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Preface

For an odd prime p, the Classical Iwasawa Main Conjecture for the extension
Qcyc/Q is a statement on formal power series over the p-adic integers: On
one hand, divisibility properties of zeta values are interpreted as existence of
an ’analytic p-adic zeta function’. To do this, one introduces p-adic (pseudo-
)measures which are evaluated at a character by integrating over it. On the
other hand, the structure theory of Galois modules for the cyclotomic exten-
sion associates to a class group tower a characteristic ideal in Zp[[T ]]. The Main
Conjecture (MC) asserts that this ideal is indeed generated by the p-adic zeta
function.

The Non-commutative Main Conjecture of Iwasawa theory (NMC), as the
name implies, is a conjecture concerning more general (in particular, non
abelian) ’admissible’ extensions of totally real number fields, F∞/F . Like MC,
it also asserts existence (and uniqueness) of p-adic zeta functions. These inter-
polate complex L-values on negative integers and at the same time are linked
via K-theory to characteristic Galois modules. The role of Zp[[T ]] and its frac-
tion field from the classical theory is now played by K1-groups.

To be more precise, for G = Gal(F∞/F ) ∼= H ⋊ Zp define the canonical Ore set

S = {f ∈ Λ(G) | Λ(G)/Λ(G)f is finitely generated Λ(H)-module}.

With it comes the exact localisation sequence

K1(Λ(G))→ K1(Λ(G)S)
∂
→ K0(Λ(G),Λ(G)S).

The p-adic zeta funktion ζp is asserted to exist in the middle group and map
to a characteristic complex under ∂. Consequently, integration over characters
has to be replaced by a method to evaluate elements of K1 at (non necessarily
one-dimensional) Artin representations.

David Burns and Kazuya Kato proposed a strategy to prove NMC: First de-
scribe the K1 group wherein the p-adic zeta function is supposed to exist by K1

groups of abelian subquotients. Then show relations between classical p-adic
zeta functions in these quotients. The first part is often refered to as the alge-
braic part of the strategy, the second as analytic. In fact, Hilbert modular forms
and the q-expansion principle of Deligne and Ribet play a crucial role in the
latter. An account of this is not part of this work, but see for example [Kak10],
[DW08].
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We are concerned with the algebraic part of the strategy, given that G is iso-
morphic to L := Zp ⋊ Z×

p , where the second factor acts on the first via mul-
tiplication of ring elements. This is a compact p-adic Lie group with non-
commutative completed ring Λ(L) := ZpJLK. The problem is to describe
K1(Λ(L)) and K1(Λ(L)S) by subsets in

∏
i∈I Λ(U

ab
i )× and

∏
i∈I Λ(U

ab
i )×S , respec-

tively, the product ranging over a suitable family of open subgroups of L.

To this end we make several reduction steps that are also employed in the
much more general work of Kakde, [Kak10], and are dictated by representation
theory: First reduce to one-dimensional admissible quotients Lc, c ∈ N, of L
using a result of Kato and Fukaya on projective limits of K-groups, then to
hyperelementary subgroups H of Lc. If H is l-hyperelementary for some l 6=
p then group theoretic arguments show that NMC holds. So ultimately we
have reduced the algebraic part for L = Gal(F∞/F ) to the case where H =
Gal(F ′

∞/F
′) is a p-hyperelementary subgroup ofLc, c ∈ N. Then a simple group

theoretic argument shows thatH is already p-elementary: H = ∆×P , P pro-p,
∆ cyclic with p ∤ |∆|.

We denote the dual group of ∆ by ∆̂. One can now proceed in two ways:
Either use the canonical isomorphism Λ(H) ∼=

⊕
χ∈∆̂Λχ(P ) and the integral

logarithm L of Oliver and Taylor for the pro-p group P or make use of the fact
that L is defined for all pro-finite groups and describe kernel and cokernel of
L. The latter involves group homology computations, of which we give some
examples to hint at techniques necessary in more general cases, but then will
follow the first approach.

The integral logarithm LL takes its image in the Zp-module ZpJConj(L)K. We
define a suitable family of subgroups Ui ≤ L and trace maps τi to give an
explicit description

τ = (τi) : ZpJConj(L)K
∼
→ Ω ⊆

∏

i

ZpJU
ab
i K.

In the multiplicative world ofK1 the role of Ω is played by Ψ ⊆
∏

i Λ(U
ab
i )

×
and

τ is replaced by a norm map θ. It is the definition of this Ψ that really poses
problems when one deals with a non-p group: ϕ : G → G, x 7→ xp induces the
transfer map for abelian quotients only ifG is a pro-p group. This is exactly the
reason why we will give a description of Ψ only for p-elementary quotients of
L.
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By the following crucial diagram, cf. 4.41, θ : K1(Λ(G))→ Ψ is an isomorphism

1 // µ×Gab

id
��

//K1(Λ(G))

θ

��

LG // ZpJConjGK

≀ τ

��

ω // Gab //

id
��

1

1 // µ×Gab θ̃ // Ψ
L̃ // Ω

ω̃ // U0/V0 // 1.

To finish the algebraic part of the strategy we define an analogous set ΨS and
norm map θS : K1(Λ(G)S) → ΨS for the localized Iwasawa algebras, such that
ΨS∩

∏
i Λ(U)

ab
i = Ψ. This will conclude the paper. To proof the main conjecture

one would have to show properties (iS) and (iiS) from section 4.5 relating pairs
of abelian p-adic zeta functions.

Kato computed K1 for open subgroups of L in [Kat05]. These are precisely the
groups pm · Zp ⋊ (∆ × U (n)) with n,m ≥ 0,∆ ≤ µp−1 and U (n) := ker(Z×

p →

(Z/(pn))×). His congruences relate not only pairs of p-adic zeta functions, but
take the form, cf. loc.cit. 8.12.1,

∏

0<i≤n

N n−i(ci)
pi ≡ 1 mod p2n, for all n ≥ 1,

where each ci contains information about the 0-th as well as the i-th p-adic zeta
function in the tower of subquotients.

Some of these were proved in the thesis of Thomas Ward [DW08] by using
Hilbert modular forms associated to elliptic curves. It seems to me that given
the description obtained in section 4.5 one could expect a similar argument
as in [Lee09], Chapter 4, to work. This is considerably easier, since the transfer
map ver is naturally defined on Λ-adic Hilbert modular forms and corresponds
to the p-power map ϕ : Λ(Uab

n )→ Λ(Uab
n+1). If one skips the reductions in chap-

ter 3 then the first filtration step U0 ⊇ U1 were of index p − 1 leading to the
above mentioned problem.

The paper is structured as follows:

In chapter 1 we fix notation and recall the necessary algebraic K-theory.

In chapter 2 we explain the arithmetic setting and what is associated to it: A
canonical Ore set S ⊆ Λ(G), evaluation at Artin representations and a charac-
teristic complex C(F∞/F ).

We will then state the conjecture precisely in the language of Coates et. al., cf.
2.18, and in the formulation of Ritter and Weiss, cf. 2.25. Both formulations are
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in fact equivalent: A proof of this is given in the case where the Galois group
contains no element of order p. It is a well known result of Serre, that this
implies regularity of the completed group ring Λ(G).

We conclude the chapter by outlining the general strategy of Burns and Kato
of which the final proposition 4.42 will be a variant.

In the short chapter 3 we follow the reduction steps usually used for Mackey
functors to reduce to Gal(F∞/F ) being p-elementary.

The last and main chapter 4 finally gives necessary conditions for the NMC
to hold for certain extensions. Following Kato’s sketch [Kat07] of the same
strategy for the p-adic Heisenberg group, which was greatly expanded by A.
Leesch in [Lee09], we define an additive map τ , a multiplicative map θ and
sets Ω and Ψ as in the five lemma diagramm above. This crucially involves the
integral logarithm LG of Oliver and Taylor. We will just use it as a tool, since
there are already several references on its construction, convergence etc.

Acknowledgements. I would like to thank my advisor Prof. Otmar Venjakob
for the interesting topic and numerous helpful discussions in the course of
the work. Also I would like to thank him for the opportunity to attend the
workshop on Main Conjectures in Münster, 2011.

I’m indebted to Christian Rüschoff for years of mathematical discussions, his
proofreading and friendship and to Anna Bock for her encouragement and
belief in me.

Finally I would like to thank my parents most heartly for their moral and fi-
nancial support throughout my studies.
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Chapter 1

Preliminaries

In this chapter we fix notation and recall basic facts that will be used through-
out the article. Most of it is standard and as a result we keep this as short as
possible.

1.1 Notation

• We assume all rings to be associative and unital. We denote by R [[T ]] the
ring of formal power series over a ring R in one indeterminate T . The
term R-module always means left R-module if not otherwise specified,
likewise the term ideal will be used for left ideal.

• We denote the Jacobson radical of a ring R, i.e. the intersection of all its
maximal left (or right) ideals, by Jac(R). A ring R is called (strictly) local
if R has exactly one maximal (left or right) ideal. R is called semi-local if
R/Jac(R) is a semisimple Artinian ring.

• LetG1,G2 be topological groups. We writeG1EoG2,G1EclG2,G1 ≤o G2 or
G1 ≤cl G2 if G1 is open normal, closed normal, open or closed subgroup
in G2, respectively.

• As usual, for a group G and subsets U, V ⊆ G, the clsoed subgroup of
G generated by the commutators uvu−1v−1, u ∈ U, v ∈ V is denoted by
[U, V ].
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• In contrast, for a ring R, an R-algebra A and subsets S, T ⊆ A, the -non
necessarily closed- R-subalgebra of A generated by elements st − ts, s ∈
S, t ∈ T is also denoted by [S, T ].

• For a commutative topological ring R and a profinite group G we define
the completed group ring

RJGK := lim←−
UEoG

R [G/U ] .

For O the ring of integers in a finite extension of Qp we set ΛO(G) :=
OJGK, the Iwasawa algebra of G with coefficients in O. We simply write
Λ(G) for ZpJGK and Ω(G) for FpJGK.

• For a normal subgroup U ⊳ G the kernel of the R-module map RJGK →
RJG/UK is denoted by I(U). It is the ideal generated by elements (1 −
u), u ∈ U . In the special case U = G the augmentation ideal ker(RJGK→ R)
is denoted by IG.

• For a profinite group G the G-homology groups of a compact G-module
A are the left derived functors of the G-coinvariants functor AG :=
A/IG · A. Denoting the Pontryagin dual by ·∨, we have functorial iso-
morphisms Hi(G,A)

∨ ∼= H i(G,A∨), cf. (2.6.9) in [NSW08].

Let R be a ring. A subset S ⊂ R is called multiplicatively closed if 1 ∈ S and
x, y ∈ S implies xy ∈ S. Such S is called a right (resp. left) Ore subset for R if
for each r ∈ R, s ∈ S there exists r′ ∈ R, s′ ∈ S with s′r = r′s (resp. rs′ = sr′). If
S contains no right zero divisors Asano proved, building on work of Ore, the

Lemma 1.1. For R and S ⊆ R a right Ore subset without right zero divisors the
right ring of fractions RS−1 exists in the sense that there is a ring homomorphism
ε : R→ RS−1 with

• ε(s) ∈ (RS−1)×,

• every element in RS−1 is of the form ε(r)ε(s)−1,

• and ker ε = {r ∈ R | ∃s ∈ S : rs = 0}, i.e. ε is injective if S contains no zero
divisors.

An analogous assertion holds for ’right’ replaced by ’left’.

An element x ∈ R is called right (resp. left) regular if xr = 0 (resp. rx = 0)
for any r ∈ R implies r = 0. Left and right regular elements are simply called
regular. The subset X of all regular elements of a ring R is multiplicatively
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closed. In a commutative ring X obviously satisfies the Ore condition. We
denote the localization of R by X with Q(R) := RX−1 and call it the total ring
of fractions of R.

Proposition-Definition 1.2. Assume that R is Noetherian and S is a left and right
Ore set in R. Then the left and right ring of fractions exist and S−1R = RS−1. We
will denote it just by RS .

Proof. [GW04], thm 10.3, prop. 10.6 and 10.7.

If R is a ring and RS its localization at an (left and right) Ore subset S ⊆ R a
left R-module M is called S-torsion if RS ⊗RM = 0.

For more on this subject we refer to §10 of [Lam99].

1.2 p-adic Lie groups

Galois groups come with a canonical topologicy. We will be concerned with
extensions whose Galois groups furthermore are p-adic Lie groups.

A p-adic analytic manifold of dimension d is a topological space X with an
(equivalence class of an) atlas {(Ui, ϕi)i∈I} of open subsets Ui ⊆ X , the
ϕi : Ui → Vi being compatible homeomorphisms onto open subsets Vi ⊆ Qd

p for

some d ∈ N. Here ’compatible’ means that ϕi ◦ ϕ
−1
j : Qd

p → Qd
p are p-adic ana-

lytic maps, when defined (i.e., when Ui ∩ Uj 6= ∅). For details see [DdSMS99a],
Ch. 8, in particular definitions 8.2, 8.6 and 8.8.

A p-adic Lie group is a group object in the category of p-adic manifolds with
p-adic analytic maps as morphisms.

The interplay between algebraic and analytic structure of p-adic Lie groups
(or p-adic analytic groups as they are often called) is very strong and often
surprising:

Proposition 1.3. ([DdSMS99b], corollary 8.34) A topological group P is a compact
p-adic Lie group if and only if G is profinite containing an open normal uniform1 pro-p
subgroup of finite rank.

1a condition on certain subgroup series, which we are not going to explain
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Lemma 1.4. LetG be a finitely generated compact p-adic Lie group. Denote the radical
of the Iwasawa algebra ΛO(G) by J .

1. The J-adic topology (where Jn, n ∈ N is a fundamental system of neighbour-
hoods of 0) is the same as the canonical topology of ΛO(G), the latter having
mn

O + I(U), U ⊂ G open, normal as fundamental system.

2. ΛO(G) is a semi-local ring and local if and only if G is pro-p.

3. If G is pro-p, the maximal ideal of ΛO(G) equals mΛO(G) + IG.

Proof. For the second and third assertion combine Proposition 1.3 with
[NSW08], Proposition 5.2.16. It is proved in loc.cit. that the J-adic topology
is always finer than the canonical topology of ΛO(G). To see the first assertion
note that a compact p-adic Lie group always has an open pro-p subgroup by
prop. 1.3. So the index (G : Gp) of G by a p-Sylow subgroup is finite and then
J is open in the canonical topology.

1.3 Lower Algebraic K-Theory

All definitions are standard and collected here for convenience. We associate
abelian groups K0 and K1 to an exact category in terms of generators and rela-
tions and denote their group operation additively forK0, resp. multiplicatively
for K1.

Let C be a full additive subcategory of an abelian category having a small skele-
ton, i.e. C has a full subcategory Csk which is small and for which the inclusion
Csk →֒ C is an equivalence of categories. Let C be closed under extensions. Such
a C is called an exact category.

Definition 1.5. K0(C) is the abelian group generated by isomorphism classes
[M ] of objects M of Csk devided by the relation [M ] = [M ′] + [M ′′] if there is an
exact sequence2 0→M ′ →M → M ′′ → 0.

Remark 1.6. Most important to us is the category of finitely generated projec-
tive (left-) modules over a ring R, denoted by P(R). The collections of direct
summands U ⊕ V ∼= Rn for all natural n are sets and their union constitutes
a small, skeletal subcategory of P(R). We denote Ki(P(R)) simply by Ki(R)

2’exact’ always means exact in the surrounding abelian category
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for i=0,1. Note that K0(R) is the Grothendieck group of the abelian semigroup
Psk(R) with the direct sum operation and the 0-module as unit element. This is
why K0 of a ring can be thought of as the group where a universal dimension
function takes its values. Indeed, every additive function from Psk(R) to an
abelian group must factor through K0.

Definition 1.7. K1(C) is the free abelian group on pairs [M, f ] with M an object
of Csk and f an automorphism of M . The relations we mod out are

• [M, f ◦ g] = [(M, f)] · [M, g] and

• [M, f ] = [M ′, f ′] · [M ′′, f ′′] if there is a commutative diagram

0 //M ′ //

f ′

��

M //

f
��

M ′′ //

f ′′

��

0

0 //M ′ // //M //M ′′ // 0.

Remark 1.8. There is the following, well known (cf. [Ros96], Thm. 3.1.7)
equivalent description of K1(R): For a ∈ R, define the elementary matrix
eij(a) ∈ GLn(R) as the matrix with 1’s on the diagonal, with a as the (i, j)-
entry and 0’s elsewhere. Let En(R) := 〈eij(a) | 1 ≤ i, j ≤ n, i 6= j, a ∈ R〉 be the
subgroup of GLn(R) generated by these elements. Via the canonical inclusions

GLn(R) →֒ GLn+1(R), g 7→

(
g 0
0 1

)

we define GL(R) := lim−→n
GLn(R) and E(R) := lim−→n

En(R).

Then K1(R) ∼= GL(R)/E(R) ∼= GL(R)ab := GL(R)/[GL(R),GL(R)].

In the case of semi-local rings Vaserstein (cf. [Vas05]) showed that the isomor-
phism in Remark 1.8 is drastically simpler:

Proposition 1.9. Let R be a (non-commutative) associative ring with unit such that
R/Jac(R) is a product of full matrix rings over division algebras, none of these rings
is isomorphic to M2(Z/2Z) and not more than one of these rings has order 2. Then
K1(R) ∼= R×/[R×, R×], the abelianization of the units of R.

