , ζ(4− p).2

For example the first four irregular primes are 37, 59, 67, 103 and in contrast to the
regular ones it is known that there exist infinitely many of them.

Now it was Iwasawas idea to study more general the (p-primary) ideal class groups
An := Cl(kn)(p) of the fields kn = Q(µpn) which arise by adjoining the pnth root of
unities µpn to Q, both in order to understand better Kummers criterion and to see
whether the order of An could be at least controlled in view of Fermat’s last theorem.
Studying the ideal class groups for the whole tower of number fields kn simultaneously
leads naturally to considering the infinite Galois extension Q∞ := Q(µp∞) of Q whose
Galois group G is given explicitly by the cyclotomic character χ : G

∼=−→ Z×p , i.e.
ζg = ζχ(g) for all g ε G and ζ ε µp∞ . We write Qcyc for the unique subextension whose
Galois group is isomorphic to Zp

∼= 1 + pZp ⊆ Z×p and denote the corresponding Galois
group by Γ. We fix a topological generator γ, say 1+p, of Γ. Also we set ∆ := G(k1/Q)
and note that G ∼= Γ×∆. Iwasawa was not only interested in the size of An but also in
the finer structure of the ideal class group as Galois module. The natural Galois action
on An for all n extends naturally to an action of the Iwasawa algebra Λ := Λ(G), i.e.
the completed group algebra

Zp[[G]] := lim←−
n

Zp[G(kn/Q)],

on the projective limit
X := lim←−

n

An.

In fact, Iwasawa showed that X is a finitely generated Λ-torsion module. Since Λ ∼=
Zp[∆][[Γ]] decomposes into a finite product of rings3 each of which is isomorphic to the
power series ring Z[[T ]] in one variable T = γ−1 there is a nice structure theory which
assigns to any Λ-torsion module M a characteristic polynomial FM (with coefficients
in Zp[∆]), see 3.2 for more details. Neglecting for simplicity the Zp-torsion part of M,
FM can be interpreted as the characteristic polynomial of the endomorphism T acting
on the free Qp[∆](=

∏p−1
i=1 Qp)-module M ⊗Zp Qp. This FX will be used to define the

algebraic p-adic zeta function below.

On the other hand, Kummer had shown mysterious congruences between the values of
the modified ζ-function

ζ(p)(s) := (1− p−s)ζ(s)
with the Euler factor at p eliminated, which turn out to be equivalent to the existence
of a continuous function ζp−adic : Zp \ {1} → Qp such that ζp−adic(1− n) = ζ(p)(1− n)
for all n > 1. Remember that already Euler knew that for n > 1 the values ζ(1−n) are

2Note that ζ has trivial zeroes at the even negative integers, also the numerator of ζ(2− p) is never
divisible by p. The proof of this theorem relies decisively on the analytic class number formula and a
decomposition of A1 and the zeta function of Q(ζp) into eigenspaces and L-functions with respect to
the powers ωi of the Teichmueller character ω : G(Q(ζp)/Q) → µp−1, respectively.

3corresponding to the characters ωi of ∆.
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rational and thus can also be considered as elements of the local field Qp. Furthermore,
Kubota and Leopold showed that ζp−adic can be expanded into a p-adic power series,
thus being p-adic analytic. As Iwasawa observed ζp−adic can also be interpreted as
an element of Q(G), the total ring of fractions of Λ.4 First note that every continuous
character ψ : G → Z×p extends linearly to a ring homomorphism Λ→ Zp which we also
call ψ by abuse of language. Apart from some bad denominators this map extends also
to Q(G). In particular, elements Z ε Q(G) can be considered as functions on certain
subsets of the set of continuous characters of G by setting Z(ψ) := ψ(Z), if the latter
is defined.

Theorem 1.2 (Iwasawa, Kubota, Leopoldt). There exists a unique element Z ε Q(G)
such that

Z(n) := Z(χn) = ζ(p)(1− n)
for all k > 1.

Note that Z(n) is zero for all odd n due to the trivial zeroes of the Riemann zeta func-
tion. Also, by decomposing the cyclotomic character into the product of its projections
onto 1 + pZp and µp−1, respectively, one can extend Z to p-adic analytic functions
Zωi(s), s ε Zp \ {1}. 5 Alternatively, Z is determined by an interpolation property with
respect to Dirichlet characters instead of powers of the cyclotomic character. In this
case the Dirichlet L-functions are involved.

