
Errata and complementary remarks for:
Cohomology of Number Fields, first ed. (2000) (by J. Neukirch, A. Schmidt, K. Wingberg)

This file lists a number of mistakes in the first edition and gives some remarks on the text which either did not find their way into
the book, or refer to results which were proven after the book was written.

This file is not maintained anymore. If you find a mistake not listed below or have a comment, please have a look at the free
online edition and its errata-file, available on my homepage.

-p.3 l.-14 (noticed S. Knorr) replace ‘we use’ by ‘we make use’.
-p.5 l.-3 (noticed S. Knorr) replace ‘exist’ by ‘exists’.
-p.7 l.-15 (noticed P. Barth) replace ‘basis’ by ‘subbasis’.
-p.8 l.-5 The claimed universal property seems to be incorrect.
-p.30 l.-13 (noticed by P. Barth) replace ‘x 7→

∑
σ∈Gx(σ−1)⊗ σ’ by ‘x 7→

∑
σ∈Gx(σ)⊗ σ’

-p.30 l.-7 (noticed by M. Breuning) remove ‘when A is induced’ (in the general case, Hom(A,B) is not always discrete).
-p.39 l.2 Replace ‘isomorphisms’ by ‘surjective’.
-p.39 l.3 ff (noticed by M. Breuning) The paragraph should be altered in the following way: For discrete G-modules A and B
let G act on Hom(A,B) by (gφ)(a) = gφ(g−1a). If G is finite or if A is finitely generated as a Z-module, then Hom(A,B)
is a discrete G module and the canonical pairing . . .. Then, in prop.(1.4.5) one has to assume either that G is finite or that A is
finitely generated as a Z-module.
-p.41 l.18 (noticed by T. Schmidt) replace ‘(f · g)’ by ‘∂(f · g)’
-p.50 l.15 (noticed by S. Knorr) replace ‘Homcts’ by ‘Homcont’.
-p.52 l.-13 add a second ‘)’
-p.69 l.-12 (noticed by C. Greither) replace this line by

G ∼=
∏
p∈T

Z/pepZ ×
∏
p∈S

Zp,

where T and S are disjoint sets of prime numbers and ep, p ∈ T , are natural numbers.
-p.78 l.4 add the condition En = 0 for n� 0 and n� 0. (of course this can be weakened, in particular if A has limits.
-p.80 l.14 (noticed by S. Firouzian) replace ‘F 0En = En’ by ‘Fn+1En = 0’ and remove ‘and Fn+1En = 0’ in the next line.
-p.81 l.2 ff (noticed by J. Stix) Some arrows go into the false direction. Replace these lines by: ‘Namely, in this case we have
isomorphisms E0,n

n+1
∼→ · · · ∼→ E0,n

2 and En+1,0
2

∼→ · · · ∼→ En+1,0
n+1 . Therefore the differential E0,n

n+1 → En+1,0
n+1 induces a

homomorphism E0,n
2

d−→ En+1,0
2 .’