Definition 1.10. The relative K0 group, K0(R,R
′), for a ring homomorphism

ϕ : R → R′ is defined as follows: It is the (additive) abelian group generated
by triples (M,N, f) with M,N ∈ P(R), such that f : R′ ⊗ϕ M

∼
→ R′ ⊗ϕ N is
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an isomorphism of R′-modules. The relations are generated by [(M,N, fg)] =
[(M,N, f)]+[(M,N, g)] and [(M,N, f)] = [(M1, N1, f1)]+[(M2, N2, f2)] for every
commutative diagramm

0 // R′ ⊗M1

f1
��

// R′ ⊗M //

f
��

R′ ⊗M2
//

f2
��

0

0 // R′ ⊗N1
// R′ ⊗N // R′ ⊗N2

// 0.

Of course, the Ki are functors on Rings: A homomorphism of rings ϕ : R→ R′

gives rise to maps
K0(ϕ) : [M ] 7→ [R′ ⊗ϕM ]

K1(ϕ) : [M, f ] 7→ [R′ ⊗ϕM, id⊗ f ]

These are well defined homomorphisms since if M ∈ P(R) then there exists
N ∈ P(R) with M ⊕ N ∼= Rn, hence (R′ ⊗ M) ⊕ (R′ ⊗ N) ∼= R′ ⊗ (M ⊕
N) ∼= R′n. The tensor product commutes with finite direct sums so ϕ induces
a semigroup morphism Psk(R) → Psk(R′). From Remark 1.6 then follows the
homomorphism property of the induced map of Grothendieck groups.

Furthermore let R,R′, S, S ′ be rings with homomorphisms, such that the fol-
lowing diagram commutes

R′ ϕ′
// S ′

R

OO

ϕ // S

OO

and define the map

(ϕ, ϕ′)∗ : K0(R,R
′)→ K0(S, S

′), (M,N, f) 7→ (S ⊗ϕM,S ⊗ϕ N, idS′ ⊗ϕ′ f).

Under some conditions there are maps going in the reverse direction:

Definition 1.11. Let ϕ : R → S be a homomorphism of rings and for any S-
module M let rRM be the R module obtained by restriction of scalars, i.e. r ·
m = ϕ(r) ·m for r ∈ R,m ∈ M . If R′ ∈ Ob(P(R)) and S ′ ∈ Ob(P(S)), as above,
are in addition finitely generated projective modules themselves then define
homomorphisms

Tr := Trace : K0(S)→ K0(R), [M ] 7→ [rRM ]

N := Norm : K1(S)→ K1(R), [(M, f)] 7→ [(rRM, f)]

Tr := Trace : K0(S, S
′)→ K0(R,R

′), [(M,N, f)] 7→ [(rRM, rRN, f)].
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We recall some key facts about this K-groups:

Proposition 1.12. (Localisation sequence, cf. [Ven05], §3) For the inclusion mor-
phism ι : R→ RS of a ring R into the localisation at a suitable3 multiplicative subset
S, there are maps

∂ : [(RS ⊗RM,F )] 7→ [(M,M, f)],

λ : [(M,N, f)] 7→ [M ]− [N ]

yielding an exact sequence of abelian groups

K1(R)
K1(ι)
−−−→ K1(RS)

∂
−→ K0(R,RS)

λ
−→ K0(R)

K0(ι)
−−−→ K0(RS). (1.1)

The following diagram commutes with R,R′, S, S ′ as in Definition 1.11

K1(S) //

N
��

K1(S
′) ∂ //

N
��

K0(S, S
′) λ //

Tr
��

K0(S) //

Tr
��

K0(S
′)

Tr
��

K1(R) // K1(R
′)

∂ // K0(R,R
′)

λ // K0(R) // K0(R
′).

Proposition 1.13. (Morita equivalence, cf. [Ros96], 1.2.4, 2.1.8) For a ring R and
the ring of n× n matrices Mn(R) over R there are canonical isomorphisms

K0(R) ∼= K0(Mn(R)), [M ] 7→ [Rn ⊗RM ],

K1(R) ∼= K1(Mn(R)), [(M, f)] 7→ [(Rn ⊗R M, idRn ⊗R f)].

Now let R be a Noetherian ring and RS the localisation of R at a left and right
Ore subset S ⊆ R. Denote by HR

S the category of finitely generated S-torsion
modules that have a finite resolution by objects in P(R). It is an exact category
by the horseshoe lemma. Further let CRS denote the category of bounded com-
plexes C• of modules in P(R), such that RS ⊗ C• is exact. This obviously is an
exact category. For the K0 groups of these we have the technically important

Proposition 1.14. If ∂ in diagram 1.1 is surjective we have isomorphisms
K0(R,RS) ∼= K0(HR

S )
∼= K0(CRS )

Proof. Since ∂ is surjective, K0(R,RS) is generated by elements of the form
[M,M, gs−1] with M a f.g. free R-bimodule, g ∈ HomR(M,M), s ∈ S. By

3S Ore without zero-divisors is sufficient by work of Berrick-Keating
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tensoring the exact sequence Rs → R → R/Rs → 0 from left with RS we see
that R/Rs and with it M/Ms is a (left) S-torsion module. Therefore

K0(R,RS)→ K0(H
R
S ), [M,M, f ] 7→ [M/g(M)] + [M/Ms]

is a well defined map.

Let 0→ P • → H → 0 be a defining resolution of H ∈ HR
S , then obviously

K0(H
R
S )→ K0(C

R
S ), [H ] 7→ [P •]

is well defined. Finally, for an object (D•, d•) ∈ CRS the isomorphisms RS⊗Di ∼=
ker d′i⊕ im d′i ∼= im d′i−1⊕ im d′i, where d′ denote the induced coboundary maps
on RS ⊗D•, give an isomorphism f fitting in the diagramm

⊕
iRS ⊗D2i f //

≀
��

⊕
iRS ⊗D2i+1

≀
��⊕

i(im d′2i−1 ⊕ im d′2i) id //
⊕

i(im d′2i+1 ⊕ im d′2i+2).

This gives rise to a map

K0C
R
S → K0(R,RS), [D

•] 7→ [
⊕

i

D2i,
⊕

i

D2i+1, f ].

We want to apply the five lemma to sequences analogue to 1.1. The maps
corresponding to ∂ and λ are

K1(RS)→ K0(H
R
S ), [RS ⊗M, gs−1] 7→ [M/g(M)] + [M/Ms],

K1(RS)→ K0(C
R
S ), [RS ⊗M, gs−1] 7→ [M

g
−→] + [M

·s
−→M ],

K0(H
R
S )→ K0(R), [H ] 7→

∑

i

(−1)i[P i],

K0(C
R
S )→ K0(R), [D•] 7→

∑

i

(−1)i[Di].

One checks easily that these give commutative squares with the above defined
group homomorphisms. Three applications of the five lemma finish the proof.

If R = Λ(G), the Iwasawa algebra of a profinite group, and S = Λ(G)T for

some Ore subset T we will write HΛ(G)
T := HΛ(G)

Λ(G)T
and CΛ(G)

T := CΛ(G)
Λ(G)T

.
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Lemma 1.15. If Λ(G) is regular and D• ∈ CΛ(G)
S then the image of [D•] inK0(H

Λ(G)
S )

is
∑

i (−1)
i[H i(D•)].

Proof. For an objectM ∈ HΛ(G)
S choose a projective resolution P • → M → 0. We

just proved in the proposition above, that φ : K0(H
Λ(G)
S ) → K0(C

Λ(G)
S ), [M ] 7→

[P •] is an isomorphism. Set

ψ : K0(C
Λ(G)
S )→ K0(H

Λ(G)
S ), [D•] 7→

∑

i

(−1)i[H i(D•)].

By the regularity assumption H i(D•) ∈ HΛ(G)
S , ∀i. We compute ψ ◦ φ([H ]) =∑

i (−1)
i[H i(P •)] = [H0(P •)] = [H ], hence ψ ◦ φ = id and ψ = φ−1 because we

already know that φ is an isomorphism.

Definition 1.16. For a finite extension L of Qp let O be the ring of integers of L
and let ∆ be a finite group. We define SK1(O[∆]) = ker(K1(O[∆]→ K1(L[∆])).
For a profinite group G = lim←−∆ we define SK1(ΛO(G)) = lim←−SK1(O[∆]). For

the ring homomorphisms ΛO(G) → ΛO(G)S and ΛO(G) → Λ̂O(G)S associated

to an Ore subset S, define SK1(ΛO(G)S) and SK1(Λ̂O(G)S) to be the image of

SK1(ΛO(G)) under the induced maps of K1 groups. Here Λ̂O(G)S is the p-adic
completion of ΛO(G)S .
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Chapter 2

The Main Conjecture of
Non-commutative Iwasawa Theory

After a short review of some algebraic properties of Iwasawa algebras and
their localisations we introduce the protagonists of the theory: we define ad-
missible extensions of number fields and attach two objects to them, one of al-
gebraic nature, the other one analytic and then formulate the Main Conjecture
for Non-commutative Iwasawa Theory (MC for short) in the terms of Coates
et al. linking those two objects. In this formulation it was proven by Mahesh
Kakde (up to uniqueness of the p-adic zeta function) in [Kak10].

Jürgen Ritter and Alfred Weiss have also come forward with a similar conjec-
ture, the Equivariant Main Conjecture (EMC for short). In their setting the ad-
missible extension F∞/F is one dimensional. Then G = Gal(F∞/F ) has open
center Γ′ and the Iwasawa algebra Λ(G) consequently is a free module of finite
rank over Λ(Γ′). To formulate the Equivariant Main Conjecture they make use
of the reduced norm map which is available only in the one-dimensional set-
ting. Hence its formulation doesn’t generalize as well as for MC but in its scope
it is equivalent, a fact that is surely known to the expert but will be shown here
in detail in the easier regular case. Ritter and Weiss have also shown their
Equivariant Main Conjecture to hold [RW10], also up to a uniqueness asser-
tion.

In what follows let p always be a fixed odd prime number.
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2.1 A canonical Ore set

Suppose we are given a compact p-adic Lie group G with a closed normal sub-
group H such that G/H ∼= Γ ∼= Zp.

Definition 2.1. Let S ⊆ Λ(G) be the set consisting of all f ∈ Λ(G) such that
Λ(G)/Λ(G)f is a finitely generated Λ(H)-module. S will be called the canonical
Ore subset of Λ(G).

The set S (for pro-p groups) was first described in [Ven05]. Equivalent defini-
tions and the following properties of it are given in [CFK+05].

Proposition 2.2. (i) If J is any open pro-p subgroup of H , which is normal in G,
then f ∈ Λ(G) is in S iff right multiplication by the image of f in Ω(G/J) is
injective.

(ii) S is a multiplicatively closed left and right Ore subset and contains no zero
divisors.

Proof. (i) is part 3 of lemma 2.1 in [CFK+05] and (ii) is theorem 2.4 in loc.cit..

We conclude that the left and right localisations w.r.t. to S exist (cf. [GW04],
theorem 10.3, propositions 10.6 and 10.7). We identify them and denote them
by Λ(G)S. It follows from the second part of the proposition that the natural
map Λ(G)→ Λ(G)S is injective.

The notation S instead of the seemingly more appropriate S(G) is justified by
the following

Lemma 2.3. Let U ⊆ G be an open subgroup, then S(U) is an Ore set in Λ(G) and
Λ(G)S(G)

∼= Λ(G)S(U).

Proof. This is proposition 2.10 in [Lee09].

If M is a Λ(G)-module sucht that for each m ∈ M there is some s ∈ S with
sm = 0 then M is called S-torsion, in other words we have Λ(G)S ⊗Λ(G)M = 0.

Proposition 2.4. ([CFK+05], prop. 2.3) A Λ(G)-module M is S-torsion if and only
if it is finitely generated over Λ(H).

Proposition 2.5. Suppose that G is a compact p-adic Lie group.

18



(i) The localisation of the Iwasawa algebra Λ(G)S is semi-local.

(ii) The ∂ homomorphism in the exact localisation sequence 1.1 coming from the
injection Λ(G) →֒ Λ(G)S is surjective.

Proof. (i) is [CFK+05], Proposition 4.2. (ii) was proven in loc. cit. under the
condition thatG contains no element of order p. M. Kakde observed in [Kak08],
Lemma 1.5, that this condition can be removed.

2.2 Admissible extensions

The arithmetic situation is shown in the figure below and the fields involved
are supposed to satisfy the following conditions:

MΣ

F∞

X
②②②②②②②②

G F cyc

H
❋❋❋❋❋❋❋❋

F

Γ
①①①①①①①①①

Q

Assumption 2.6.

• F is finite over Q and totally real.
• F∞|F is Galois and unramified

outside a finite set Σ of primes of
F .
• F∞ is totally real.
• G := Gal(F∞|F ) is a p-adic Lie

group.
• F∞ contains F cyc, the cyclo-

tomic pro-p extension of F , with
Gal(F cyc|F ) ∼= Zp.

If this is satisfied we call the extension F∞/F admissible and denote the maximal
abelian, pro-p and outside of Σ unramified extension of F∞ by MΣ. Hence
X := Gal(MΣ/F∞) is a natural Zp-module.

From 2.6 follows that G has a closed normal subgroup H with G/H ∼= Γ. By
the previous section we can associate to Λ(G) a canonical Ore set S. From now
on fix an isomorphism Γ ∼= Zp by choosing a topological generator γ ∈ Γ. Note
though, that the group law in Γ will be denoted multiplicatively. Let MΣ be
the Galois group of the maximal abelian pro-p extension of F∞, unramified
outside the primes above Σ. We set X = Gal(MΣ|F∞). As abelian pro-p group
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X automatically is a Zp-module. For g ∈ G let ĝ be an inverse image of g under
the natural surjection Gal(MΣ|F ) ։ G and define g · x = ĝxĝ−1; this extends to
make X an Λ(G)-module (for details see Appendix A.1 in [CS06]).

Definition 2.7. We say that F∞/F satisfies the condition µµµ === 000 if there is a
pro-p open subgroup H ′ of H such that the Galois group of the maximal un-
ramified abelian p-extension, LFH′

∞
, over FH′

∞ is a finitely generated Zp-module.

Remark 2.8. Iwasawa conjectured that for a finite extension F of Q the cyclo-
tomic extension F cyc always satisfies µ = 0. Ferrero and Washington proved
this conjecture for F/Q abelian. The following proposition makes clear why
we need this arithmetic ingredient in the formulation of the Main Conjecture.

Proposition 2.9. X is S-torsion if and only if F∞/F
cyc satisfies the hypothesisµµµ === 000.

Proof. See Lemma 9 in [Kak10].

We want to see X as an element in the relative K0(Λ(G),Λ(G)S). In view of
1.14 this amounts to X having a finite resolution by finitely generated, projec-
tive Λ(G)-modules. In general, however, X fails to have such a resolution. The
infinite p-cohomological dimension of G = Fp hints to the problem: Λ(G) is
regular if G has no elements of order p. To circumvent this problem Kato pro-
posed the use of étale cohomolgy while Ritter and Weiss used group homology
via a translation functor to get a certain 2-extension, cf. section 2.4.3

Kato and Fukaya introduced in [FK06] a complex closely linked to X :

Definition 2.10.

C• := C•
F∞/F := RHomZp (RΓét(Spec(OF∞[1/Σ]),Qp/Zp), (Qp/Zp)) .

This is an object in the derived category of projective Λ(G)-modules.

If U ⊆ G is an open subgroup and V ≤ U is normal, denote by FV the fixed
field F V

∞ and define

C•
(U,V ) := RHomZp (RΓét(Spec(OFV

[1/Σ]),Qp/Zp), (Qp/Zp)) .

This is an object in the derived category of projective Λ(U/V )-modules.

The following facts on C• are proved in loc.cit.:

Lemma 2.11.
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1. C• is quasi-isomorphic to a bounded complex of finitely generated Λ(G)-
modules.

2. For any Galois extension F ⊂ K ⊂ F∞ of F we have

Λ(Gal(K/F ))⊗L
Λ(G) C

•
F∞/F

∼= C•
K/F .

Here the natural surjection G → Gal(K/F ) induces the right module action of
Λ(G) on Λ(Gal(K/F )).

Lemma 2.12. One has Λ(U/V )• ⊗L
Λ(U) C

• = C•
(U/V ).

Proof. Well known. A detailed proof is in [Lee09], lemma 2.19.

In view of this lemma and the prop. 1.14 we regard C• as an element of the
relative K-group K0(Λ(G),Λ(G)S). When we do this, this element will be called
[C(F∞/F )].

Lemma 2.13 (cf. lemma 2.19, [Lee09]). The cohomology groups of C• are

H0(C•) = Zp,

H−1(C•) = XΣ,

and H i(C•) = 0, i 6= −1, 0.

A characteristic element for an admissible extension F∞/F is a ξ ∈ K1(Λ(G)S)
with ∂(ξ) = −[C(F∞/F )]. By Proposition 2.5 there is always a (non necessary
unique!) characteristic element for F∞/F .

2.3 Evaluation of L-functions and the Main Conjec-

ture

First we recall the usual (complex) Artin L-function of a finite field extension.

Let K/k be a Galois extension of number fields with finite Galois group G. For
each prime p of k we choose a prime P ofK lying over p. LetGP be the decom-
position group and IP be the inertia group. Then Gal(κ(P)/κ(p)) ∼= GP/IP is
generated by the Frobenius ϕP : x 7→ xq = xN(p), where κ(P) := OK/P, κ(p) :=
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Ok/p and N(p) = #κ(p). Note that for any complex representation ρ : G −→
AutC(V ) we obtain an operation of ϕP on the IP fixed module, V IP .

For s ∈ C, Re(s) > 1 we define the complex Artin L-function as

L(K/k, ρ, s) =
∏ 1

det(1− ϕPN(p)−s|V IP)
(2.1)

This series does not depend on the choice of P over p since all ambiguity is by
conjugation with elements of G which does not affect det. It is also not affected
by the choice of ρ within an equivalence class of representations given by a
character χ. Consequently we often write L(K/k, χ, s) for the Artin L-function.