In some sense generalizing the analytic class number formula Iwasawa detected a deep
relationship between the ”p-adic families” of ideal class groups An, namely X, on the
algebraic side and of special values of ζ, namely Z on the (p-adic) analytic side, which
he formulated in the following classical

Main Conjecture (Theorem of Mazur and Wiles) There is the following equality
of ideals in Λ :

(FZp(1) · Z) = (FX+).

Here Zp(1) := lim←−
n

µpn denotes the Tate-module and, due to the trivial zeroes of Z, one

only has to consider the +1-eigenspace X+ of X with respect to complex conjugation.In
particular, the denominator of Z is controlled by FZp(1). More heuristically, the main
conjecture should be read as an identity in Q(G)

Z =
FX+

FZp(1)

up to units in Λ.6

4Q(G) is isomorphic to the product
∏p−1

i=1 Q(Zp[[T ]]) of fields of fractions of Zp[[T ]].
5More precisely, the Zωi are the p-adic versions of the complex L-functions L(ωi, s).
6This can be read as an alternating product of the characteristic polynomials of the action of γ on

certain étale cohomology groups with coefficients in Zp(1) which identify with the Λ-modules Zp(1)
and X+. This is analogous to the function field situation, namely the fact that the zeta function of
a curve C over a finite field F, l 6= p, can be expressed by means of the Lefschetz fix point formula
using the action of the Frobenius endomorphism (instead of γ) on the étale cohomology of C. It was
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While this classical theory concerned the multiplicative group Gm - we adjoined the
points of its p-primary torsion subgroup to Q and considered the Galois modules Zp(1)
and X+ which can be interpreted as Galois cohomology groups with coefficients in
Zp(1) - we will explain the corresponding theory for an elliptic curve E over Q in the
following sections.

References: [35, 22, 21, 8]

2. Iwasawa theory of elliptic curves - the philosophy

2.1. Arithmetic of elliptic curves. In order to explain the Iwasawa theory of elliptic
curves we first recall basic facts on (the arithmetic of) elliptic curves. To this end let
E be an elliptic curve over Q, i.e. a smooth projective curve of genus one with a
distinguished Q-rational point (the 0 of the underlying abelian group). Every such E
can be realized in P2 by a (non-unique) Weierstrass equation of the form

W : y2 = x3 +Ax+B, A,B ε Z

the distinguished point being the point at infinity.

For every prime l this equation also defines a (not necessarily smooth) curve over the
local field Ql and the finite field Fl, respectively. One of the basic questions concerning
the arithmetic of E is to determine the structure and in particular the size of the group

E(K) = ?

of K-rational points of E, i.e. the set of solutions of the equation (W) with coordinates
in K, for K any number field, local field or finite field. Over a number field, e.g. K = Q,
there is the famous

Theorem 2.1 (Mordell-Weil). The abelian group E(Q) is finitely generated, i.e. it
decomposes into

E(Q) = Zr ⊕ E(Q)tors,
where r = rkZE(Q) is the rank of the Mordell-Weil group or the algebraic rank of E,
while E(Q)tors is the finite torsion subgroup.

While the possible structures of E(Q)tors where determined by Mazur, in particular,
the order of this group is bounded by 16, it is not known whether the rank can be
arbitrarily large when E/Q varies. The properties of the Mordell-Weil group turn out
to be, at least conjecturally, deeply related with L-functions, which we are going to
recall now. For every prime l we denote by Ẽl the reduction of E modulo l, i.e. the
curve which is given by the reduced equation

W̃ : y2 = x3 + Ãx+ B̃, Ã, B̃, ε Fl.

this prototype which motivated Iwasawa to find a similar interpretation for the p-adic analytic zeta
function. The non-trivial contribution of the étale cohomology comes from the jacobian of C, which
is paralleled by the ideal class group in the number field case. Moreover, the extension from F to its
algebraic closure is achieved by adjoining roots of unity, which corresponds to taking the cyclotomic
Zp-extension of Q.
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Here we assume that the Weierstrass equation (W) is a (global) minimal model of E over
Z, i.e. for all primes l the l-part of the integer ∆ := −16(4A3+27B2) (the discriminant)
is minimal with respect to all Weierstrass equations over the l-adic integers Zl which
give rise to the same isomorphism class of elliptic curves. If Ẽl is again a smooth curve
over Fl, then E is said to have good (otherwise bad) reduction at l. In the previous case
the integer al is defined by

#Ẽl(Fl) = 1− al + l.