-p.81 l.9 add ‘and all p’ after ‘0 < q < n’.
-p.81 l.-12 better formulation: replace ‘if p > m or q > n’ by ‘if (p > m and q < n) or (p < m and q > n)’. In particular, after
this modification, the following ‘In particular’ makes sense.
-p.83 l.-12 (noticed by J. Stix) replace ‘τ0, τ1 ∈ H’ by ‘τ0, τ1 ∈ G/H’
-p.86 l.13 replace ‘=’ by ‘≡’
-p.87 l.-1, l.-2 (noticed by J. Stix) replace ‘Ḡ’ by ‘Ḡ/H̄ ′’ and ‘G’ by ‘G/H ′’, where U ′ = [U,U ] for a profinite group U
-p.88 l.2 (noticed by J. Stix) replace ‘Uab’ by ‘Hab’ and ‘Ūab’ by ‘H̄ab’
-p.91 l.4 (noticed by J. Stix) replace ‘Hm(G,A)∗’ by ‘Hn−(p+q)(G,A)∗’
-p.91 l.-11, l.-12 (noticed by J. Stix) replace ‘Hp(G′, A)∗’ by ‘Hn−p(G′, A)∗’ and ‘Hp(G,A)∗’ by ‘Hn−p(G,A)∗’
-p.94 l.10 ff (noticed by J. Stix) replace ‘Hp(G/U,H0(U, X̃n−q(G,A)∗))’ by ‘Cp(G/U,H0(U, X̃n−q(G,A))∗)’. The next
lines should be replaced by: ‘We have a canonical pairing ϕ : (X̃n−q(G,A)U )∗ × A −→ (X̃n−q(G,Z)U )∗, (χ, a) 7−→
ϕ(χ, a) = f, where f : X̃n−q(G,Z)U −→ Q/Z is defined by f(x) = χ(ax). If z(σ0, . . . , σp−j) is a (p − j)-cochain with
coefficients in (X̃n−q(G,A)U )∗ and t(σ0, . . . , σj) is an j-cocycle in Zj(G,A), then (z ∪ t) is a p-cochain with coefficients in
(X̃n−q(G,Z)U )∗. Thus we get a map Cp−j,q(A)× Zj(G,A) −→ Cp,q(Z), i.e. for fixed t ∈ Zj(G,A) we have a morphism of
double complexes ∪t : C•−j,•(A) −→ C•,•(Z) of degree (j, 0) and hence a transformation of the associated edge morphisms.’
-p.98 l.2 (noticed by J. Stix) replace ‘Hq(u) = 0 for q > 0’ by ‘Hn+1(u) = 0’; delete the diagram in l.4 - l.5
-p.99 l.13 (noticed by M. Föhl) replace ‘Modt’ by ‘Modt’
-p.99 l.14 (noticed by M. Föhl) replace ‘Mod(p)’ by ‘Mod(p)’
-p.99 l.-13 (noticed by M. Föhl) replace ‘left derived’ by ‘right derived’
-p.101 l.13 replace ‘discrete’ by ‘abstract’.
-p.101 l.14 replace ‘a given a’ by ‘a given’.
-p.101 l.-7 (noticed by G. Wiese) replace ‘exist’ by ‘exists’.
-p.102 l.13 This shows only that the E2 and E∞-terms coincide. A proof that the spectral sequences are actually isomorphic can
be found in [60] (the functor ‘homogeneous cochain complex’ is a ‘resolving functor’).
-p.107 l.14 (noticed by P. Barth) as we are working with the homogenous cochain complex, the cup-product is defined by the
formula

(f ∪ g)(σ0, . . . , σp+q) = f(σ0, . . . , σp) · g(σp, . . . , σp+q).

-p.110 l.4 replace ‘(Hi(X•(G,An)))’ by ‘(Xi(G,An)G)’.
-p.110 l.5 (noticed by J. Stix) replace the statement of Corollary (2.3.5) by the following: ‘Let A be a compact G-module having
a presentation A = lim←−n∈NAn as a countable inverse limit of finite, discrete G-modules. If Hi(G,An) is finite for all n, then

Hi+1
cts (G,A) = lim←−nH

i+1(G,An).’
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-p.117 l.12 (noticed by T. Schmidt) replace ‘then H1(H,C) = 0, so . . . ’ by ‘then H1(H,C) = 0 and . . . ’
-p.127 l.3 replace ‘was’ by ‘has’
-p.132, l.-14 (noticed by A. Leesch) replace ‘0’ by ‘1’
-p.133 l.5 remove the word ‘been’
-p.142 l.13 ff (noticed by T. Wedhorn): In both diagrams of the proof of (3.3.8) one has to replace the module Xn by the
(cohomologically trivial) module An = ker(Xn → Xn+1).
-p.147 l.7 remove the ∗ in the second factor
-p.148 l.-8 (noticed by D. Harari) replace ‘AU ’ by ‘mAU ’.
-p.148 l.-4 (noticed by D. Harari) replace ‘and we . . . ’ by ‘and, if A is finite, we . . . ’.
-p.158 l.7 (noticed by A. Matar) replace ‘abelian’ by ‘cyclic’. By the Hochschild-Serre spectral sequence, the upper sequence
in (3.6.2) can be completed on the left by H2(U/V, Ẑ), which is zero if U/V is finite cyclic.
-p.159 l.14 (noticed by L. Wan) replace ‘#U/V = pn−1’ by ‘#U/W = pn−1’
-p.159, l. 1.-9 – -7 (noticed by L. Wan) replace the text following ‘otherwise’ by ‘1 = pn−1uU/V = pn−2i(uU/W ) by (3.6.1).
As i is injective, this implies pn−2uU/W = 1, contradicting the induction hypothesis.
-p. 165, l. -6 (noticed by L. Wan) replace ‘scd ’ by ‘scdp’ (twice)
-p. 168 l. 1 see Theorem 1 of our paper Extensions of profinite duality groups for the most general version of Theorem 3.7.4
known to us.
-p. 168 l. 11 replace ‘Eij2 (h,A)’ by ‘Eij2 (g, h,A)’
-p. 168 l. -6 replace ‘lim−→

g

lim−→
h′

’ by ‘lim−→
h′

lim−→
g/h

’