Now we let K/k be possibly infinite but unramified almost everywhere, i.e.
we are given a finite set Σ of primes of k such that IP 6= 1 at most for P over Σ.
In addition we require Σ to contain all infinite primes. Now fix an embedding
α : Qp →֒ C. A representation of G is called an Artin representation if it is con-
tinuous with open kernel. For a p-adic Artin representation ρ : G −→ Aut(V ),
V a finite dimensional Qp-vector space we define the complex Artin L-function
associated to ρ (with respect to Σ) LΣ(ρ, s) = LΣ(K/k, ρ, s) := LΣ(K/k, α ◦ ρ, s)
where the Euler factors of primes p ∈ Σ are omittet, i.e. if ρ : Gal(K/k) −→

AutQp
(V ) ∼= GLn(Qp)

α
→֒ GLn(C)

LΣ(ρ, s) =
∏

p/∈Σ

1

det(1− ρ(ϕP)N(p)−s)
. (2.2)

Remark 2.14. The polynomial det(1 − ρ(ϕP)t) ∈ Qp[t] has its zeros in roots of
unity since ϕP is of finite order. Apart from that, its values depend on the
chosen embedding α. See section 1.2 in [CL73] for a description of a canonical
choice of α. Klingen and Siegel showed that the values at negative integers
s ∈ Z\N0 are algebraic integers. The idea to interpolate this integers p-adically
lies at the heart of Iwasawa theory.

The above series converges uniformly on some right half plane (cf. [Neu99],
8.1) and has functorial properties in the argument ’ρ’:

Proposition 2.15. 1. If χ, χ′ are two characters of G, then

LΣ(χ+ χ′, s) = LΣ(χ, s) + LΣ(χ
′, s).
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2. If K ′ ⊇ K ⊇ k are Galois extensions, χ is a character of G = Gal(K/k) and

infG
′

G (χ) is the character of G′ = Gal(K ′/k) factoring through χ, then

LΣ(K/k, χ, s) = LΣ(K
′/k, infG

′

G (χ), s).

3. For an open normal subgroup U ⊆ G and ρ an Artin representation of U with
character χ we have

LΣ(K/K
U , χ, s) = LΣ(K/k, ind

G
U (χ), s).

Proof. [Neu99], 10.4 translates directly to our situation.

The p-adic L-function will live in K1(Λ(G)S) and consequently we want to
evaluate elements of this group at representations of G. For that fix an em-
bedding α : Qp →֒ C. Suppose now we are given an Artin representation

ρ : G→ GLn(Q). The image of ρ is finite and adjoining the entries of all its val-
ues to Qp we obtain a finite extension L of Qp with ring of integers O. Clearing
denominators we see that ρ is isomorphic to a representation ρ : G → GLn(O).
This continuous homomorphism induces a map Λ(G)→ Mn(O). In addition a
surjection ω : G → Γ ∼= Zp induces a map Λ(G) → Λ(Γ). Combining both we
obtain

Λ(G)→ Mn(O)⊗Zp Λ(Γ)
∼= Mn(ΛO(Γ))

g 7→ ρ(g)⊗ ω(g).

By [CFK+05], lemma 3.3, this extends to a ring homomorphism on the locali-
sation

Φρ : Λ(G)S → Mn(QO(Γ)).

Denote by I := IΓ the augmentation ideal ker(ε : ΛO(Γ) → O) and as usual by
ΛO(Γ)I the localisation at I . The augmentation extends to ε : ΛO(Γ)I → L.

Definition 2.16. We define the evaluation of an element f ∈ K1(Λ(G)S) at an
Artin representation ρ by the composition

K1(Λ(G)S)
K1(Φρ)
−−−−→ K1(Mn(QO(Γ))) ∼= (QO(Γ)))

× → L ∪ {∞}, (2.3)

where the second map is by Morita equivalence and the third map is x 7→ ε(x)
for x ∈ ΛO(Γ)I and x 7→ ∞, else.
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As we would expect from seeing the Zeta-function in K1, the evaluation map
behaves naturally with respect to different representations of G:

Proposition 2.17. Let f be an element of K1(Λ(G)S) and letO be the ring of integers
in a finite extension of Qp.

(i) For an open subgroup U ⊆ G and a continuous character χ of U we have

N(f(χ)) = f(indGU(χ))

with the norm map N : K1(Λ(G)S)→ K1(Λ(U)S).

(ii) For a subgroup U ≤ H = kerωG, U normal in G, and an Artin representation

ρ : G/U → GLn(O) let inf
G/U
G be the composition G → G/U

ρ
→ GLn(O).

Then
f(inf

G/U
G (ρ)) = p∗(f)(ρ).

(iii) Let ρ : G → GLn(L), ρ
′ : G → GLm(L) be continuous representations of G.

Then ρ⊕ ρ′ : G→ GLn+m(L) is continuous with

f(ρ⊕ ρ′) = f(ρ) · f(ρ′).

Proof. For (i) let α := K1(ΦindG
U (χ)) and β := K1(Φχ). Then by the defining

equation (2.3) it suffices to show commutativity of

K1(Λ(G)S)

N
��

α // K1(QO(Γ))

K1(Λ(U)S)
β //K1(QO(Γ

′))
?�

OO

where Zp ∼= Γ′ is a quotient of U and the right hand is induced from the natural
inclusion Γ′ ⊆ Γ. To prove the commutativity let ιB : Λ(G)→ Mr(Λ(U)) be the
ring homomorphism that assigns to x ∈ Λ(G) the coefficient matrix of right
multiplication with x on the free left Λ(U)-module Λ(G) with respect to some
basis B with cardinality r := (G : U). Choose for B a system of left coset
representatives forG/U and set σji ∈ U , s.t. σxi = xjσji for σ ∈ G. By definition
of the induced representation, we have

indGU(χ) : G→ AutO

(⊕

xi∈B

xiO
)
, σ 7→ (xiµ 7→ xjχ(σji)µ) with µ ∈ O.

Then the following diagram commutes
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Λ(G)
indG

U (χ)⊗ωG //

ιB

��

Mr(O)⊗Zp ΛO(Γ)

Mr(Λ(U))
Mr(χ)⊗ωU //Mr(O)⊗Zp ΛO(Γ

′)
?�

OO

and therefore

Λ(G)S

Φ
indG

U
(χ)

//

ιB
��

Mr(QO(Γ))

Mr(Λ(U)S)
Mr(Φχ) //Mr(QO(Γ

′))
?�

OO

commutes. Application of K1 finishes the proof of (i).

For (ii) apply K1 to the commutative diagram

Λ(G)S

Φ
inf

G/U
G

(ρ)
//

��

Mn(QO(Γ))

Λ(G)/US

(Φρ) //Mn(QO(Γ)).

Finally, (iii) is clear from definition of the evaluation.

We now state the

Main Conjecture 2.18. There is a unique ζ = ζ(F∞|F ) ∈ K1(Λ(G)S), such that

∂(ζ) = −[C•] (2.4)

and for every Artin character ρ : G→ O× and every r divisible by p− 1 we have

ζ(ρκr) = LΣ(ρ, 1− r). (2.5)

Here κ : G(F cyc/F ) → Z×
p is the cyclotomic character. An element ζ satisfy-

ing equation 2.4 will be called a characteristic element for the extension F∞/F .
Lemma 2.5 shows that there always exist characteristic elements.

25



Remark 2.19. One should think of equation 2.5 as ’ζ interpolates the complex
Artin L-function at certain integer points’. See O. Venjakob’s Habilitation
speech [Ven06] or K. Kato’s ICM 2006 speech [Kat06] for more on this ’inter-
polation philosophy’ dating back to Kummer’s results on the Riemannian zeta
function. In the abelian case this was first formulated by Iwasawa (for F = Q)
and Coates and Greenberg (for general totally real F ). In the case F = Q this
was first proven by Mazur-Wiles (again after strong results by Iwasawa) and
later by Rubin using Kolyvagin’s Euler Systems. The totally real case was fi-
nally settled by Wiles in [Wil90].

2.4 The Main Conjecture of Ritter and Weiss

As before let G = Gal(F∞/F ) be admissible and in particular G ∼= H ⋊ Γ with
a closed H ⊳ G, Γ ∼= Zp. For this section let G be one-dimensional. For the
canonical Ore set we get S = {f | Λ(G)/Λ(G)f is a fin. gen. Zp-module}. The
action of Γ on H factors through a finite quotient of Γ and we fix a central open
Γ′ := Γp

e
in G.

Proposition-Definition 2.20. Let T = Λ(Γ′) \ pΛ(Γ′) = S(Γ′). By lemma 2.3 it is
Λ(G)S(G) = Λ(G)T .

Let Q(Λ(G)) be the total ring of quotients of Λ(G), i.e. the localisation at
the set of all (left and right) regular elements. It is Λ(G)S∗ = Q(Λ(G)) ={
a
b
| a ∈ Λ(G), b ∈ Λ(Γ′)

}
, in particular this is a finite dimensional Artinian al-

gebra over the field Q(Λ(Γ′)). Changing the coefficient ring from Zp to a fi-
nite extension O is well behaved, as we will see in the following lemma. For
Qc(G) := Qp ⊗Qp Q(Λ(G)) however the situation is more subtle:

A character χ of an irreducible representation Vρ of G is called of type W if χ
factors through Γ or, equivalently, resHG χ = 1. If χ is an irreducible character of
G then associate to it a primitive central idempotent in Qc(G) as follows: Take

any irreducible character η contained in resHG χ, let e(η) = η(1)
|H|

∑
h∈H η(h

−1)h

and finally set eχ :=
∑

η|resHG (χ) e(η). This gives indeed all primitive central

idempotents (cf. [RW04], prop.5).

Lemma 2.21.

i) If F is a finite extension of Qp andO its ring of integers, then F⊗QpQ(Λ(G)) =
Q(ΛO(G)).
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ii) Qc(G) is a semisimple Artinian ring and the components of its Wedderburn
decomposition are the simple rings Qc(G)eχ where χ runs through a system of
irreducible characters of G up to W-twist.

Proof. i) is Lemma 1 in [RW04], ii) is Proposition 6 in [RW04]

2.4.1 The analytic side of EMC = MC: Burn’s lemma

Denote by Nrd the reduced norm K1(Λ(G)S) → K1(Q(Λ(G))) →
K1(Z(Q(Λ(G))) ∼= Z(Q(Λ(G)))×, cf. §45A in [CR87]. For x ∈ Λ(G)×S we
write [x] for the image of x under the homomorphism Λ(G)×S → K1(Λ(G)S).

To use a Hom-description of K1(Λ(G)S) Ritter and Weiss introduce a map Det
analogous to the evaluation defined in 2.16: Let ρ be an Artin representation
of G on the Qp vector space V . For x ∈ Λ(G) ∩ Λ(G)×S denote by rρ(x) the

induced endomorphism on Q(Λ(G))⊗Λ(G) HomQp[H](Vρ,Qp ⊗Λ(G)). The latter

is a finitely generatedQc(Γ) module by [RW04], lemma 2, and we can therefore
take theQc(Γ)-determinant of rρ(x). WithR(G) denoting the free abelian group
on irreducible Artin characters of G, the map Det : x 7→ (ρ 7→ detQc(Γ)(rρ(x))) is
a homomorphism K1(Λ(G)S) → Hom∗((R(G),Qc(Γ)×), cf. [RW04], theorem 8.
Note that K1(Λ(G)S) is indeed generated by elements [x] as above, since Λ(G)S
is semi-local.

In [RW04], prop. 6, a homomorphism jρ : Z(ΛO(G)) ։ Z(ΛO(G)eρ) ∼=
Q(ΛO(Γρ)) →֒ Q(ΛO(Γ)) was defined for every irreducible Artin representa-
tion ρ : G → GLn(OF ) over the ring of integers O ⊆ OF of a finite extension
Qp ⊆ F . These jρ have the following properties:

⋂

ρ∈A(G)

ker(jρ) = {1}. (2.6)

For this note that Q(Λ(G)) is semisimple and therefore Q(ΛO(G)) is, too.
Its primitive central idempotents eρ correspond to the respective identities
of the Wedderburn components of Q(ΛO(G)). Obviously an element x ∈
Z(Q(ΛO(G)) is zero if and only if every projection x · eρ of x on the differ-
ent simple subrings is zero. Since all the other maps in the definition of jρ are
injective the assertion holds.
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And theorem 8 of loc. cite gives for every x ∈ Q(Λ(G))× ∩ Λ(G)

detQc(Γ)(rρ(x)) = jρ(Nrd([x])). (2.7)

The following lemma is a technical excercise in [Bro82] (cf. loc. cit. III,5, ex.2).

Lemma 2.22. Let G be a profinite group and H be a closed subgroup of G. For an
ΛO(H) module M and an ΛO(G) module N there is an isomorphism of ΛO(G) mod-
ules

N ⊗O (ΛO(G)⊗ΛO(H) M) ∼= ΛO(G)⊗ΛO(H) (N ⊗O M).

Here G acts diagonally on the left hand side and by left multiplication on the right
hand side, while H acts diagonally on the inner tensor product on the right hand side.

Using this lemma and following Burns we show the

Lemma 2.23. For ξ ∈ K1(QO(G)) and for every Artin representation ρ of G one has
ξ(ρ) = jρ(Nrd(ξ)).

Proof. By Propositions 2.5 (i) and 1.9 there is x ∈ QO(G)
× with ξ = [x], so

we can use equation 2.7. For an Artin representation ρ : G → Aut(V ) denote
the contragredient representation G → Aut(Hom(V,Qp)) by ρ̌. Now use the
isomorphisms of left Qc(G)-modules

HomQp
(Vρ,Qp ⊗O ΛO(G)) ∼= Vρ̌ ⊗O ΛO(G) ∼= ΛO(G)⊗ΛO(H) (Vρ̌ ⊗O ΛO(H)).

The first isomorphism comes as follows: An element f of the left hand side is
determined by its image on a basis B of Vρ, say

f(b) =
finite∑

i

x
(b)
i ⊗ λ

(b)
i .

Since B is finite we can assume that the λi don’t depend on b. Hence we obtain

a map f 7→
∑

i (b 7→ x
(b)
i )⊗ λi. One immediately verifies that this is an isomor-

phism. The second isomorphism is Lemma 2.22 when setting M = ΛO(H),
N = Vρ̌.

Taking H-coinvariants gives isomorphisms

QO(Γ)⊗ΛO(Γ) HomQp[H](Vρ,Qp ⊗O ΛO(G)) ∼= Q(Γ)⊗Qp
Vρ̌.

Here rρ(x) maps to δρ(x) : ΛO(G) → EndQp
(Qc(Γ) ⊗ Vρ̌) with δρ(g)(λ ⊗ v) =

λπ(g)⊗ g−1(v). By definition of Vρ̌ and Morita equivalence we are done.

This finishes the ’interpolation side’ of the main conjectures.
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2.4.2 The translation functor

The translation functor t as described by Ritter and Weiss uses group homol-
ogy to give a substitute for the Iwasawa module X in case of non regular Λ(G).
It provides an equivalence between the categories Grp of certain group exten-
sions and GrModp, exact sequences of Λ(G)-modules.

The objects of Grp are short exact sequences of profinite groups 1 → N →
G → Q → 1 where N is pro-p and abelian. A morphism between two exact
sequences is the obvious commutative diagram. The objects of GrModp are
pairs (G, 0 → M → N → IG → 0) where G is a profinite group and the
diagram is an exact sequence of compact Λ(G)-modules. Remember that IG
always denotes the augmentation ideal of Λ(G). The morphisms in GrModp
between (G, 0 → M → N → IG → 0) and (G′, 0 → M ′ → N ′ → IG′ → 0) are
pairs

G,

ϕ

��

0 //M //

��

N //

��

IG //

ϕ′

��

0

G′, 0 //M ′ // N ′ // IG′ // 0,

where ϕ is a homomorphism of profinite groups, ϕ′ is induced by ϕ and the
diagramm is commutative in Λ(G)−Mod. To describe the translation functor

first suppose 0 −→ N −→ G
π
−→ Q → 0 is an object of Grp with N,G,Q all finite.

Then the snake lemma diagram

0

��

0

��

0

��
I(N)

incl //

��

IG //

��

IQ

��
0 // I(N)

incl //

��

Λ(G)
π //

augG

��

Λ(Q) //

augQ

��

0

0 // 0 //

��

Zp
id //

��

Zp //

��

0

0 0 0

gives exactness of the sequence 0 → I(N) → IG → IQ → 0 of Zp-modules and

consequently of I(N)
I(N)·IG

→ IG
I(N)·IG

→ IQ → 0. This last sequence is a sequence
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of Zp[Q]-modules: let q ∈ Q act through left multiplication by any preimage

g
π
7→ q. Ritter and Weiss then prove ad hoc, that the left term in this sequence is

isomorphic to N for abelian, pro-p N , the left map is injective, t is compatible
with inverse limits and that t is in fact an equivalence of categories.

All this can also be derived from the following abstract argument, cf. [NSW08],
§V.6:

For an arbitrary sequence of pro-c groups1 1 → H → G → G → 1 we take
H-coinvariants of 0→ IG → Λ(G)→ Zp → 0 yielding the exact

H1(H,Λ(G))→ H1(H,Zp)→ (IG)H → (Λ(G))H → (Zp)H → 0.

Note that Λ(G)∨ = Homcts(Λ(G),Q/Z) ∼= Mapcts(G,Qp/Zp) = CoindG
1 (Qp/Zp)

is cohomologically trivial and by (2.6.9) in [NSW08] we conclude that
H1(H,Λ(G)) = 0. With H1(H,Zp) = H(p)ab the sequence above amounts to

0→H(p)ab →
IG

IH · IG
→ IG → 0, (2.8)

which is the t image of H →֒ G ։ G for H pro-p, abelian.