Otherwise Ẽl has either a node, i.e. multiplicative reduction, or a cusp, i.e. additive
reduction. In the second case we set al = 0 while in the first case we set al = 1 if
the multiplicative reduction is split, i.e. the tangent lines to the node on Ẽl have slopes
defined over Fl, and al = −1 if the reduction is non-split. Then the complex Hasse-Weil
L-function of E is defined by the following Euler product

L(E/Q, s) :=
∏

l

(
1− all

−s + ε(l)l1−2s
)−1

, s ε C, <(s) >
3
2
,

where ε(l) equals by definition 1, if E has good reduction at l, and 0 otherwise. By the
work of Wiles and Taylor-Wiles it is known that L(E/Q, s) has an analytic continuation
to the entire complex plane. The following conjecture, which is a generalization of the
analytic class number formula for number fields, predicts that the analytic rank of
E, i.e. the vanishing order of L(E/Q, s) at s = 1, coincides with the algebraic rank.
Moreover, the leading coefficient of the Taylor series expansion of the L-function at
s = 1 can be expressed by the most important invariants of E : By X(E/Q) we denote
the Tate-Shafarevich group of E, which is conjectured to be finite though this is not
known for a single elliptic curve. If <,> denotes the height pairing of E and P1, . . . , Pr

form some set of generators of E(Q)/E(Q)tor, then the regulator of E is defined to be
the determinant of the matrix (< Pi, Pj >)i,j . Further, if we assume that (W) is a global
minimal model of E over Z, then the translation invariant holomorphic differential

ω :=
dx

2y

is called the Néron Differential of E. The integration of it along a generator γ+ of the
real part π1(E(C), 0)+ := π1(E(C), 0)G(C/R) of the fundamental group of the complex
manifold E(C) defines the real period

Ω+ =
∫

γ+

ω

of E. Similarly, the period Ω− is defined via integration along a generator γ− of the −1
eigenspace of the fundamental group with respect to the action of complex conjugation.
Finally, for any prime l we call Tamagawa-number at l the index cl = [E(Ql) : Ens(Ql)]
of the subgroup Ens(Ql) of the group of Ql-rational points E(Ql) consisting of those
points whose reduction modulo l is non-singular.
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Conjecture 2.2 ( Birch & Swinnerton-Dyer (BSD) Conjecture).

I. r := ords=1L(E/Q, s) = rkZE(Q)

II. lim
s→1

(s− 1)rL(E/Q, s) = Ω+RE
#X(E/Q)

(#E(Q)tors)2
∏

l

cl

Note that the product over the Tamagawa numbers is actually finite as Cl = 1 whenever
E has good reduction at l.

Thus this conjecture describes a mysterious relationship between the complex analytic
L-function and the purely algebraically defined Mordell-Weil group. A similar conjec-
ture can be formulated for elliptic curves over arbitrary number fields. The idea of
Iwasawa theory is roughly speaking to study this deep connection between the values
of (complex) L-functions and arithmetic invariants of E for a full tower of number fields
simultaneously as we have already seen in section 1.

References: [28, 29]

2.2. The Selmer group of E in towers of number fields. For technical reasons
we make from now on the following

Assumption: p ≥ 5 is a prime such that E has good ordinary reduction at p, i.e. the
order of the group of p-division points Ẽp(Fp)[p] equals p.

To study the Mordell-Weil group of E it is often more convenient to go over to the
cohomologically defined (p-primary) Selmer group Sel(E/K) for any finite extension
K/Q. Instead of giving the precise definition we just recall that induced by Kummer
theory the Selmer group fits into the following short exact sequence, being the bridge
between the (p-primary) Tate-Shafarevich group and the Mordell-Weill group:

0 // E(K)⊗Z Qp/Zp
// Sel(E/K) // X(E/K)(p) // 0 .