2.4.3 The Equivariant Main Conjecture

The Equivariant Main Conjecture is formulated in [RW04] as follows:

Lemma 2.24. For an admissible one-dimensional extension F∞/F and a finite set Σ
of primes of F∞ containing all ramified primes and those above ∞ and p, let MΣ be
the maximal abelian, pro-p, outside of Σ unramified extension of F∞ and set G :=

1with c a class of finite groups closed under kernels, images, extensions and containing
Z/pZ
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Gal(F∞/F ), XΣ := Gal(MΣ/F∞). Then for each Λ(G)-monomorphism ψ : Λ(G) →
IG there is a commutative diagram of Λ(G)-modules with rows and colums all exact

0

��

0

��

0

��
0 // 0

��

// Λ(G) id //

Ψ
��

Λ(G) //

ψ

��

0

0 // XΣ

id
��

// Y //

��

IG //

��

0

0 // XΣ

��

// coker Ψ //

��

cokerψ //

��

0

0 0 0

(2.9)

and Y finitely generated and of projective dimension ≤ 1 over Λ(G).

Proof. The only thing to prove here is existence of such an Y and exactness
of the middle row. Consider the arrangement of field extensions depicted in
the figure below. Let FΣ, resp. NΣ, be the maximal outside of Σ unramified
extension of F , resp. its maximal subfield with pro-p Galois group. With the
notation from the diagram we have XΣ = X ab

Σ and XΣ →֒ G = Gal(NΣ/F ) ։ G
is exact. The middle row in diagramm 2.9 is the right column in prop. 5.6.7. in
[NSW08]. Corollary 10.4.9 and prop. 8.3.18 in loc.cit. give cdpG ≤ cdpGΣ ≤ 2.
So the additional assumptions in prop. 5.6.7. of loc.cit. hold and the lower row
gives an exact sequence

0→ H2(XΣ,Zp)→ Nab
XΣ

(p)→ Λ(G)d → Y → 0,

where Nab
XΣ

(p) is a finitely generated projective Λ(G)-module. Finally
H2(XΣ,Zp) = 0 by the weak Leopoldt conjecture (thm. 10.3.22 in [NSW08]).
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FΣ

NΣ

MΣ

F∞

HΣ
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡

✡✡✡✡✡

XΣ��������������

���

XΣ♣♣♣♣♣♣♣♣♣

♣♣

F

G

GΣGΣ(p)=G

2.4.4 The regular case

If Λ(G) is regular, i.e. G has no elements of order p, then a finitely generated
Λ(G)-module has a finite resolution by finitely generated projective modules.

Given a Λ(G)-monomorphism ψ like in diagram 2.9 we have the following
commutative diagrams of Λ(G)-modules

Λ(G)

Ψ

��

Λ(G)

ψ

��

Λ(G)

ψ

��

Λ(G)

ψ̃
��

0 // XΣ
// Y // IG // 0 0 // IG // Λ(G) // Zp // 0,

from which we get by taking cokernelsXΣ →֒ cokerΨ ։ cokerψ and cokerψ →֒

cokerψ̃ ։ Zp.

Since ψ is injective, ψ(1) is a non-zero divisor and since cokerψ is annihilated
by ψ(1), it is S∗-torsion. Also IG is finitely generated (Λ(G) is Noetherian) and
so is cokerψ. XΣ is S∗-torsion by prop. 2.9. Since this implies XΣ is finitely
generated over Λ(H), it is clearly f.g. over Λ(G).

If in a short exact sequence A →֒ B
φ
։ C of Λ(G)-modules A and C are S∗-

torsion then so is B: x ∈ B ⇒ sφ(x) = 0 for some s ∈ S∗ ⇒ sx ∈ ker φ =
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A⇒ tsx = 0 for some t ∈ S∗. Now use that S∗ is multiplicative. Consequently
cokerΨ is S∗-torsion.

If ψ(1) is central in Λ(G), then cokerψ̃ is annulated by ψ(1): x ∈ Λ(G) ⇒

ψ̃(1)x = ψ̃(x) ∈ imψ̃. Zp is obviously a finitely generated Λ(G)-module. It
is also annulated by ψ(1).

So we have cokerΨ, cokerψ̃ ∈ HΛ(G)
S∗ and by prop. 1.14 can regard their images

in K0T (Λ(G)).

Conjecture 2.25 (Equivariant Main Conjecture). Set ℧̃Σ := [cokerΨ]− [cokerψ̃] ∈
K0T (QΛ(G)) = K0(Λ(G),Q(Λ(G))). Ritter and Weiss formulate in [RW04], p.14,

the Conjecture that there is a unique element Θ̃S ∈ K1(Q(Λ(G))), s.t.

∂(Θ̃Σ) = ℧̃Σ, (2.10)

jρ(Nrd(Θ̃Σ)) = Lk,Σ(ρ), ∀ρ ∈ R(G). (2.11)

As we have seen in lemma 2.23 the second part is equivalent toDet(Θ̃Σ) = Lk,Σ.

The first, algebraic part of this translates to the Non-commutative Main Con-
jecture as follows:

℧̃Σ = [cokerΨ]− [cokerψ̃] = [cokerψ] + [XΣ] − [cokerψ] − [Zp] = [XΣ] − [Zp] =
[H0(C•)]− [H−1(C•)] =

∑
i (−1)

i[H i(C•)] = −[C•] where the fourth equality is
because of lemma 2.13 and the last is due to lemma 1.15.

2.4.5 The non-regular case

In the non-regular case, i.e. when G has an element of order p, two strategies
were pointed out by O. Venjakob to show the correspondence between −[C•]

and ℧̃Σ.

The first relies on the observation (by K. Kato) that there is a totally real field
extension F ′

∞ over F∞, unramified almost everywhere, with its Galois group
G′ := Gal(F ′

∞/F ) a p-adic Lie group containing no element of order p. Conse-

quently the regular case above applies and we have −[C•(F ′
∞/F )] = ℧̃′

Σ. The
extension F ′

∞/F∞ is in general an infinite pro-p abelian one (cf. [BV05], lemma
6.1). Its construction uses Kummer theory and supposes, that the p-th roots of
unity are in F , so it may not be applicable to every situation. To descent back
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down to G, one uses a deflation map. If the extension F ′
∞/F∞ is finite this was

described by Ritter and Weiss in their paper [RW02].

The second strategy uses sequences of 2-extensions. An account of this strategy
can be seen in the recent course notes by Venjakob, [Ven11] and also in the
preprint by A. Nickel [Nic11].

2.5 The strategy of Burns and Kato

Burns and Kato have proposed a strategy for proving the Non-commutative
Main Conjecture if G is a p-adic Lie group with a surjection ω : G→ Γ ∼= Zp. It
makes use of the Commutative Main Conjecture known to hold by the affore-
mentioned results of Wiles et al.

Let I be a set of pairs (U, V ) of subgroups of G, such that U ⊆ G is open, V is a
closed subgroup of ker ω and V normal in U with U/V abelian. For such a pair
define

θ(U,V ) : K1(Λ(G))
Norm
−−−→ K1(Λ(U))

proj∗−−→ K1(Λ(U/V )) = Λ(U/V )×

and analogous for the localisations

θS,(U,V ) : K1(Λ(G)S)
Norm
−−−→ K1(Λ(U)S)

proj∗−−→ K1(Λ(U/V )S) = Λ(U/V )×S .

For a given set I as above we combine them in the homomorphisms

θ : K1(G)→
∏

(U,V )∈I

Λ(U/V )×,

θS : K1(G)→
∏

(U,V )∈I

Λ(U/V )×S .

Now let Ψ ≤
∏

(U,V )∈I

Λ(U/V )× and ΨS ≤
∏

(U,V )∈I Λ(U/V )
×
S be subgroups, such

that the following holds:

Assumption 2.26. 1. θ : K1(Λ(G))→ Ψ is an isomorphism,

2. im(θS) ⊆ ΨS,

3. Ψ = ΨS ∩
∏

(U,V )∈I Λ(U/V )
× and
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4. for any Artin representation ρ of G there is a finite family (Ui, Vi) in I and one-
dimensional Artin characters χi of Ui/Vi , s.t. ρ is a Z-linear combination of
indGUi

χi.

The following theorem is due to D. Burns and K. Kato. For a closed subgroup
G′ ≤ G let F ′

G be the fixed field FG′

∞ of G′ . We denote the p-adic zeta function
(with relation to Σ) for the (abelian) extension FV /FU by ζ(U,V ).

Theorem 2.27. (cf. [Kat07]) Let Ψ,ΨS be subgroups as above and suppose we have
(ζU,V )(U,V )∈I ∈ ΨS . Then the p-adic zeta function ξ for F∞/F with relation to Σ exists
and ∂(ξ) = −[C•].

Proof. Let f be a characteristic element for F∞/F and for (U, V ) ∈ I define

(fU,V ) := θS(f) ∈ Λ(U/V )×S ,

(uU,V ) := (ζU,V )(fU,V )
−1.

Consider the following diagram

K1(Λ(G)S)
Norm //

∂

��

K1(Λ(U))
proj∗ //

∂

��

Λ(U/V )×S

∂
��

K0[Λ(G),Λ(G)S]
Tr // K0[Λ(U),Λ(U)S]

proj∗// Λ(U/V )×S /Λ(U/V )
×.

It is commutative by the definition of restriction of scalars and the map ∂ given
in section 1.3.

By lemma 2.12, proj∗◦Tr(−[C(F∞/F )]) = −[C(U,V )]. By Commutative Iwasawa

theory ∂(ζU,V ) = −[C(U,V )] and consequently uU,V ∈ ker ∂ = Λ(U/V )×. The
image of f under θS is in ΨS by assumption 2.26 (2). By the assumption on ζU,V
in the theorem (uU,V ) ∈ ΨS ∩

∏
(U,V )∈I Λ(U/V )

× = Ψ by 2.26 (3).

By assumption 2.26 (1) the unique preimage of (uU,V ), say u, under θ exists in
K1(Λ(G)). Identifying K1(Λ(G)) with its image in K1(Λ(G)S) we set ξ := uf ∈
K1(Λ(G)S). This is by definition a characteristic element for F∞/F and has
θS(ξ) = (ζU,V ).

It remains to show the interpolation property. For this let ρ be an Artin repre-
sentation of G and ρ =

∑m
i=0 ri ind

G
Ui
(χi) with χi according to assumption 2.26

(4). Then by proposition 2.15

LΣ(1− r, ρ) =
∏

i

Lσ(1− r, ind
G
Ui
(χi))

ri =
∏

i

LΣ(1− r, χi)
ri.
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We have ξ(ρκr) =
∏m

i ξ(ind
Ui
G (χi)κ

r)ri by additivity of evaluation. If κU denotes
the cyclotomic character for the fixed field FU = FU

∞ then

ξ(indUi
G (χi)κ

r) = θS,U,V (ξ)(χiκ
r
U) = ζU,V (χi, κ

r
U) = LΣ(1− r, χi).

This shows existence of the p-adic ζ-function for F∞/F . Uniqueness follows
from an easy diagram chase using the injectivity of θ.
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Chapter 3

Reduction arguments

Mahesh Kakde [Kak10] recently reduced the proof of the main conjecture for
general admissible (see 2.6) p-adic Lie extensions to the pro-p case. Another
account of this is in the lecture notes [Suj11] by R. Sujatha.

Each reduction step has two parts: One K-theoretic, giving an isomorphism
K ′

1(Λ(G))
∼= lim←−K

′
1(Λ(G)) where the limit ranges over a suitable family of quo-

tients or subgroups of G with norm maps and one representation theoretic us-
ing the compatibility of evaluation and complex Artin L-functions with tensor
products of representations to glue the main conjectures on each level G to-
gether in one large commutative diagram. Kakde uses the uniqueness asser-
tion in the main conjecture in every reduction step. This is possible due to his
formulation using the quotient group K ′

1 = K1/SK1 rather then the whole K1.

Conjecture 3.1. (Kakde’s Main Conjecture)

There is a unique ζ(F∞/F ) in K ′
1(Λ(G)S) such that for any Artin representation ρ of

G and any integer r ≡ 0 mod p− 1

∂(ζ(F∞/F )) = −[C(F∞/F )] and

ζ(F∞/F )(ρκ
r
F ) = LΣ(ρ, 1− r).
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3.1 Reduction to the rank 1 case

Lemma 3.2. For a compact p-adic Lie group P we have an isomorphism

K ′
1(ΛO(P ))

∼
−→ lim←−

∆

K ′
1(O[∆])

where ∆ runs over the finite quotients of P and the inverse limit is taken w.r.t. the
norm maps.

Proof. Denote by JP the Jacobson radical of ΛO(P ). Then Fukaya and Kato
show in [FK06], prop. 1.5.1, that K1(Λ(P ))

∼
−→ lim←−nK1(ΛO(P )/J

n
P ). So

K1(ΛO(P )) ∼= lim←−
n

K1(ΛO(P )/J
n
P )

∼= lim←−
(U,r)

K1(O[P/U ]/m
rO[P/U ])

∼= lim←−
U

lim←−
r

K1(O[P/U ]/m
rO[P/U ])

∼= lim←−
U

lim←−
n

K1(O[P/U ]/J
n
P/U)

∼= lim←−
U

K1(O[P/U ]).

Here U runs over the open normal subgroups of P and r ∈ N. The first
and last isomorphisms come from the aforementioned result of Fukaya and
Kato. For the second isomorphism note that the JP -topology on ΛO(P ) is
the same as the canonical one by lemma 1.4, i.e. for any n ∈ N there are
r ∈ N and U⊳oP with mrΛO(P )+I(U) ≤ JnP and the map ((U, r) 7→ mminimal,
s.t.JmP ≤ mrΛO(P ) + I(U)) gives a cofinal system. Then we use the usual cate-
gorial argument, [Mac98] IX.3 theorem 1. For the third isomorphism, note that
GL2(R) surjects onto K1(R) for semilocal rings R. Consequently the projective
limits are taken in the category of profinite groups and we use the corollary in
[Mac98] §IX.8. For fixed U ⊳o P the mr, r ∈ N, constitute a fundamental system
of neighbourhoods of 0 ∈ O[P/U ]. By the same reasoning as in step two we
conclude that they are cofinal in the powers of the radical and get the fourth
isomorphism.
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Finally, SK1(O[P/U ]) is finite by a result of Higman, [Hig40]. By definition
SK1(ΛO(P )) = lim←−U SK1(O[P/U ]) and by the exactness of lim←− on sequences of
compacta we have

K ′
1(ΛO(P )) ∼= lim←−

U

(
K1(O[P/U ])/SK1(O[P/U ])

)
.

As immediate consequence we get the

Corollary 3.3. Let Q1(G) = {G/U ;U is open in H and normal in G}. Then

K ′
1(ΛO(G)) ∼= lim←−

G′∈Q1(G)

K ′
1(ΛO(G

′)),

where the projective limit is taken w.r.t the norm maps.

Proposition 3.4. Let F∞/F be an admissible extension with G = Gal(F∞/F ). Then
Kakde’s Main Conjecture is true if and only if it is true for every G′ ∈ Q1(G).

Proof. The ’only if’ part is clear from Fukaya/Kato (functoriality of C(F ′/F ))
and the functoriality of the L-functions. For the ’if’ part consider the commu-
tative diagram

K ′
1(Λ(G))

≃

��

// K ′
1(Λ(G)S)

N
��

//K0(Λ(G),Λ(G)S)

��

// 0

lim←−G′
K ′

1(Λ(G
′)) // lim←−G′

K ′
1(Λ(G

′)S)
// lim←−G′

K0(Λ(G)
′,Λ(G)′S).

Let f ∈ K ′
1(Λ(G)S) be a characteristic element for F∞/F and denote the image

N(f) by (fG′). Let ζG′ ∈ K ′
1(Λ(G

′)S) be the unique element satisfying the Main
Conjecture over G′. Set uG′ := ζG′f−1

G′ . Then by commutativity of the right
square ∂G′(uG′) = 0 and by exactness of the bottom row (uG′) ∈ lim←−K

′
1(Λ(G

′)).
The left vertical is an isomorphism by the corollary above. Let u denote a
preimage of (uG′) in K ′

1(Λ(G)) under this map. Then u · f is a characteristic
element of F∞/F , too. Now let ρ be an Artin representation ofG factoring over
a fixed G′. Then for r ≡ 0(p−1) we have uf(ρκr) = ζG′(ρκr) = LΣ(ρ, 1− r).

3.2 Further reductions

Suppose G is one-dimensional. Then by fixing a section of G → Γ we get an
isomorphism G ∼= H ⋊ Γ for some finite normal subgroup H of G. The action
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of Γ on H must factor through a finite quotient and therefore we can and will
fix an open central Γ′ := Γp

n
, where n is chosen minimal. For subgroups P of

the finite group G ∼= G/(Γ′p) denote the inverse image of P in G by UP .

Definition 3.5. A finite group P is called l-hyperelementary for a prime l if P ∼=
Cm ⋊ π with π a finite l-group, Cm cyclic of order m with l ∤ m. It is called
hyperelementary if it is l-hyperelementary for some l.

Theorem 3.6 ([Kak10], thm. 27). The main conjecture is valid for an admissible
one-dimensional p-adic Lie extension F∞/F with Galois group G if and only if the
following holds: for every hyperelementary subgroup P of G = G/(Γ′p), the main
conjecture is valid for F∞/F

UP
∞ .

Proof. Consider the commutative diagram with exact rows

K ′
1(Λ(G)) //

∼ N
��

K ′
1(Λ(G)S)

NS

��

// K0(Λ(G),Λ(G)S)

��

// 0

lim←−P K
′
1(Λ(UP )) // lim←−P K

′
1(Λ(UP )S)

(∂P )// lim←−P K0(Λ(UP ),Λ(UP )S),

where the projective limits in the lower row are taken with respect to the maps
induced by Norms and conjugation.

The ’only if’ part follows by the same argument as in Prop. 3.4. Now let f
be a characteristic element for C(F∞/F ) and let (fP ) be its image under NS .
The collection of p-adic zeta functions ζP satisfying the main conjectures for
F∞/F

UP
∞ is an element in the projective limit lim←−P K

′
1(Λ(UP )S) by their respec-

tive uniqueness. By the commutativity of the right square ∂P (fP ζ
−1
P ) = 0, ∀P

and from left exactness of lim←−P follows the existence of uP ∈ K ′
1(Λ(UP )) with

uP 7→ fP ζ
−1
P . By their definition (uP ) is in the projective limit lim←−P K

′
1(Λ(UP )).

N is an isomorphism by [Kak10], lemma 26 1, and we conclude that there is
u ∈ K ′

1(Λ(G)) with u 7→ (uP ). We let ζ := fu. Then ζ is a characteristic ele-
ment for F∞/F . Now we have to show that ζ interpolates the complex Artin
L-function for F∞/F .

Let ρ : G → Qp be an Artin character of G. Then by Theorem 19 in [Ser77]
there are (non-necessarily one-dimensional) Artin representations ρP ofUP and

1this is ultimately relying on work of C.T.C. Wall and A. Dress in the finite case
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integers nP with ρ =
∑

P nP indG
UP
ρP . For any integer r ≡ 0 (mod p − 1), we

have

ζ(ρκrF ) =
∏

P

ζ(indG
UP
ρPκ

r
F )

nP

=
∏

P

ζP (ρPκ
r
FP

)nP

=
∏

P

LΣ(ρP , 1− r)
nP = LΣ(ρ, 1− r).

Remark 3.7. The l-hyperelementary case splits into two completely different
cases: l 6= p and l = p. The former is easier, the latter is the main problem:
Kakde in [Kak10], as well as Ritter and Weiss in their sequence of papers, re-
duce the p-hyperelementary case to p-elementary groups, i.e. groups of the
form P ×∆,P pro-p and ∆ a finite cyclic group of order prime to p. The non-p
part ∆ can then be transferred to the coefficient ring by the isomorphism

Λ(P ×∆) ∼=
∏

χ∈∆̂

ΛOχ(P ).

Here ∆̂ is the group of characters of ∆ andOχ is the unramified extension of Zp
obtained by adjoining the values of χ. So using Burns and Kato strategy one is
finally down to the question of describing K1(ΛO(P )) for a pro-p group P and
a finite unramified extension O of Zp.

Case 1:

Theorem 3.8. Let F∞/F be admissible and satisfy µ = 0 and lets assume G is such
that G/Γ′ is l-hyperelementary for l 6= p. Then the Main Conjecture 3.1 for F∞/F is
true.

Proof. Theorem 31 in [Kak10].

Case 2:

Assume that G is a rank one quotient of the false Tate group L. Consequently
it is of the form G = C ⋊ (Γ × ∆) with C = 〈ε〉 cyclic of p-power order, say
|C| = pn. Then G has a central open subgroup Γ′ := Γp

n−1 ∼= Zp and G :=
G/Γ′ = C ⋊ (D × µp−1) is finite with D cyclic of order pn−1.
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Lemma 3.9. Suppose H ≤ G is a p-hyperelementary subgroup of G then H is already
p-elementary.

Proof. LetH = Ck⋊π with π a p-group andCk cyclic of order p ∤ k. SinceH ≤ G
and ord(G) = pn·(n−1) · (p− 1) it is k | p− 1. Then π acts on Ck trivially, since the
image of π → Aut(Ck) ⊆ Sk must be a p-group and hence is trivial.

Lemma 3.10. If G is isomorphic to the false Tate group Zp ⋊ Z×
p then SK1(Λ(G))

is trivial, hence Kakde’s Main Conjecture 3.1 implies the Non-Commutative Main
Conjecture 2.18.

Proof. If G is a finite quotient of the false Tate group L, then its p-Sylow sub-
group is of the form N ⋊ C with N,C cyclic p-groups. Proposition 12.7 in
[Oli88] applies to give SK1(Λ(G)) = 1. SK1(Λ(L)S) is by definition the image
of SK1(Λ(L)) in the localisation sequence. We just saw that the latter is trivial
as projective limit of trivial groups.
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Chapter 4

K1 of certain completed p-adic
group rings

In order to proof the Main Conjecture 2.18 for a specific group G via the strategy
in section 2.5, we have to describeK1(Λ(G)) andK1(Λ(G)S) by sets ΨG and ΨG,S

satifying certain assumptions. In particular we prove ΨG
∼= K1(Λ(G)). To this

end Kato proposed the use of a logarithm map. This ‘integral logarithm’ has
values in ZpJConj(G)K and takes norm maps between K1-groups to trace maps
between Zp-modules.

Suppose G satisfies assumption 4.1 below, i.e. G ∼= Zp ⋊ Z×
p , then in view of

the reduction steps in Chapter 3 it suffices to pursue the above program for
K1(Λ(G)) (and its localization) when

a) G1 = H ⋊ Γ is a one-dimensional quotient of G and

b) G = UP the preimage of a finite p-elementary subgroup of G1/(Z(G1)∩Γ).

Since the additive side is considerably easier we will give a description of the
trace image of ZpJConj(G)K for the whole false Tate group G in section 4.2. For
the multiplicative part we will use the reductions a) and b) above and describe
K1(Λ(∆× P )) and K1(Λ(∆× P )S) for p-elementary subgroups of G.
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4.1 The false Tate group

We will be concerned with groups G satisfying the

Assumption 4.1. Let p be an odd prime. There is an isomorphism of topological
groups s : L

∼
→ G of topological groups from the ’false Tate group’

L := Zp ⋊ Z×
p
∼=

(
Z×
p Zp
0 1

)

to G.

Remark 4.2. L is a compact p-adic Lie group: An atlas is given by the collection
of charts with disjoint images {ψi : Zp × Zp → G, (a, b) 7→ t(i + p · a, b), 1 ≤ i ≤
p− 1}.

A description of K1(Λ(G)) will only be done for groups G satisfying the fol-
lowing

Assumption 4.3. There is an isomorphism s : P → G of topological groups from the
maximal pro-p subgroup of the false Tate group

P := Zp ⋊ U (1)

to G. Here, as usual, U (n) := ker
(
Z×
p → (Z/pnZp)×

)
.

From now on suppose G satisfies assumption 4.1 or 4.3. Denote by 〈·〉 the
closed subgroup generated by "·".

We fix the following important notation: Let z be a primitive (p − 1)-th root
of unity in Zp and d = (1 + p), a topological generator of U (1) ∼= Zp, s.t. Z×

p
∼=

〈z〉 × 〈d〉. We define elements ε, δ, ζ ∈ L:

ε :=

(
1 1
0 1

)
, δ :=

(
d 0
0 1

)
, ζ =

(
z 0
0 1

)
.

Then L, resp. P , has a surjection ω to Γ ∼= Zp with kernel isomorphic to 〈ε, ζ〉,
resp. 〈ε〉.

IfG falls under assumption 4.1 we omit reference to the isomorphism s : L→ G
and denote the elements s(ε), resp. s(δ), s(ζ), by ε, resp. δ, ζ . Any element g in
G can be uniquely written as g = εiδjζk, with i, j, k all minimal. For such g
define tg := t := djzk ∈ Z×

p . With this notation the following relations in G are
verified by simple computations in L :
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• δζ = ζδ

• δnεk = εd
nkδn, ζnεk = εz

nkζn

• [δn, εk] = ε(d
n−1)k.

Let U0 := G = 〈ζ, δ, ε〉 and for n ≥ 1 set

Un := 〈δp
n−1

, ε〉, Vn := [Un, Un]
(1)
= 〈εp

n

〉.

Identity (1) follows from [εiδp
n·k, εjδp

n·l] = ε(1−d
pn·k)i+(dp

n ·l−1)j ∈ 〈εp
n+1
〉 and

εp
n+1
≡ [ε, δp

n
] mod [ε, δp

n+1
].

Similarly, if G satisfies assumption 4.3: Let U ′
0 := G = 〈δ, ε〉 and for n ≥ 1 set

U ′
n := 〈δp

n

, ε〉, V ′
n := [U ′

n, U
′
n] = 〈ε

pn+1

〉.

Lemma 4.4. If G ∼= L then Un is an open subgroup of G for all n, Vn is a closed
subgroup in the kernel of ω : G→ Γ, normal inUn and Un/Vn is abelian and analogous
if G ∼= P .

Proof. If G ∼= L the first assertion is clear, since Un has index #(〈ζ〉) ·

#
(
〈δ〉/〈δp

n−1
〉
)

in G. Since ω has abelian image the other assertions follow

by definition of Vn; the same arguments work for G ∼= P .

For all n ∈ N, the family Cn := {z, z2, . . . , zp−1, dz, dz2, . . . , dp
n−1
zp−2} is a sys-

tem of representatives for (Zp/(pn))
×.

Lemma 4.5. (i) The collections {δjζk | 0 ≤ k ≤ p − 2, 1 ≤ j ≤ pn−1} comprise
coset representatives for L/Un.

(ii) The collection {εiδjζk | 0 ≤ k ≤ p − 2; j ∈ Zp; i =

0, 1, p, p2, . . . , pvp(1−d
jzk)−1 = pvp(1−t)−1} is a system of representatives for

the conjugacy classes of L.

(iii) The collections {δj | 1 ≤ j ≤ pn} comprise coset representatives for P/U ′
n.

(iv) The collection {εiδj | j ∈ Zp; i = 0 or i = µpk, µ = 1, 2, . . . , p − 1, 0 ≤ k ≤
vp(j)} is a system of representatives for the conjugacy classes of P .
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Proof. (i) and (iii) are obvious: For g = ( x a0 1 ) , h =
(
y b
0 1

)
it is gh =

(
xy xb+a
0 1

)
and

xb+ a = 0 for a suitable choice of b.

For (ii) note that hgh−1 =
(
x ya+(1−x)b
0 1

)
, with g, h as above. Choosing y appro-

priate one has ya = pvp(a). Then choose b such as to cancel ya if vp(1−x) ≤ vp(a).

Lastly, for (iv) use the same notation as for (ii) and write

a = a0p
vp(a) + a1p

vp(a)+1 + · · ·

with 1 ≤ a0 ≤ p− 1. There is y ∈ U (1) such that ya = a0p
vp(a). We can cancel ya

by (1− x)b iff vp(1− x) ≤ vp(a), but vp(1− x) = vp(1− dj) = vp(j) + 1.

Definition 4.6. • Let c ∈ N be minimal such that εp
c
= 1 and c :=∞ if ε has

no finite order. For c ∈ N ∪ {∞} define c := {0, 1, . . . , c} ⊆ N.

• The indexing sets in Lemma 4.5 will be of frequent use. We define

C := {(i, j, k) | i, j, k as in Lemma 4.5 (ii)} and

Cn := {(i, j, k) ∈ C | 0 ≤ j ≤ pn−1 − 1}.

• Similarly we define

C ′ := {(i, j) | i, j as in Lemma 4.5 (iv)} and

C ′
n := {(i, j) ∈ C | 0 ≤ j ≤ pn − 1}.

Remark 4.7. • The center of G is defined to be Z(G) = {g ∈ G | gh =
hg, ∀h ∈ G} = {g | [g, h] = 1, ∀h}. To determine the center we note
that every g ∈ G is of the form g = εiδjζk and g is in the center if and only
if it commutes with all generators:

[εiδjζk, ε] = εd
jzk−1 = 1⇔ k = p− 1, j ≥ c− 1 if c ∈ N and j = 0 else,

[εiδjζk, δ] = εi(1−d) = 1⇔ i = 0 and

[εiδjζk, ζ ] = εi(1−z) = 1⇔ i = 0.

We conclude that Z(G) = 〈δp
c−1
〉 if ord(ε) = pc is finite and in this case

G/Z(G) is finite and every element in the factor group has a unique rep-
resentation as g = εiδjζk with 1 ≤ i ≤ pc, 1 ≤ j ≤ pc−1 and 0 ≤ k ≤ p− 2
if G ∼= L or g = εiδj with 1 ≤ i ≤ pc, 1 ≤ j ≤ pc−1 if G ∼= P , respectively.
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• A group G satisfying assumption 4.1 is the projective limit of groups with
open center, as can be seen directly:

G ∼= lim←−
n

(
Z×
p Z/(pn)
0 1

)
.

In general a compact p-adic Lie G withH →֒ G։ Γ is the projective limit
of its rank 1 quotients G with a similar sequence. Γ is free, so H ⋊ Γ ∼= G
with finite H and the center of this contains Γp

n
for n ≫ 1 and thus is

open.

4.2 Trace maps and the additive side

For an arbitrary group G and a commutative ring R, define R[Conj(G)] to be
the free R-module on the set of conjugacy classes of G, i.e. R[Conj(G)] :=⊕

C∈Conj(G)RC. For g ∈ G let classG(g) := {σgσ−1 | σ ∈ G}. Note that

ϕ : R[Conj(G)]→ R[Conj(G)], classG(σ) 7→ classG(σ
p)

is a well defined map, although the multiplication of G does in general not
extend to R[Conj(G)].

For a group G, a subgroup H ≤ G and a quotientG′ of G, we define the natural
maps

ι : R[Conj(H)]→ R[Conj(G)], classH(σ) 7→ classG(σ)

π : R[Conj(G)]→ R[Conj(G′)], classG(σ) 7→ classG′(σ)

pconj : R[G]→ R[Conj(G)], σ 7→ classG(σ).

Suppose H has finite index in G and let C(H,G) denote a system of represen-
tatives for the left cosets of H in G. We define the R-linear map

TrG|H : R[Conj(G)]→ R[Conj(H)],

classG(σ) 7→
∑

ν∈C(H,G)
νσν−1∈H

classH(νσν
−1).
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This is independent of the choice of C(H,G) and well defined, i.e. not depend-
ing on the choice of σ within a conjugation class.

Lemma 4.8. (cf. lemmma 3.4 in [Lee09]) pconj induces an isomorphism

H0(G,R[G]) ∼= R[G]/[R[G], R[G]] ∼= R[Conj(G)].

For a profinite group G we define RJConj(G)K := lim←−U⊳oG
R[Conj(G/U)] using

the maps

π : R[Conj(G/U)]→ R[Conj(G/V )], for U, V ⊳o G,U ⊆ V.

Lemma 4.9. (cf. lemmma 3.5 in [Lee09]) The map pconj : Λ(G) → ZpJConj(G)K
(induced from the maps pconj above) gives an isomorphism

Λ(G)/[Λ(G),Λ(G)] ∼= ZpJConj(G)K.

The following lemma is key in understanding the image of the trace map.

Lemma 4.10. Let G be a p-adic Lie group and Z(G) its center. ZpJConj(G)K is a
Λ(Z(G))-module and the Λ(Z(G))-module homomorphism

Λ(Z(G))JG/Z(G)K→ ZpJConj(G)K

is surjective.

Furthermore, if G falls under assumption 4.1 and Z(G) is open in G, i.e. c <∞, then

ZpJConj(G)K ∼=
⊕

(i,j,k)∈Cc

Λ(Z(G))classG(ε
iδjζk).

If G falls under assumption 4.3 and Z(G) is open in G, i.e. c <∞, then

ZpJConj(G)K ∼=
⊕

(i,j)∈C′
c

Λ(Z(G))classG(ε
iδj).

On the right hand side, Λ(Z(G))classG(g) means the Λ(Z(G))-submodule of
ZpJConjGK generated by classG(g).
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Proof. The first part is in [Lee09], lemma 3.7: For z ∈ Z(G), g ∈ G we have
classG(zg) = z · classG(g). Any continuous section of G։ G/Z(G) will yield a
Λ(Z(G))-linear surjection

Λ(Z(G))JG/Z(G)K→ Λ(G).

Note that the second part of loc.cite cannot be applied here, since [G,G] = 〈ε〉 *
Z(G). Rather, we us the ad hoc description of Conj(G) in lemma 4.5:

Conj(G) =
∐

x

Z(G)classG(x),

the disjoint union ranging over x = εiδjζk, resp. x = εiδj , with (i, j, k), resp.
(i, j), in the purported index set.

Definition 4.11. • The p-adic completion of a Zp-module M is, as usual,
defined by

M∧ := lim←−
n

M/pnM.

• Assume that G is a one-dimensional p-adic Lie group with a surjection to
Zp. Then the center Z(G) ⊆ G is open and we define

ZpJConj(G)KS := Λ(Z(G))S(Z(G)) ⊗Λ(Z(G)) ZpJConj(G)K.

By lemma 4.10 this tensor product is well defined.

• For such G define

ZpJConj(G)K
∧
S := (ZpJConj(G)KS)

∧.

Definition 4.12. Suppose G satisfies assumption 4.1. For n ∈ c define the
Λ(Z(G))-module homomorphisms

τn = π ◦ TrG|Un : ZpJConj(G)K→ ZpJConj(Un)K→ Λ(Un/Vn),

τ = (τn)n : ZpJConj(G)K→
∏

n∈c

Λ(Un/Vn).

If in addition c is finite then define

TrG|Un,S : ZpJConj(G)KS → ZpJConj(Un)KS,

z ⊗ classG(x) 7→

{
z ·
∑

g∈G/Un
classUn(gxg

−1), if x ∈ Un

0, else
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and by functoriality of localisation and completion

τn,S = πS ◦ TrG|Un,S : ZpJConj(G)K
∧
S → ZpJConj(Un)K

∧
S → Λ(Un/Vn)

∧
S,

τS = (τn,S) : ZpJConj(G)K
∧
S →

∏

n∈c

Λ(Un/Vn)
∧
S.

Analogous maps τ ′n, τ
′
n,S and τ ′, τ ′S are defined for G satisfying 4.3.