Assuming #X(E/K)(p) < ∞, which can be checked - for fixed p - in many cases, it
holds for the Pontryagin dual of the Selmer group

X(E/K) := Sel(E/K)∨ := Hom(Sel(E/K),Qp/Zp),

that
rkZE(K) = rkZpX(E/K).

Thus, indeed, the Selmer group (or its dual) bears significant arithmetic information
of E.

Now we introduce a canonical tower of number fields associated with E. By E[pn] ∼=
Z/pnZ× Z/pnZ we denote the pn-division points of E over a fixed algebraic closure Q
of Q. The action of the absolute Galois group GQ on this group induces, after choosing
a basis, the representation

ρpn : GQ −→ Aut(E[pn]) ∼= GL2(Z/pnZ).
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We define Kn := Q(E[pn]), 0 ≤ n < ∞, to be the maximal subfield of Q fixed under
the kernel of ρpn . Then K∞ :=

⋃
n≥0Kn is nothing else then the fixed field under the

kernel of the representation

ρp∞ : GQ −→ AutZp(TpE) ∼= GL2(Zp)

of GQ on the Tate module

TpE := lim←−
n

E[pn],

where the inverse limit is formed with respect to the multiplication by p maps. In
particular, K∞ is a Galois extension of Q with Galois group G := G(K∞/Q) isomorphic
to a closed subgroup of GL2(Zp). Thus G is a p-adic Lie group. We want to stress that
the L-function of E only depends on the Galois representation ρp∞ , thus the tower of
number fields {Kn}n is most natural in order to study the arithmetic of E, in particular,
to investigate properties of its L-function.

Note that due to the Weil pairing det ◦ρ is iso-
morphic to the cyclotomic character χ : GQ −→
Z×p which describes the action of GQ on the p-
power roots of unity µp∞ : gζ = ζχ(g) for all
g ε GQ and ζ ε µp∞ . Thus K∞ contains the cy-
clotomic Zp-extension Q∞ of Q. We write H for
the Galois group G(K∞/Q∞) and obtain the di-
agram sidewards.
As before the Iwasawa algebra of G

Λ(G) = lim←−
n

Zp[Gn]

is the inverse limes of the group algebras Zp[Gn]
ofGn with coefficients in Zp. It is a compact, reg-
ular Noetherian ring. In contrast to the classical
Iwasawa algebra Λ(Γ) of Γ it is not commutative
in general.

K∞

Q∞

H

����������������������

Γ∼=Zp

??
??

??
??

??
??

??
??

??
?

Kn

Gn

Q

G∞ ⊆GL2(Zp)

Now, for every n ≥ 1, the Galois action makesX(E/Kn) := Sel(E/Kn)∨ into a compact
Zp[Gn]-module. To study, on the algebraic side, all these Selmer groups simultaneously
for the whole tower of number fields means to go over to the inverse limit

X := X(E/K∞) := lim←−
n

Sel(E/Kn)∨,

which turns out to be a finitely generated Λ(G)-module, conjecturally even a torsion
Λ(G)-module. Roughly one should think of it as the family of all the Mordell-Weil
groups E(Kn) (and Tate-Shafarevich groups X(E/Kn)(p)). The analytic counterpart
of this family will be discussed in the next subsection.

References: [2, 5, 23, 24, 13]
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2.3. Twisted L-functions. For every n ≥ 0, let Irr(Gn) denote the set of isomorphism
classes of (absolutely) irreducible representations of Gn, realized over an appropriate
number field embedded into C or over a local field contained in Ql (depending on n).
Via the canonical projection G � Gn they are also considered as representations of G,
to which we shall refer as Artin representation. Let R be the finite set of primes of Q
containing p and all primes l at which E has bad reduction.

On the analytic side one is searching for a function LE , the p-adic analytic L-function
of E , on the set

⋃
n Irr(Gn) which assigns to ρ the value at s = 1 of the complex

L-function L(E, ρ, s) of E twisted by ρ or rather its modified version LR(E, ρ, s) with
the Euler factors at primes in R eliminated. 7 8

Heuristically, summarizing the (generalized) BSD conjecture over all the fields Kn

leads directly to the Iwasawa Main Conjecture of E9. Since the (modified) L-function
LR(E/Kn, s) of E over Kn (similarly defined as over Q and without the Euler factors
in R) decomposes into the product of twisted L-functions (with multiplicities), the
idea is that on the analytic side of the picture the family of special values at s = 1
of LR(E, ρ, s) can be interpolated p-adically, which should lead to the p-adic analytic
L-function. On the other hand on the algebraic side there should be some procedure
to assign to the Λ(G)-module X = X(E/K∞) (as for any torsion Λ(G)-module) some
characteristic element FX bearing hopefully many arithmetic information of E. The
(heuristic) comparison of the algebraic and analytic aspect when going over to towers
of number fields are illustrated in the following diagram

7we restrict to those primes not lying in R, because the corresponding factors at primes in R usually
do not behave well p-adically and thus have to be eliminated from the usual definition of the L-function
in order to expect a p-adic L-function in whatever sense.

8 For the interested reader we recall the definition of LR(E, ρ, s). Again it is defined as an Euler
product, which converges only for <(s) > 3

2
,

LR(E, ρ, s) :=
∏

q /ε R

Pq(E, ρ, q−s)−1, s ε C,

where the Pq(E, ρ, T ) are polynomials to be defined below. The only thing known about its analytic
continuation at present is that it has a meromorphic continuation when ρ factors through a soluble
extension of Q. We will assume the analytic continuation of L(E, ρ, s) to s = 1 for all Artin characters
ρ of G in what follows. If q is any prime number we write Frobq for the Frobenius automorphism of

q in G(Qq/Qq)/Iq, where, as usual, Iq denotes the inertia subgroup. Assume now that ρ ε Irr(Gn) is
realized on a vector space Vρ over a number field K of dimension nρ. For a fixed place λ of K lying
above l 6= q we denote by Kλ the completion of K with respect to λ and we set

Vρ,λ = Vρ ⊗K Kλ.

Also we consider the l-adic Tate module VlE := H1(E(C), Z)⊗Z Ql
∼= TlE ⊗Zl Ql and set

H1
l (E) := Hom(VlE, Ql).

Finally we put for any prime l different from q

Pq(E, ρ, T ) := det(1− Frob−1
q .T |(H1

l (E)⊗Ql Vρ,λ)Iq ).

It can be shown that for ρ the trivial representation the local L-function Pq(E, p−s) := Pq(E, ρ, p−s)
coincides with the Euler factor at q of the Hasse-Weil L-function of E. In particular, the integers aq

are just the traces of Frobq acting on the maximal unramified quotient (VlE)Iq of the Tate module.
9In fact this can be made precise in the context of the Equivariant Tamagawa Number Conjecture

(ETNC), a natural generalisation of the BSD conjecture, see [11], also [1, 16].
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algebraic analytic

X(E/Kn) LR(E/Kn) =
∏

Irr(Gn) LR(E, ρ, s)nρ

as Gn-module

p-adic families

X(E/K∞) (LR(E, ρ, 1))ρ ε Irr(Gn),n<∞

p-adic L-functions

FE := FX LE

characteristic element analytic p-adic L-function

This comparison culminates in the

Main Conjecture: FE ≡ LE ,

which says that the characteristic element of E and the p-adic analytic L-functions (if
they exist at all) are essentially the same, in a sense we have to make precise later. If
such a relation should hold it must be a very deep relationship since it connects two
totally different aspects of E living in completely different worlds and in some sense
”explaining” the mysterious BSD-conjecture.

We conclude this section by
illustrating the analogy be-
tween the Gm- and the E-
case:

Gm E
ζ(s) L(E, s)

Q(µp∞) Q(E[p∞])
Cl(kn) E(Kn)
X+ X(E/K∞)

ζp−adic LE

3. Iwasawa theory of elliptic curves - recent developments

3.1. What is new? Before we try to describe different approaches to make the phi-
losophy explained above precise we would like to mention that we have to distinguish
two totally different cases. Consider the following explicit elliptic curves

E1 : y2 = x3 − x
and

E2 : y2 + y = x3 − x2.

At a first glance who would expect an essentially difference between them? But while
the first one has a ”big” ring of endomorphisms - one can show that End(E1) ∼= Z[i] 6= Z,
i.e. E admits complex multiplication (CM) - the second one only has the endomorphisms
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arising from multiplication with integers: End(E2) ∼= Z, i.e. E does not admit complex
multiplication.