Ultimately we want to see that τ and τ ′ are injective. We start with describing
im(τn) in Λ(Un/Vn) and turn to τ ′n later.

Let U0,0 := U0 and for n ∈ c, n ≥ 1 define a family of subgroups of Un =
〈δp

n−1
, ε〉 by

Un,k := 〈δ
pn−1

, εp
k

〉, 0 ≤ k ≤ n.

Then Un = Un,0 ⊇ Un,1 ⊇ · · · ⊇ Un,n, each Un,k is normal in G and Un,n/Vn =
Z(G/Vn) by remark 4.7.

For n ∈ c, 1 ≤ i < pn define the element

hn,i :=

pn−vp(i)∑

t=1
(t,p)=1

εp
vp(i)·t.

Lemma 4.13. Let ϕ denote the Euler function. For n ∈ c, the image of τn is

In :=
〈
ϕ(pn), pvp(i)hn,i | 1 ≤ i ≤ pn−1

〉
Λ(Un,n/Vn)

and the image of τn,S in Λ(Un/Vn)S is

In,S :=
〈
ϕ(pn), pvp(i)hn,i | 1 ≤ i ≤ pn−1

〉
Λ(Un,n/Vn)S

.

Proof. It suffices to describe the image of τn, since by definition of τn,S its map-
ping properties are entirely analogous.

First, let n = 0, then im(τ0) = im(π ◦ TrG|G) = im(π) = Λ(U0/V0). On the other
hand ϕ(p0) = 1.

So from now on let n ≥ 1. The set {classG(ε
iδjζk) | i = 0, 1, 2, . . . , pc; j ≤

pc−1; k ≤ p − 2} = {classG(ε
iδjζk) | i = 0, 1, p . . . , pc; j ≤ pc−1; k ≤ p −

2} generates the Λ(Z(G))-module ZpJConj(G)K topologically, see lemma 4.10.
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Note that, depending on the order of ε, this set may be infinite. Since δp
n−1
∈

Un,n/Vn = Z(G/Vn) we have

im τn = 〈τn(classG(ε
iδjζk)) | i, j, k as before〉Λ(Z(G/Vn))

= 〈τn(classG(ε
iδjζk)) | i = 1, p, . . . , pn; 0 ≤ j ≤ pn−1 − 1; 0 ≤ k ≤ p− 2〉Λ(Un,n/Vn).

For the second equality note that

τn(classG(g)) = π
( ∑

x∈G/Un

classUn(xgx
−1)
)
=
∑

x

classUn/Vn(xgx
−1) =

∑

x

x · g · x−1

and therefore τn(classG(ε
pn)) = τn(classG(ε

0)).

If 0 6= j < pn−1, then δj /∈ Un = 〈δp
n−1
, ε〉 and consequently τn(classG(ε

iδj)) = 0
by definition. An analogous argument holds for 0 6= k < p− 1 : εiδjζk /∈ Un for
n ≥ 1.

Finally we deal with j = 0, k = 0, i.e. we compute

τn(classG(ε
i)) = π

( ∑

0≤l≤p−2
1≤m≤pn−1

classUn(δ
mζkεiζ−kδ−m)

)

= π
(∑

l,m

classUn(ε
i·dm·zl)

)
=
∑

1≤t≤pn

(p,t)=1

εi·t.

The last equation holds since dmzl runs through a system of representatives of
(Zp/pn)× ∼= G/Un.

These sums are ’truncated’ by the relation εp
n
= 1. If i = pn this evaluates

to ϕ(pn). To determine the corresponding coefficients for i 6= pn, note that all
elements i·t have the p-valuation of i, of which there are (p−1)pn−vp(i)−1 in Z/pn.
(Z/pn)× is acting transitively on these elements and the order of the stabilizer

is given by #(Z/pn)×

(p−1)pn−vp(i)−1 = pvp(i). The assertion follows.

To further describe the image of τ in
∏

n In we need a relative trace map:

Definition 4.14. Let S be a finitely generated free left R-algebra. Define the
natural antihomomorphism1 from the left R-module S to the right R-module
R

Tr: S −→ EndR(S) ∼= Mn(R)
Trace
−→ R.

1meaning f(λm) = f(m) · λ, λ ∈ R
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It induces a homomorphism of left R-modules

Tr: S/[S, S]→ R/[R,R]

and, if R, S are topological rings, a continuos homomoprhism

Tr: S/[S, S]→ R/[R,R].

Remark 4.15. Assume there is a basis {xi}i=1,...,n ⊆ S× and for s ∈ S, j = 1, . . . , n
set xij ∈ R, such that

xjs =
∑

i

xijxi.

Finally let πi :
⊕

j Rxj ։ Rxi ∼= R denote the projection onto the i-th direct

summand. Then xij and Tr can be computed with xij = πi(xjs) = π0(xjsx
−1
i )

and
Tr(s) =

∑

i

xii =
∑

i

π0(xisx
−1
i ). (4.1)

Lemma 4.16. For m ≤ n ∈ c, let

Trm,n = Tr: Λ(Um/Vm)→ Λ(Un/Vm)

Trm,n,S = (Tr)S : Λ(Um/Vm)S → Λ(Un/Vm)S,

and

pn,m = p∗ : Λ(Un/Vn)→ Λ(Un/Vm),

pn,m,S = (p∗)S : Λ(Un/Vn)S → Λ(Un/Vm)S

be the Trace, resp. projection, homomorphisms. We define the Λ(Z(G))-modules

Ω := ΩG :=

{
(xn)n ∈

∏

n∈c

In | Trm,n(xm) = pn,m(xn) for m ≤ n

}
,

ΩS := ΩG,S :=

{
(xn)n ∈

∏

n∈c

In,S | Trm,n,S(xm) = pn,m,S(xn) for m ≤ n

}
.

Assume that c is finite. Then im(τ) ⊆ Ω and im(τS) ⊆ ΩS .
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Proof. Clearly it sufficess to prove the assertion for τ .

To this end we define elements citn ∈ Λ(G), i ∈ Zp, t ∈ Z×
p , n ∈ N by

citn :=





0, vp(1− t) < n

pn∑
s=1

(p,s)=1

εi·s =:
pn∑
s=1

′εi·s, vp(1− t) ≥ n.

The proof of lem. 4.13 shows τn(classG(ε
iδjζk)) = citnδjζk ∈ Λ(Un/Vn) with

t = dj · zk, as usual.

If m ≥ 1 the set {δp
m·l | l = 1, . . . , pn−m} is a basis of the Λ(Un/Vm)-module

Λ(Um/Vm). If vp(1− t) ≥ n then

Trm,n(citnδ
jζk)

(4.1)
=

pn−m∑

l=1

δp
m·tcitnδ

−pm·tδjζk

=

pn−m∑

t=1

pm∑

s=1

′εi·s·d
pm·l

δjζk = pn−m
pm∑

s=1

′εi·s·d
pm·l

δjζk.

The last equation holds since dp
m·l ≡ 1 mod pm for all t and hence εi·s·d

pm·l
≡

εi·s mod Vm. On the other hand

pn,m(citnδ
jζk) =

pn∑

s=1

′εi·sδjζk

=pn−m
pm∑

s=1

′εi·sδjζk.

If vp(1−t) < n then δjζk /∈ Un, consequently δp
m·lδjζk /∈ Un and Trm,n(citnδ

jζk) =
0 by (4.1). On the other hand pn,m(citnδ

jζk) = pn,m(0) = 0. So the assertion holds
in case m ≥ 1.

Ifm = 0, m < n, similarly, the set {δlζk | l = 1, . . . , pn, k = 0, . . . , p−2} is a basis
of the Λ(Un/Vm)-module Λ(Um/Vm). An analogous argument as above finishes
the proof.
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Theorem 4.17. The homomorphism

τ : ZpJConj(G)K→ Ω

is an isomorphism of Λ(Z(G))-modules.

Proof. We remind ourselves of the definition of c and Cc in 4.6. Define a possi-
ble inverse map

τ̃ : Ω→ ZpJConj(G)K, (xn)n 7→
c∑

n

τ̃n(xn),

where

τ̃ : In → ZpJConj(G)K, citnδ
jζk 7→

{
0 if n 6= vp(1− t)

classG(ε
iδjζk) if n = vp(1− t).

First suppose c < ∞. Then by Lemma 4.5 (ii) the elements
classG(ε

iδjζk), (i, j, k) ∈ Cc generate ZpJConj(G)K as Λ(Z) module. Then
τ̃ ◦ τ = id and τ is injective.

We now show that τ̃ is injective. Let x = (xn)n be in the kernel of τ̃ . Write

xn =
∑

(i,j,k)∈Cc

citnδ
jζkzitn

where zitn ∈ Λ(Z(G)). Then

0 = τ̃ (x) =
c∑

n=0

τ̃n(xn) =
∑

n

∑

i,j,k

τ̃n(citnδ
jζk)zitn

=
∑

i,j,k

classG(ε
iδjζk)zitt̃, with t̃ := vp(1− t).

From the direct sum composition in Lemma 4.5 (ii) we see that classG(ε
iδjζk) ·

zitt̃ = 0, ∀(i, j, k) ∈ Cc. Applying the Λ(Z(G))-linear map τt̃ to this we get

citt̃ · zitt̃ = 0. (4.2)

It remains to show that citn · zitn = 0, for all (i, j, k) ∈ Cc, n ≤ c. Note that we
have not used the condition that x ∈ Ω, yet.
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In the previous lemma we saw that for 0 6= n ≤ q ≤ c, z ∈ Λ(Z(G))

pq,n(citqδ
jζkz) = Trn,q(citnδ

jζkz) =

{
0 if vp(1− t) < q,

pq−ncitnδ
jζkz if vp(1− t) ≥ q.

Applying this to xn yields

∑

(i,j,k)∈Cc

q≤vp(1−t)

pq−ncitnδ
jζk · zitn = Trn,q(xn)

= pq,n(xq) =
∑

(i,j,k)∈Cc

q≤vp(1−t)

pq−ncitnδ
jζk · zitq ∈ Λ(Uq/Vn).

Hence citnzitn = citqzitq, ∀n ≤ q and by equation 4.2 we see that

citnzitn = citnzitt̃ = 0, ∀n ≤ vp(1− t).

This finishes the proof of injectivity for τ̃ if c <∞.

If ε is of infinite order we make the usual projective limit argument:

ZpJConj(G)K ∼= lim←−
n

JConj (G/Vn)K ∼= lim←−
n

ΩG/Vn
∼= ΩG.

If we set IG :=
∏

n≤cG
τn(ZpJConj(G)K), fG := Trj,i−pi,j : IG →

∏
i≥j Λ(Ui/Vj)

the last isomorphism is by the following clearly commutative diagram

0 // ΩG
incl //

≀

��

IG
fG //

≀

��

∏
i≥j Λ(Ui/Vj)

≀

��
0 // lim←−n ΩG/Vn

incl // lim←−n IG/Vn
lim←− fG/Vn

// lim←−n
∏

n≥i≥j Λ(Ui/Vj).

Note that all maps here are Λ(Z(G))-module homomorphisms.

To carry over this description of H0(G,Λ(G)) = ZpJConj(G)K to ZpJConj(G)KS
and then to its p-adic completion one uses once more the projective limit over
quotients with open center:
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Corollary 4.18. We have an isomorphism of Λ(Z(G))-modules

τS : ZpJConj(G)K
∧
S → Ω̂S := lim←−

n

Ω
〈p〉
G/Vn,S

Proof. This is Corollary 3.25 in [Lee09].

One uses the exact same techniques as above to show the following

Proposition 4.19. Suppose G satifies assumption 4.3 and suppose c <∞.

Define for n ∈ c, 1 ≤ i < pn+1 the elements

h′n,i :=

pn−vp(i)∑

k=0

εi·d
k

.

Then the image of τ ′n in Λ(U ′
n/V

′
n), resp. τ ′n,S in Λ(U ′

n/V
′
n)S , is

I ′n : = 〈pn, pvp(i)h′n,i〉Λ(〈δpn 〉),

resp. I ′n,S : = 〈pn, pvp(i)h′n,i〉Λ(〈δpn 〉)
S(Λ(〈δp

n
〉))
.

Furthermore
τ ′ : ZpJConj(P )K→ Ω′ (4.3)

is an isomorphism of Λ(Z(G))-modules and im(τ ′S) ⊆ Ω′
S , where Ω′ ⊆

∏
n∈c I

′
n and

Ω′
S ⊆

∏
n∈c I

′
n,S are defined by the same conditions as Ω and ΩS , i.e. Trm,n(xm) =

pn,m(xn).

Corollary 4.20. LetO be the ring of integers in a finite algebraic extension of Qp, then
tensoring 4.3 with O we obtain an isomorphism τ ′O : OJConj(P )K → Ω′

O, since O is
finite, free over Zp.

4.3 The integral logarithm L

The integral logarithm L : K1(Λ(G))→ ZpJConj(G)K was constructed for finite
groups by M. Taylor and R. Oliver simultaneously to be used in the study of
the Whitehead group, i.e. the quotient of K1 by the canonical units. For the
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construction of the integral logarithm for pro-finite groups we refer to chapter
5 of [SV11]. The calculations omittet there can be found in [Lee09], chapter 3.3.

We also need an integral logarithm for K1(Λ̂(G)S), compatible with the non
localized map from above. If the following assumption holds, the construction
of such an extension can be simplified as in [Lee09]. There are results in this
direction, cf. [Bur10] lemma 5.1 and remark 5.7.

Assumption 4.21. Suppose G is a compact p-adic Lie group that is p-elementary

with open center Z. Every x ∈ ( ̂Λ(G)S(G))
× can be written as x = uv with u ∈

̂Λ(Z)S(Z)
×
, v ∈ Λ(G)×.

Since we could not show the asserted decomposition, we will instead use the
construction of Kakde, relying on

Λ̂(G)S
×
= (1 + Jac(Λ̂(G)S)) ·

̂Λ(σ(Γ))S, (4.4)

where σ is a continuous, homomorphic section of the surjection G ։ Γ, cf.
lemma 5.1 in [SV11].

Proposition 4.22. Let ϕ : Conj(P ) → Conj(P ) be the map classP (g) 7→ classP (g
p)

and denote the induced map on ZP JConj(P )K also by ϕ. For a compact p-adic Lie
group P there is a well-defined group homomorphism

LP : K1(Λ(P ))→ ZpJConj(P )K, x 7→ (1− p−1ϕ) ◦ log(x),

where log is defined by the usual power series.

If in addition G is pro-p and there is a surjective homomorphism P → Zp with kernel,
say H , and N an open subgroup of H that is normal in P , we can write an element

x ∈ ((Λ(P/N)S)
〈p〉)× as x = uv , u ∈ 1 + Jac( ̂Λ(P/N)S) , v ∈ ( ̂Λ(Z(P/N))S)

×

according to 4.4, where Z(P/N) denotes the center. Define

LP,S : K1(Λ̂(P )S)→ ZpJConj(P )K̂S

to be the composition of the natural homomorphism

K1(Λ̂(P )S)→ lim←−
N

K1((Λ(P/N)S)
〈p〉)

and the homomorphism

lim←−
N

K1( ̂Λ(P/N)S)→ lim←−
N

(ZpJConj(P/N)KS)
〈p〉.
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Here N is as above and the later map is induced from the maps

K1( ̂Λ(P/N)S)→ (ZpJConj(P/N)KS)
〈p〉,

[x] ̂Λ(P/N)S
7→

1

p
log(upϕ(u)−1) + (1−

1

p
ϕ) ◦ log([v]Λ(P/N)).

Proof. The last definition makes sense, as 1
p
log(xpϕ(x)−1) = (1 − 1

p
ϕ) ◦

log([x]Λ(P/N)) for x in the intersection of the domains. There are various con-
vergence and well definedness issues here, for details consult [SV11], chapter
5.

By varying the coeffient ring over unramified extensionsO of Zp one can easily
extend this to p-elementary groups P .

4.4 Kernel and cokernel of L

For a finite groupG and a fixed prime number p letGr denote the p-regular part
of G, i.e. the elements of G whose orders are prime to p. If x is arbitrary in G
then write ord(x) = pr ·m, (m, p) = 1 = µpr+λm. Since x1 = xµp

r+λm = xµp
r
·xλm

we have the decomposition x = xr · xu = xu · xr, p | ord(xu), p ∤ ord(xr). Note
that Gr is in general not a subgroup of G but closed under conjugation by
arbitrary elements of G. The quotient set of this G-action plays an important
role in modular representation theory: The number of elements of G\Gr is the
number of irreducible characters of G modulo p, cf. [Ser77].

Lemma 4.23. Let f : G→ H be a homomorphism of finite groups. Then

(i) f restricts to a well defined map Gr → Hr.

(ii) If f is surjective, f induces a surjection Gr → Hr.

Proof. (i) If there is n with p ∤ n, xn = 1 then (f(x))n = 1, too. For (ii), note that
with y ∈ Hr it is yk ∈ Hr, ∀k and hence 〈y〉 ⊆ Hr. Now let x ∈ G with f(x) = y
and ord(x) = pl · m, p ∤ m. Then xp

l
is p-regular. Since p ∤ |〈y〉| the pl-power

map is an element of the automorphism group of 〈y〉. Hence there is y′ = yk

with y′p
l
= y. Now xk is a preimage of yk and consequently (xk)p

l
= (xp

l
)k is a

p-regular preimage of y.
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For a ring R, let R(Gr) be the free (left) R-module on the set of p-regular ele-
ments of G. G operates on R(Gr) by conjugation on the basis. If G = lim←−Gλ is
the projective limit of finite groups Gλ and πλ denotes the canonical projection,
by Lemma 4.23 we can define the projective limit of the sets Gλ,r of p-regular
elements.