Now it follows that in the CM-case, the group G has the form

G ∼= Zp
2 × finite abelian group,

in particular it is abelian. This commutative theory is rather well known, the 2-variable
main conjecture10 is a Theorem of Rubin [25] in many cases, see also at the end of 3.5.

Thus we want to concentrate on the second, the GL2-case. By a deep result of Serre
[27] now G is of the form

G ⊆o GL2(Zp) open subgroup,

in particular it is not abelian.

In this case it was not even known how to formulate a GL2 main conjecture and it
is this case were the substantial progress we want to describe in these notes has been
achieved recently. This development concerns unfortunately only the algebraic side of
the picture drawn above, in particular, the existence of characteristic elements has been
established, while the p-adic analytic part will be purely conjectural.

We also should mention that there is a well-developed (commutative) Iwasawa theory of
elliptic curves over the Q∞, [19, 12, 20]We refer to the corresponding main conjecture as
1-variable main conjecture. For CM-elliptic curves this is consequence of the 2-variable
main conjecture. In the non-CM case there are partial results by Kato [17] and recent
results by Urban and Skinner [?], which together prove the latter main conjecture in
several cases.

3.2. Structure Theory. In this section letG be any compact p-adic Lie group without
element of order p (G can always be realized as an closed subgroup of GLn(Zp) for some
n).

In order to define the characteristic element of a Λ(G)-module it is tempting to imitate
the approach of classical Iwasawa theory, i.e. the case where

G ∼= Zp
n

and thus there is an isomorphism Λ = Λ(G) ∼= Zp[[X1, . . . , Xn]] for any choice of a
minimal system of topological generators γ1, . . . , γn of G by the identities Xi = γi − 1.
In particular, Λ(G) is a complete, regular local ring of dimension n + 1. In the case
n = 1 it was Iwasawa himself - and more generally for integrally closed (commutative)
domains Serre - who established a structure theorem, similar to that concerning modules
over principal ideal domains: Every finitely generated Λ(G)-torsion module M is up to
pseudo-null modules a direct product of cyclic modules

M ∼
∏

i

Λ/Λfni
i ,

10Since G has dimension 2 as p-adic Lie group the p-adic L-function is a power series in two variables.



FROM CLASSICAL TO NON-COMMUTATIVE IWASAWA THEORY 11

where ni are uniquely defined integers and fi are irreducible elements of Λ(G), unique
up to units. The pseudo-null11 modules have to be considered as small - in fact, for
n = 1 they are precisely the class of all finite modules - and the idea is that they do
not contribute essential information in the arithmetic applications. Now one defines
the characteristic element using the above invariants attached to M

FM :=
∏

fni
i .

Returning to the general case, i.e. to a not necessarily commutative group G, the
concept of pseudo-null modules was developped in the authors thesis [30, 31, 34] by
cohomological methods establishing the fundamental fact that Λ(G) is an Auslander
regular ring, for details see (loc. cit.). Then Coates, Schneider and Sujatha went on
establishing a structure theorem in this non-commutative setting almost totally parallel
to the above mentioned theory.

Theorem 3.1 (Coates, Schneider, Sujatha). For every torsion Λ-module M there exist
left ideals L1, . . . , Lr such that, up to pseudo-null modules, M decomposes into a product
of cyclic modules

M ∼
r∏

i=1

Λ/Li.

For details and the mild technical further assumption on G needed in this theorem, see
[7] and [3]. Unfortunately, it turned out that the G-Euler characteristic, an important
arithmetic invariant if e.g. applied to the Selmer group and which will be defined later,
is not invariant under pseudo-isomorphisms12. Moreover, the ideals Li occurring above
need not be principal in general (see [32, appendix] for a counterexample). Thus, at
moment, the theorem cannot be used to attach an characteristic element to M and it is
still not clear which role this astonishing structure result will play in non-commutative
Iwasawa theory. In order to circumvent this dilemma we are going to apply techniques
from algebraic K-theory and localisation of (possibly non-commutative) rings.

References: [7, 6, 22, 15, 14, 32, 26]

3.3. Localisation of Iwasawa algebras and characteristic elements. The follow-
ing theory stems from joint work of Coates, Fukaya, Kato and Sujatha with the author
[4] and makes heavily use of the following

Assumption: There exists a normal closed subgroup H EG such that the
quotient Γ := G/H is isomorphic to Zp.