Lemma 4.24. Denoting by Gr the set {x ∈ G | πλ(x) ∈ Gλ,r, ∀λ} we have a bijection
α : Gr → lim←−Gλ,r.

Proof. This is obvious since the maps over which we take the projective limits
are the same.

Let ϕ : R → R denote the Frobenius map for a finite, unramified extension R
of Zp and consider the map Φ : R(Gr)→ R(Gr),

∑
rigi 7→

∑
ϕ(ri)g

p
i . If we take

homology with R(Gr) coefficients, Φ denotes the induced map on homology,
too.

For an abelian group A let A(p) denote the p-primary subgroup. If Ψ is an
endomorphism of A, AΨ denotes the subgroup of elements fixed by Ψ and AΨ

denotes the quotient of A by all elements (Ψ− id)(a), a ∈ A. We now state the
crucial

Proposition 4.25. (cf. [Oli88], thm 12.9 iii)
For a finite group G and a local field F , unramified, of finite degree over Qp and with
ring of integral elements R = OF , the following sequence is exact

1 // H1(G,R(Gr))
Φ ⊕H0(G,R/2(Gr))

Φ // K ′
1(R[G])(p) EDBC

GF
LG

@A
// H0(G,R[G]) // H1(G,R(Gr))Φ ⊕H0(G,R/2(Gr))Φ // 1.

Remark 4.26. • In our situation R = Zp so the Frobenius action on coeffi-
cients is just by g 7→ gp.

• Since p 6= 2, R/2 = 0 and the corresponding summands vanish.

A result of Wall gives the following splitting of K1 for finite groups.
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Proposition 4.27. Let G be an arbitrary finite group and let J denote the Jacobson
radical of the p-adic group ring Λ = Zp[G]. Then there is an exact sequence of abelian
groups

1→ V → K1(Λ)→ K1(Λ/J)→ 1,

in which V is a pro-p group and K1(Λ/J) is a finite group of order prime to p.

Furthermore this sequence splits canonically to give an isomorphism K1(Λ) ∼= V ×
K1(Λ/J).

Proof. [CR87] Theorem 45.31

Remark 4.28. This combined with the previous proposition shows exactness of
the sequence

1→ (Λ/J)× ×H1(G,Zp(Gr))
Φ × SK1(Zp[G])→ K1(Zp[G])

→ H0(G,Zp[G])→ H1(G,Zp(Gr))Φ → 1

for a finite group G.

Lemma 4.29. If G is a profinite group, let AG denote the projective limit
lim←−U⊳oG

Zp((G/U)r). Then taking the projective limit over the sequence in remark

4.28 we conclude exactness of the following sequence

1→ H1(G,AG)
Φ × (Λ(G)/Jac)× × SK1(Λ(G))→ K1(Λ(G))

→ ZpJConj(G)K→ H1(G,AG)Φ → 1.

Proof. The projective limit commutes with taking K1 and SK1 by lemma
3.2. Group homology commutes with projective limits by Theorem 2.6.9 and
Proposition 1.2.5 in [NSW08]. Since all terms involved are compact abelian
groups, the projective limit is exact. For finite G the Φ invariants, resp. coin-
variants, of H1(G,AG) are compacta as closed subset, resp. quotient set, of a
compact set. Hence the projective limit overG is exact on the first and last term
of the sequence.

Remark 4.30. Some remarks on computing H1(G,AG):

• Note that e ∈ Gr for a finite group G and G acts trivially on the sub-
module Zpe of Zp(Gr). If G is a pro-p group this inclusion is an equal-
ity, hence kernel and cokernel of our sequence specialize to H1(G,Zp) =
Gab = (Gab × µp−1)(p). Compare Lemmata 66 and 67 in [Kak10] or Corol-
lary 3.42 in [Lee09].
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• If G is finite and a direct product ∆ × π, with ∆ abelian, p ∤ |∆| and an
arbitrary (not necessarily abelian) p-group π then Gr = ∆ and

H1(G,AG) = H1(G,Zp(∆)) ∼=
⊕

x∈∆

H1(G,Zp) ∼=
⊕

x

πab.

In particular any p-elementary group falls under this assumption.

4.4.1 A computational example

In this section we compute kernel and cokernel for a specific family of non p-
groups. The results will not be used in the remainder of this paper, but are
supposed to point at the involved difficulties and techniques. In general one
may try to use group theoretic reductions and the Hochschild-Serre spectral
sequence to generalize these computations.

For this section let p be an odd prime and let Gn := Z/pnZ × Z/pnZ ⋊ Z/2Z,
where the last term acts by inversion on the second. Since #Gn = p2n · 2 the
order of any x ∈ Gn

r , x 6= e is 2. Then Gn
r = {e := (0, 0, 0), ei := (0, i, 1); i ∈

Z/pnZ}. Let G = lim←−nG
n with the natural projection maps. Note that Φ acts

trivially on the coefficients, as (0, i, 1)2 = e and p is odd.

Lemma 4.31. With R = Zp the action of Gn on R(Gn
r ) introduced above, we have

H1(G
n, R(Gn

r )) = Z/pnZ⊕ Z/pnZ⊕ Z/pnZ, ∀n.

Proof. Denoting the Pontryagin dual Homcts(X,R/Z) of X by X
∨

one has
H1(G

n,Zp(Gn
r ))
∼= H1(Gn,Zp(Gn

r )
∨
)
∨

= H1(Gn,Qp/Zp(Gn
r ))

∨
(cf. [NSW08],

2.6.9) and we therefore deal with cohomology with An := Qp/Zp(Gn
r ) coeffi-

cients instead. The exact sequence

0 //

=:Un

︷ ︸︸ ︷
Z/pnZ×

=:V n

︷ ︸︸ ︷
Z/pnZ︸ ︷︷ ︸

=:Hn

// Gn // Z/2Z // 0

yields a Hochschild-Serre spectral sequence. Denoting Gn, Hn, V n, Un and An
by G,H, V, U and A, respectively, the corresponding 5-term exact sequence is

0 // H1(Z/2Z, AH) inf // H1(G,A) res // H1(H,A)Z/2Z
tg // . . .

. . .
tg // H2(Z/2Z, AH) // H2(G,A).

(4.5)
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Note that U = 〈u = (1, 0, 0)〉 is central in G, hence it operates trivialy on
A. The action of V = 〈v = (0, 1, 0)〉 on Gn

r gives a decomposition in two or-
bits: {e}

∐
{ei, i = 0, . . . pn − 1}. Indeed, we have ei = (0, i, 1) and evi =

(0, 1, 0)(0, i, 1)(0, pn − 1, 0) = (0, i+ 2, 1) = ei+2. Since 2 ∤ pn the operation of V

on the ei’s is transitive. An element x̂ ∈ A can be written as
∑pn−1

i=0 xiei + xe.

From this we deduce AH = AV = R
∨
⊕ R

∨
= Qp/Zp ⊕ Qp/Zp =: R ⊕R, one

summand per orbit. Note also that this module has trivial Z/2Z-action. So we
get H1(Z/2Z,R⊕R) = Hom(Z/2Z,R ⊕R) = 0 since R has no 2-torsion. For
the cyclic group Z/2Z the cup-product induces (cf. [NSW08], prop 1.7.1) an
isomorphism2

H2(Z/2Z,R⊕R) ∼= Ĥ0(Z/2Z,R⊕R) =

(R⊕R)Z/2Z�NZ/2Z·(R⊕R) = R⊕R�2R⊕ 2R = 0

since multiplication by 2 is an isomorphism of R. So we get from (4.5) that
H1(G,A) ∼= H1(H,A)Z/2Z.

In the same way the exact sequence 0 −→ U −→ H −→ V −→ 0 gives rise to

0 // H1(V,AU)
inf // H1(H,A)

res // H1(U,A)V
tg // . . .

. . .
tg // H2(V,AU) // H2(H,A).

(4.6)

From what we said above we see that A has trivial U action. So

H1(U,A)V = Hom(U,A)V = {x̂ ∈ A | pn · x̂ = 0}V

= {x̂ ∈ A | xi = xj , ∀i, j = 0, . . . , pn − 1 and pn · x = pn · xi = 0}
∼= Z/pnZ⊕ Z/pnZ.

For later use, we point out that σn : U = 〈u〉 → A, u 7→ 1/pne, resp. τn : U →
A, u 7→ 1/pn

∑
l el, are generators of these cyclic groups.

To compute H2(V,A) we use once more the isomorphism induced by the
cup-product on the (Tate-)cohomology of the finite cyclic group V = 〈v〉:

2NG for a finite group G as usual denotes the element
∑

g∈G g in the integral group ring
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H2(V,A) ∼= Ĥ0(V,A) = Av�NV ·A
∼= R⊕R�NV (A). On a single element x̂ ∈ A it

is

NV · x̂ =

pn−1∑

j=0

vj(

pn−1∑

i=0

xiei + xe)

=
∑

i

(∑

j

xi+2j

)
ei + pn · xe =

∑

i

(∑

j

xj

)
ei + pnxe,

so in all ei components NV · x̂ has coefficient
∑

i xi. Hence we mod out by
R⊕ pnR and so H2(V,A) ∼= R�pnR = 0.

The computation of H1(V,AU) in (4.6) proceeds as follows: Note that AU = A

and let f̃ : V → A denote any (inhomogenous) 1-cocycle in Z1(V,A). For the
moment write V = 〈v〉multiplicatively. By the cocycle relation

f̃(x) + xf̃(y) = f̃(xy), ∀x, y ∈ V

we see that f̃ is uniquely determined by its image f̂ = fe +
∑

i fiei on v. Fur-

thermore, 0 = f̃(e) = f̃(vp
n
) = NV f̂ = pnfe+

∑
i

(∑
j v

jfiei
)
= pnfe +

∑
i Sei,

with S =
∑

j fj . We conclude pnf = 0 = S.

Since V is cyclic, the 1-coboundaries are of the form (v − 1)ŷ = 0e +
∑

i(yi−2 −

yi)ei, where ŷ = ye +
∑

i yiei ∈ A arbitrary. To decide whether f̂ = (v − 1)ŷ is
solvable we are reduced to the system of linear equations

f0 = ypn−2 − y0,

f1 = ypn−1 − y1,

f2 = y0 − y2,

...

fpn−1 = ypn−3 − ypn−1,

which has a solution, since
∑

i fi = 0 and the linear system on the right hand
side has rank pn − 1. We conclude that H1(V,A) ∼= {f ∈ R | pn · f = 0} ∼=
Z/pnZ, with generator ωn : V → A, v 7→ 1/pne.

So far, we have shown that the sequence

0→ 〈ωn〉
inf
−→ H1(H,A)

res
−→ 〈σn〉 ⊕ 〈τn〉 → 0

is exact with ord(ωn) = ord(σn) = ord(τn) = pn. As before write the groups U ,
resp. V , multiplicatively with generators u, resp. v. To construct a splitting of
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the sequence define sn : H → A, uivj 7→ i/pne and tn : : H → A, uivj 7→
i/pn

∑
l el. One verifies that these are cocycles and hence define classes of order

pn in H1(H,A). Since res(sn) = σn, res(tn) = τn, we get a splitting H1(H,A) =
H1(V,AU)⊕H1(U,A)V .

The operation of Z/2Z = 〈ι〉 on H1(H,A) is defined by conjugation and com-
mutes with inflation and restriction ([NSW08], prop 1.5.4) so we get a commu-
tative diagram

0 // H1(V,AU) inf //

ι∗
��

H1(H,A) res //

ι∗
��

H1(U,A)V //

ι∗
��

0

0 // H1(V,AU)
inf // H1(H,A)

res // H1(U,A)V // 0.

Hence we can compute ι∗-invariants on the direct summands of H1(H,A) =

H1(V,A)⊕H1(U,A)V : Ĥ1(V,A)ι∗ ∼= Ĥ−1(V,A)ι∗ and since σ :
∑pn−1

i=0 xiei+xe 7→∑pn−1
i=0 x−iei + xe on NV

A and the ei-components get factored out, ι∗ acts trivial
on the first summand. Finally H1(U,A)V,ι∗ = H1(U,A)V because V already acts
transitively on the ei’s.

We compile everything together: H1(G
n, R(Gn

r ))
∼=
(
H1(Hn,R(Gn

r ))
Z/2Z

)∨
∼=(

H1(V n,R(Gn
r ))

ι∗ ⊕H1(Un,R(Gn
r ))

V,ι∗
)∨
∼= (Z/pnZ⊕ Z/pnZ⊕ Z/pnZ)

∨
and

the assertion follows.

Lemma 4.32. Using the notation from the previous proof, the natural maps

(Z/pnZ)3 ∼= H1(Gn, An)
π
−→ H1(Gn+1, An+1) ∼= (Z/pn+1Z)3 are multiplication

by p. Hence H1(G,Zp(Gr)) ∼= Z3
p by duality of homology and cohomology.

Proof. To avoid confusion we denote the elements of Gn
r and Gn+1

r by {e, el}
and {e′, e′l}, respectively. Similarly, we denote generators of Un,V n,Un+1, V n+1

by u, v, u′, v′, respectively. The reduction of elements i ∈ Z/pn+1Z modulo pn is
denoted by ī.

The previous proof shows that H1(Gn, An) is generated by inf(ωn), sn, tn ∈
H1(Hn, An), with resHU (sn) = σn,resHU (tn) = τn. Let ϕ : Hn+1 → Hn and
F : An → An+1 be the natural maps induced from the projection Gn+1 → Gn.
Then for f ∈ Z1(Hn, An) the canonical map on cocycles is π(f) = F ◦ f ◦ ϕ ∈
Z1(Hn+1, An+1). Here F is the Pontryagin dual of the map Zp(Gn+1)→ Zp(Gn).
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Viewing An as the set of maps from Gn
r to Qp/Zp, F corresponds to the reduc-

tion map

Maps(Gn
r ,Qp/ZZp)→Maps(Gn+1

r ,Qp/Zp), f 7→ (e′ 7→ f(e), e′l 7→ f(el̄).

This yields

π(sn)(u
′iv′j)(e′) = F ◦ sn ◦ ϕ(u

′iv′j)(e′) = F ◦ sn(u
īvj̄)(e′)

= sn(u
īvj̄)(e) = ī/pn = pi/pn+1 = psn+1(u

′iv′j)(e′)

π(sn)(u
′iv′j)(e′l) = sn(u

īvj̄)(el̄) = 0 = psn+1(u
′iv′j)(e′l)

π(tn)(u
′iv′j)(e′) = tn(u

īvj̄)(e) = 0 = ptn+1(u
′iv′j)(e′)

π(tn)(u
′iv′j)(e′) = tn(u

īvj̄)(e) = ī/pn = pi/pn+1 = ptn+1(u
′iv′j)(e′l)

π(inf(ωn))(u
′iv′j)(e′) = inf(ωn)(u

īvj̄)(e) = ωn(v
j̄)(e)

= j̄/pn = pj/pn+1 = p inf(ωn+1)(u
′iv′j)(e′)

π(inf(ωn))(u
′iv′j)(e′l) = ωn(v

j̄)(el̄) = 0 = p inf(ωn+1)(u
′iv′j)(e′l)

4.5 Norm maps and the multiplicative side

Suppose G is a group satisfying assumption 4.3 and furthermore c <∞with c
as in definition 4.6.

For the rest of the chapter τ , resp. τn, will denote the map τ ′, resp. τ ′n from
section 4.2, i.e. the additive map for the group G.

Let n ≥ 0 and let O be the ring of integers in a finite algebraic extension of Qp.
Then we define the maps

N : K1(ΛO(G))→ K1(ΛO(U
′
n)),

p∗ : K1(ΛO(U
′
n))→ K1(ΛO(U

′
n/V

′
n)) = ΛO(U

′
n/V

′
n)

×
,

θn = p∗ ◦N : K1(ΛO(G))→ ΛO(U
′
n/V

′
n)

×
,

where N is the norm and p∗ is the projection map.
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For m ≤ n we define the relative norms and projections

Nm,n : ΛO(U
′
m/V

′
m)

×
→ ΛO(U

′
n/V

′
m)

×
,

pn,m : ΛO(U
′
n/V

′
n)

×
→ ΛO(U

′
n/V

′
m)

×
.

Analogous maps are defined for the localized Iwasawa algebras and denoted
by NS, p∗,S, θn,S, Nm,n,S and pn,m,S, respectively.

Finally, for n ≥ 1, define

ϕ : U ′
n−1/V

′
n−1 → U ′

n/V
′
n, g 7→ gp.

ϕ is a continuous group homomorphism by [DdSMS99b], 0.2 (iii). It extends to
continuous ring homomorphisms

ϕ : ΛO(U
′
n−1/V

′
n−1)→ ΛO(U

′
n/V

′
n) and ϕ : ΛO(U

′
n−1/V

′
n−1)S → ΛO(U

′
n/V

′
n)S.

Indeed, ϕ restricts to an injection U ′ab
n−1 ⊇ Γ →֒ Γp ⊆ U ′ab

n , hence

Λ(U ′ab
n−1)

ψ

��

// Λ(U ′ab
n )

ψ′

��
FpJΓK �

� // FpJΓpK

commutes. And by [CFK+05], lemma 2.1, f is in S(U ′
n−1) if and only if ψ(f) 6= 0.

ϕ(f) ∈ S(U ′
n) follows.

Note that ϕ is not well-defined for the whole group L, as ϕ(ζ) = ζ /∈ U1.
This and the generalization of lemma 4.34 below are the reasons why a direct
generalization of this approach from the maximal pro-p subgroup to L fails.

Remark 4.33. Recall that for n ≥ 0, U (n) := ker(Z×
p → (Zp/pnZp)×). Kato defined

in [Kat05] rings Bn = Zp[ζpn]JU (n)K, An = ΛO(U
(n)) ⊆ Bn and representations

ρn : G → GLϕ(pn)(Bn). The induced maps det(ρ̃n) : K1(Λ(G)) → K1(Bn) ∼= B×
n

correspond to the maps θn from above.