Recall that it is satisfied in our application because K∞ contains the cyclotomic Zp-
extension Qcyc of Q.
In this situation we are able to define a multiplicatively closed subset T 13 consisting
of non-zerodivisors of Λ := Λ(G) hoping that one can localize Λ with respect to it.

11A finitely generated Λ(G)-module M is pseudo-null if its support has codimension at least 2 in
the spectrum of Λ(G).

12A homomorphism of modules whose kernel and cokernel are pseudo-null
13First define T ′ := {λ ε Λ|Λ/Λλ finitely generated over Λ(H)} and then saturate it with the powers

of p, i.e. T :=
⋃

i≥0 piT ′ ⊆ Λ.
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While this is always possible for commutative rings this is a quite subtle issue for non-
commutative rings: one has to check that T satisfies the Ore-condition, which means
roughly speaking that every right fraction with denominator in T can also be written
as left fraction, and vice-versa. If the localisation with respect to T exists, it should
be related - by construction - to the following subcategory of the category of Λ-torsion
modules:

MH(G) category of Λ-modules M such that modulo Zp-torsion M is
finitely generated over Λ(H) ⊆ Λ(G).

Thus, from a technical point of view the following theorem is the key result of our
construction:

Theorem 3.2. The localization ΛT of Λ with respect to T exists and there is a surjective
map arising from K-theory14

∂ : (ΛT )× � K0(MH(G))

from the group of units (ΛT )× of ΛT to the Grothendieck group K0(MH(G)) of MH(G).

This leads directly to the following

Definition 3.3. Any FM ε (ΛT )× with ∂[FM ] = [M ] is called characteristic element
of M ε MH(G).

In order to show that this is not just a sophisticated but useless definition we state
some basic properties of our construction. In particular, FM behaves well with Euler
characteristics.

Properties

(i) Any f ε (ΛT )× can be interpreted as a map on the isomorphism classes of
(continuous) representations ρ : G → Gln(OK), where OK runs through the
ring of integers of finite extensions K of Qp :

ρ 7→ f(ρ) ε K ∪ {∞} ⊆ Qp ∪ {∞}.

(ii) The evaluation of FM at ρ gives the generalizedG-Euler characteristic15 χ(G,M(ρ))

|FM (ρ)|−[K:Qp]
p = χ(G,M(ρ))

14There is an exact localization sequence

Λ×

����

(ΛT )×

����
K1(Λ) // K1(ΛT )

∂ // K0(MH(G)) // 0,

where the surjectivity claims need little arguments, see [4, §4].
15Note that with M also every twist M(ρ) := M ⊗Zp On

K (with diagonal G-action, via ρ on the right

factor) belongs to MH(G). By definition, χ(G, M(ρ)) :=
∏

i≥0

(
#Hi(G, M(ρ̂))

)(−1)i

, if all groups are

finite and where ρ̂ denotes the contragredient representation of ρ.
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if the Euler-characteristic is defined. Here the p-adic valuation is normalized
as usual by |p|p = 1

p .

For more details and proofs, see [4, § 3],[33, §8].

3.4. Numerical Example. Consider the two elliptic curves

E = X1(11) : y2 + y = x3 − x2,

A : y2 + y = x3 − x2 − 7820x− 263580

and let p = 5. One can show that X ε MH(G), i.e. that FX exists. Now G =
G(Q(E(5))/Q) has 2 irreducible Artin Representations of degree 4 :

ρi = Indχi : G→ GL4(Z5),

which are in fact induced by the characters χi, i = 1, 2, corresponing to the cyclic
extensions of degree 5 as indicated in the following diagram

Q(E[5])

χ1 JJJJJJJJJ
Q(A[5])

χ2ttttttttt

Q(µ5)

Q

Calculations show that χ(G,X(ρi)) equals 53 and 5 for i = 1 and i = 2, respectively.
Thus

FX(ρ1) ∼ 53, FX(ρ2) ∼ 5
up to Z×5 .