Define the sets

Ψ := ΨO := {(xn)n ∈
∏

n≤c

ΛO(U
′
n/V

′
n)

×|(xn)n, s.t. (i) and (ii) below hold}
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(i) Nn,m(xm) = pm,n(xn), for m ≤ n ≤ c,

(ii) xnϕ(xn−1)
−1 ∈ 1 + In, for 1 ≤ n ≤ c

and

ΨS := ΨO,S := {(xn)n ∈
∏

n≤c

ΛO(U
′
n/V

′
n)

×
S |(xn)n, s.t. (iS) and (iiS) below hold}

(iS) Nn,m(xn) = pm,n(xm), for m ≤ n ≤ c,

(iiS) xnϕ(xn−1)
−1 ∈ 1 + In,S, for 1 ≤ n ≤ c.

Lemma 4.34. We have a well-defined map ϕ∗ : G→ Ψ, g 7→ (ϕn(g))n.

Proof. By multiplicativity of ϕ it suffices to show this for the generators ε and
δ of G. For condition (i) note that {1, δp

m
, . . . , δp

m(pn−m−1)} is a basis for the
ΛO(U

′
n/V

′
m)-module ΛO(U

′
m/V

′
m) so

Nm,n(ϕ
m(ε)) = det




εp
m

0 . . .

0
. . . 0

... 0 εp
m


 = εp

n

= pn,m(ϕ
n(ε))

and Nm,n(ϕ
m(δ)) = det




0 · · · 0 δp
n

1
. . . 0
. . . 0

...
1 0


 = (−1)p

n−m−1δp
n

= pn,m(ϕ
n(δ)).

Condition (ii) is obvious from the homomorphism property of ϕ.

Lemma 4.35. Let W1 is p-adic Lie group and W2 be an open subgroup of W1. If W2 is
commutative consider the Trace homomorphism

Tr: QpJConj(W1)K→ QpJW2K.

Then the following diagram commutes

K1(ΛO(W1))
log //

N
��

QpJConj(W1)K

Tr
��

Λ(W2)
× log // QpJW2K.

(4.7)

67



From this we get commutativity of the following diagram for every n ≤ c

K1(ΛO(G))
log //

θn
��

QpJConj(G)K

τ

��
ΛO(U

′
n/V

′
n)

× log // QpJU
′
n/V

′
nK.

(4.8)

Proof. cf. [Lee09], Lemma 3.48: Use Theorem 6.2 in [Oli88] to derive
log(N(x)) = Tr(log(x)) for x ∈ 1 + Jac(ΛO(G)) and finite G. Then take the
projective limit to generalize this to the profinite case. In a second step observe
that p∗ : ΛO(G)→ ΛO(G/V

′
n) commutes with log.

Lemma 4.36. For n ≥ 1 the set In is multiplicatively closed. As a consequence 1+ In
is a group.

Proof. It suffices to show pvp(i)hn,i · pvp(j)hn,j ∈ In for vp(i) ≤ vp(j). It is hn,i =∑
k ε

i+k, where k < pn+1 ranges over the integers with k ≡ 0(mod pvp(i)). Hence
this sum has pn−vp(i) terms.

First suppose vp(i) < vp(j) then multiplication by εj+l is a permuta-
tion of the summands in hn,i and consequently pvp(i)hn,i· p

vp(j)hn,j =
pvp(i)+vp(j)pn−vp(j)hn,i = pnpvp(i)hn,i ∈ In.

Similar if vp(i) = vp(j) with i + j 6≡ 0(mod pvp(i)): pvp(i)hn,i · p
vp(j)hn,j =

pvp(i)+vp(j)pn−vp(j)
∑

k ε
i+j+k = pnpvp(i+j)hn,i+j ∈ In.

Finally if i+ j ≡ 0(mod pvp(i)),

pvp(i)hn,ip
vp(j)hn,j = pn+vp(i)

∑

vp(k)>vp(i)

εk = pn+vp(i)
∑

n≥l>vp(i)

∑

vp(k)=l

εk

= pn+vp(i)
∑

l

p−1∑

j=1

∑

k≡jpl

mod pl+1

εk = pn+vp(i)
∑

l

∑

j

hn,jpl ∈ In.

Then 1 + In is a multiplicative group: 1 + x ∈ 1 + In has
∑

n≥0(−x)
n as its

inverse.
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Lemma 4.37. For n ≥ 1, log is well-defined on 1 + In and gives an isomorphism of
groups

1 + In
∼
−→ In.

Proof. log converges by [Lee09], corollary 3.30 and yields a map

log : 1 + In → QpJU
′
n/V

′
nK.

It remains to show that xk/k ∈ In for x ∈ In, n ≥ 1, or equivalently xk ∈
pvp(k)In for all k ≥ 1. To see this note that xk is a ZpJ〈δp

n
〉K-linear combination

of elements of the form

k∏

r=1

pvp(ir)hn,ir with i1 ≤ . . . ≤ ik.

In the proof of 4.36 we saw that pn+vp(ir) | pvp(ir)+vp(ir+1)hn,irhn,ir+1 . Conse-
quently

k∏

r=1

pvp(ir)hn,ir = pn(k−1)+vp(i1)+···vp(ik−1) · y

with y either hn,ik , hn,ik+ik−1
or
∑

vp(l)≥vp(ik)
hn,l or a sum of these, according to

the three cases in the proof of the lemma.

Accounting for the p-power coefficient of y in In we get xk ∈
pn(k−2)+vp(i1)+···vp(ik−1)In ⊆ pvp(k)In. Note that the induced homomorphism
logn : (1 + I in)/(1 + I i+1

n )→ I in/I
i+1
n is an isomorphism, since

logn(1− x) = −x− x
2
∑

k≥2

xk−2

k
= −x.

Then log is an isomorphism by continuity, cf. Lemma 3.54 in [Lee09].
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Lemma 4.38. There are the following commutative diagrams of O-modules:

OJConj(G)K
ϕ //

p·τn−1

��

OJConj(G)K

τn
��

ΛO(U
′
n−1/V

′
n−1)

ϕ // ΛO(U
′
n/V

′
n),

OJConj(G)K∧S
ϕ //

p·τn−1,S

��

OJConj(G)K∧S

τn,S

��

ΛO(U
′
n−1/V

′
n−1)

∧
S

ϕ // ΛO(U
′
n/V

′
n)S

∧,

OJU ′
m−1/V

′
m−1K

ϕ //

p·τn−1

��

OJU ′
m/V

′
mK

τn

��
ΛO(U

′
n−1/V

′
n−1)

ϕ // ΛO(U
′
n/V

′
n),

OJU ′
m−1/V

′
m−1K

∧
S

ϕ //

p·τn−1,S

��

OJU ′
m/V

′
mK∧S

τn,S

��
ΛO(U

′
n−1/V

′
n−1)

∧
S

ϕ // ΛO(U
′
n/V

′
n)

∧
S.

Proof. Note that vp(p · (d
pn−1−1)) = n + 1, hence [εp, δp

n−1
] = εp∗(d

pn−1−1) ∈ V ′
n =

〈εp
n+1
〉 and δp

n−1
gpδ−p

n−1 (∗)
= gp ∈ ΛO(U

′
n/V

′
n) for g ∈ U ′

n.

For the upper left square consider g ∈ U ′
n−1. Using (∗) we have

τn ◦ ϕ(classG(g)) =

pn−1∑

i=0

classG(δ
igpδ−1) = p ·

pn−1−1∑

i=0

classG(δ
igpδ−1)

= p · ϕ



pn−1−1∑

i=0

classG(δ
igδ−1)


 = p · ϕ ◦ τn−1(classG(g)).

If g /∈ U ′
n−1 we have ϕ /∈ U ′

n and so both ways around the diagram are the zero
map.

Since ϕ and the τ∗,S are ΛO(Z(G))S-linear we can also derive commutativity of
the upper right square from this.

For the two lower squares let g ∈ U ′
n−1. Then Trm,n ◦ϕ(g) =

∑pn−m−1
i=0 δp

m·igpδ−p
m·i = ϕ

(∑pn−m−1
i=0 δp

m−1·igδ−p
m−1·i

)
= ϕ ◦ Trm−1,n−1(g) and

analogous for the right one.

Lemma 4.39. For n ≥ 1, we have

τn(LG(x)) = log(θn(x)ϕ(θn−1(x))
−1) for all x ∈ K1(ΛO(G))

and τn,S(LG,S(x)) = log(θn,S(x)ϕ(θn−1,S(x))
−1) for all x ∈ K1(ΛO(G)

∧
S).

Proof. The proof is lemma 3.50 in [Lee09] when one uses that ΛO(G)S(G) =
ΛO(G)S(U ′

n)
= ΛO(G)S(Z(U ′

n))
.
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Proposition 4.40. We have θ(K1(ΛO(G))) ⊆ Ψ and θS(K1(ΛO(G)S)) ⊆ ΨS .

Proof. We proof the first assertion, the second follows analogously; compare
proposition 3.57 in [Lee09]. Let x ∈ K1(Λ(G)) and (xn) be the image of x under
θ. Denote by r the index of U ′

n in G, then an application of K1 to the commuta-
tive diagram

Λ(G) //

��

Mr(Λ(U)
′
n)

��
Λ(G/Vm) //Mr(Λ(U

′
n/Vm))

yields

K1(Λ(G))
Nn //

pm

��

K1(Λ(U)
′
n)

pm

��
K1(Λ(G/V

′
n))

Nn // K1(Λ(U
′
n/V

′
n)),

or pm ◦Nn = Nn ◦ pm for short. Consequently pm(xn) = pm ◦ θn(x) = pm ◦ pn ◦
Nn(x) = pm ◦ Nn(x) = Nn ◦ pm(x) = Nn ◦ Nm ◦ pm(x) = Nn ◦ pm ◦ Nm(x) =
Nn ◦ θm(x) = Nn(xm). This is exactly condition (i) in the definition of Ψ. A
similar argument shows θS(x) ∈ ΨS for x ∈ K1(Λ(G)S).

For x ∈ K1(Λ(G)) let qn(x) := θn(x)ϕ(θn−1(x))
−1 ∈ Λ(U ′

n/V
′
n)

×. Condition (ii)
for Ψ is then rephrased as qn(x) ∈ 1 + In, 1 ≤ n.

By the previous lemma 4.39 we conclude im(log ◦qn) ⊆ In. If log were to be
injective on im(qn) then qn(x) would be the unique preimage of τn ◦ LG(x) ∈ In
under log, which by lemma 4.37 is in 1 + In.

Hence let 0 = log(qn(x)) = τn ◦ LG(x). Here is an error in [Lee09]: τn is by no
means injective, though it is the component of an injective map, τ . A correct
argument can be found in proposition 5.1 in [Har10] which in our situation
gives θn(x)ϕ(θn−1(x))

−1 ∈ 1+pΛ(U ′
n/V

′
n). Since log : 1+pΛ(U ′

n/V
′
n)→ pΛ(U ′

n/V
′
n)

is an isomorphism, we can proceed as described above.

Theorem 4.41. The map θ is an isomorphism of abelian groups θ : K1(ΛO(G))
∼
−→ Ψ.

Proof. Define

L̃ : Ψ→ Ω, (xn)n 7→ (yn)n,

with y0 = LU ′
0/V

′
0
(x0) and yn = log(xnϕ(xn−1)

−1), for n ≥ 1.
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This is well-defined, since yn ∈ In by the definition of Ψ and Lemma 4.37. For
1 ≤ m ≤ n ≤ c the yn satisfy

Trm,n(ym) = Trm,n(log(xnϕ(xn−1)
−1))

= Trm,n(log(xm))− Trm,n ◦ϕ ◦ log(xn−1)

= log(Nm,n(xm))− ϕ ◦ Trm−1,n−1 ◦ log(xm−1)

= log(Nm,n(xm))− ϕ ◦ log ◦Nm−1,n−1(xm−1)

= log(pn,m(xn))− ϕ ◦ log ◦pn−1,m−1(xn−1)

= pm,n(log(xn))− ϕ ◦ pn−1,m−1 ◦ log(xn−1)

= pm,n ◦ log(xnϕ(xn−1)
−1) = pn,m(yn).

Now let 0 = m < n. We have pn,0(log(xn)) = log(pn,0(xn)) = log(N0,n(x0)) =
Tr0,n(log(x0)). Using this we get

Tr0,n

(
1

p
log ◦ϕ(x0)

)
= ϕ

(
Tr0,n−1(log(x0))

)

= ϕ
(
pn−1,0(log(xn−1))

)

= pn,0

(
log ◦ϕ(xn−1)

)
.

Applying this to the definition of the integral logarithm we have

Tr0,n(y0) = Tr0,n

(
log(x0)−

1

p
log(ϕ(x0))

)

= pn,0

(
log(xn)− log(ϕ(xn−1))

)
= pn,0(yn).

Define the continuous group homomorphisms

ω̃ : Ω→ U ′
0/V

′
0 , (xn)n 7→ x0 if x0 ∈ U

′
0/V

′
0 and

θ̃ : µO ×G
ab → Ψ, (ζ, g) 7→ (ζgp

n

)n.

Lemma 4.34 shows that θ̃ is well-defined.

We will show that the following diagram is commutative with exact rows:

1 // µO ×G
ab

id
��

// K1(ΛO(G))

θ

��

LG // OJConj(G)K

≀ τ

��

ω // Gab //

id
��

1

1 // µO ×Gab θ̃ // Ψ
L̃ // Ω

ω̃ // U ′
0/V

′
0

// 1.

(4.9)
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The left square commutes by Lemma 4.34. The middle square commutes by
diagram (4.8) in lemma 4.35. The right square commutes by definition of U ′

0.
The upper row is exact by lemma 4.29.

It remains to proof exactness of the lower row.

Injectivity of θ̃ is clear from looking at the n = 0 component of the image.

Now we show exactness at Ψ. Commutativity of diagram 4.9 and exactness

of the upper row imply im(θ̃). Now let x ∈ ker(L̃). By lemma 4.37 log : 1 +
In → In is injective for all n ≥ 1 and we can write x = (φn(x0))n for some
x0 ∈ Λ(U ′

0/V
′
0)

×. Choose y ∈ K1(Λ(G)) with p∗(y) = x0. Using condition (i) of
Ψ for the last step we have θn(y) = p∗ ◦ N(y) = N ◦p∗(y) = N(x0) = ϕn(x) ∈
Λ(U ′

n/V
′
0)

×, i.e. θ(y) = x. Since τ is an isomorphism, y must be in ker(LG) and

it gives rise to an inverse image of x under θ̃.

For the exactness at Ω, observe that by lemma 4.29 applied to G = U ′
0/V

′
0 we

have im(L̃) ⊆ ker(ω̃). On the other hand, since τ is an isomorphism,

ker(ω̃) = τ(ker(ω)) = τ(im(LG)) = im(L̃ ◦ θ) ⊆ im(L̃).

So we get im(L̃) = ker(ω̃). The five lemma finishes the proof.

Now let G be a group satisfying assumptions a) and b) in the beginning of
this chapter, i.e. G = ∆ × P , where P is the maximal pro-p subgroup of a
one-dimensional quotient of the false Tate group and ∆ is a cyclic subgroup of
µp−1. Recall that c := cG ∈ N such that εp

c
= 1. Following Kakde (cf. prop. 86 in

[Kak10]), we now bring the strategy from section 2.5 to work: Every character

χ ∈ ∆̂ takes its values in an unramified extension Oχ of Zp. For a profinite
group W denote the Iwasawa algebra ΛOχ(W ) just by Λχ(W ). For n ≤ c let ζn ∈

Λ(∆× U ′
n/V

′
n)

×
S be the abelian p-adic zeta function for the admissible extension

F
V ′
n

∞ /F
∆×U ′

n
∞ .

Proposition 4.42. The NMC is true for F∞/F with Gal(F∞/F ) = G if and only if
(χ(ζn)) ∈ ΨS for all characters χ of ∆.

Proof. Fix χ ∈ ∆̂. Denote by Cχ the class [ΛOχ ⊗Λ(G) C(F∞/F )] ∈
K0(ΛOχ(P ),ΛOχ(P )S). Chose an element fχ ∈ K1(ΛOχ(P )S) with ∂(fχ) = −[Cχ]
and denote the image θS(f) ∈

∏
n≤c ΛOχ(U

′
n/V

′
n)

×
S by (fn). It is (fn) ∈ ΨS

by proposition 4.40. By exactness of the localisation sequence for Λχ(P ) →
Λχ(P )S we get un := χ(ζn)f

−1
n ∈ Λχ(P )

×. Assuming (χ(ζn)) ∈ ΨS we have
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(un) ∈ ΨS ∩
∏

nΛχ(U
′
n/V

′
n)

× = Ψ. The last equality holds since the norms maps
in the definition of ΨS restrict to the ones in the definition of Ψ. Denote the
unique preimage of (un) under θ by u ∈ K1(Λχ(P )) and let Lχ := uf .

Denote by eχ the idempotents corresponding to the decomposition Λ(∆×P ) =∑
χ Λχ(P ). We claim that ζ =

∑
χ eχLχ is the p-adic zeta function for F∞/F . By

defintion ζ is a characteristic element, i.e. ∂(ζ) = −[C(F∞/F )].

It remains to proof the interpolation property: Let ρ be an irreducible Artin
representation of P . Then there is an n ≤ c and a one-dimensional Artin repre-

sentation ρn of U ′
n, such that ρ = χ indPU ′

n
ρn. Consequently, for χ ∈ ∆̂ and r ∈ N

divisible by p− 1 it is

ζ(χρκrF ) = ζn(χρnκ
r

F
U′
n

∞

) = L(χρ, 1− r).
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