3.5. Analytic p-adic L-function and the GL2-main conjecture. In contrast to
the algebraic theory above the following analytic part is purely conjectural. First of all
we have Delignes [9]

Period - Conjecture:
LR(E, ρ, 1)

Ω(E, ρ)
ε Q̄

for a suitable period Ω(E, ρ) ε C, which permits to consider LR(E,ρ,1)
Ω(E,ρ) as value in Q̄p,

i.e. in the same target where the elements of (Λ(G)T )× interpreted as functions take
their values. In analogy with classical Iwasawa theory we call such an element which
interpolates these values p-adic analytic L-function though one could criticize that there
is no p-adic analysis involved at present.

Conjecture 3.4 (Existence of analytic p-adic L-function). Let p ≥ 5 and assume that
E has good ordinary reduction at p. Then there exists

LE ε (Λ(G)T )×,
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such that for all Artin representations ρ of G one has LE(ρ) 6=∞ and

LE(ρ) ∼ LR(E, ρ, 1)
Ω(E, ρ)

up to some modifications of the Euler factor at p.

The precise formula16 describing the interpolation property can be deduced from Fukaya
and Kato’s version17 of the Equivariant Tamagawa Number Conjecture (ETNC) to-
gether with their ε-conjecture and thus follows a precise recipe whose explanation is
unfortunately out of the scope of this article. In particular, the following version of a
non-commutative Iwasawa main conjecture is compatible with the ETNC corresponding
to our tower Kn of number fields:

Conjecture 3.5 (Main Conjecture). Assume that p ≥ 5, E has good ordinary reduction
at p, and X(E/K∞) belongs to MH(G). Granted the existence of the p-adic L-function,
LE is a characteristic element of X(E/K∞) :

∂[LE ] = [X(E/K∞)].

Before we discuss evidence for this conjectures we would like to comment on some of
its implications. Assuming the existence of LE , one can show

(i) that the GL2-main conjecture implies the 1-variable main conjecture (over
Qcyc).

(ii) that, assuming also the GL2-main conjecture, it holds

χ(G,X(ρ)) finite ⇔ LR(E, ρ, 1) 6= 0.

In this case one has with mρ := [K : Qp] :

χ(G,X(ρ)) = |LE(ρ)|−mρ
p .

(iii) that, if L(E, 1) 6= 0, by results of Kolyvagin the groups E(Q) and X(E/Q)
are finite and the p-part of the BSD conjecture (II.) holds:

L(E/Q, 1)
Ω+

∼p
#X(E/Q)
(#E(Q))2

∏
l

cl

up to Z×p .

16Since E is ordinary at p, we have Pp(E, 1, T ) = 1− apT + pT 2 = (1− uT )(1− wT ) with u ε Z×p .

We put pfρ = p-part of conductor of ρ, and denote by ep(ρ) the local ε-factor of ρ at p. Finally we set

Pp(ρ, T ) := det(1− Frob−1
q .T |V Ip

ρ ). Then the interpolation formula is

LE(ρ) =
LR(E, ρ, 1)

Ω(E, ρ)
· ep(ρ) · Pp(ρ̂, u−1)

Pp(ρ, w−1)
· u−fρ ,

where Ω(E, ρ) = Ω+(E)d+(ρ)Ω−(E)d−(ρ) while d+(ρ) and d−(ρ) denote the dimension of the subspace
of Vρ on which complex conjugation acts by +1 and −1, respectively (see [4, 5.7]).

17The original ETNC was formulated by Burns and Flach [1] inspired by [18]. A different version of
an Iwasawa main conjecture (without p-adic L-functions) was discussed by Huber and Kings [16]
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We conclude this survey by giving some evidence for Main Conjecture:

In the CM-case the existence of LE follows from the existence of the 2-variable p-adic
L-function (Manin-Vishik [], Katz [?], Yager [36]). If X ε MH(G), then the main
conjecture follows from the 2-variable main conjecture (Rubin,Yager).

In the GL2-case almost nothing is known! There is only weak numerical evidence by
calculations of T. and V. Dokchitser [10]. Let E = X1(11), p = 5, and ρi, i = 1, 2,
be the two unique irreducible Artin representations of degree 4 as before. Then they
verify that the relation

χ(G,X(ρi)) = |LE(ρi)|−1
p , i = 1, 2

holds as is predicted by the main conjecture, see above. Here LE(ρi) denotes the term
describing the interpolation property of LE if the p-adic L-function should exist.
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