-p.175 l.-2 (noticed by D. Vogel) replace ‘rs 6= 0’ by ‘r + s 6= 0’
-p.181, l.-12 (noticed by Z. Chen) replace ‘In this case’ by ‘If R is finite and minimal’
-p.190 l.5 (noticed by J. Gärtner) replace ‘χ1 ∪ χ2’ by ‘χk ∪ χl’
-p.196 l.5 (noticed by M. Föhl) replace ‘F i+1 = (F i)p[F i, F ]’ by ‘F i+1 = (F i)q[F i, F ]’.
-p.196 l.9 (noticed by M. Föhl) replace ‘r(y) = yq(y1, y2) · · · ’ by ‘r(y) = yq1(y1, y2) · · · ’ .
-p.196 l.-9 (noticed by M. Föhl) replace ‘gri(F )’ by ‘gr1(F )’.
-p.204 l.11 replace the first ‘=’ by ‘−→’.
-p.205 l.20 replace ‘π ◦ s′ = s’ by ‘π ◦ s′ = id’
-p.208 l.-13 replace ‘is the theorem’ by ‘the theorem is’
-p.224 l.14 (noticed by S. Schmidt) replace ‘M ’ by ‘TA(M)’.
-p.227 l.-4 ff We did not assume that O is noetherian, therefore we have to assume that no only O/m is finite, but that O/mn is
finite for all n, in order to obtain compactness (counterexample: O = power series ring in countable many variables over a finite
field).
-p.237 l.3 remove ‘that’
-p.237 l.13 (noticed by P. Schneider) Assertion a) in (5.2.16)(ii) follows from b)-d) only under the additional assumption that G
is topologically finitely generated. The point is that the powers of RadG need not to be open, even if RadG is open. This happens,
for example, if G is the abelianization of the free pro-p group on countable many generators.

To show b)⇒ a) if G is topologically finitely generated, we have to show that the powers of RadG are open if RadG is open.
Choose n ∈ N and an open normal subgroup U ⊂ G with I := mnO[[G]] + I(U) ⊂ RadG. It suffices to show that the powers
of I are open. First of all, we note that a finitely generated ideal in a compact ring is closed, thus the notions ‘topologically
finitely generated’ and ‘finitely generated’ coincide for ideals in O[[G]]. The ring O is compact in its m-adic topology. Hence
m/m2 ⊂ O/m2 is finite and the topological Nakayama lemma (5.2.18) (for G = 1) implies that m and hence also mn is finitely
generated. If G is topologically finitely generated, then so is U and therefore I(U) is a finitely generated ideal in O[[G]]. We
conclude that I and all its powers are finitely generated, in particular, they are closed ideals in O[[G]]. It therefore remains to
show that Im has finite index in O[[G]] for all m. To begin with, the ring O[[G]]/I is finite. Furthermore, for all m, the ideal Im

is finitely generated. Hence Im/Im+1 is finitely generated over O[[G]]/I , thus finite. The assertion follows by induction.
-p.238 l.12 (noticed by M. Witte) It is not true in a general (noncommutative) ring that any nilpotent element is contained in the
radical. Hence here is a gap in the argument which can be filled as follows. We start with the following observation: let K be a
field of characteristic p > 0 and let P be a finite p-group. Then (same argument as in the proof 1.7.4), K with trivial P -action
is the only simple left K[P ]-module. Hence the augmentation ideal in K[P ] is the only left maximal ideal and thus equal to the
radical. Since the radical of an artinian ring is nilpotent, we find a natural number n such that

∏n
i=1(xi− 1) = 0 in K[P ] for any

elements x1, . . . , xn ∈ P .
Now we return to the proof of 5.2.16 d)⇒b). Using the identity g(u − 1)g′(u′ − 1) = gg′((g′)−1ug′ − 1)(u′ − 1) and the

observation above, we conclude that the image of a(u − 1) in O/m[G/V ] is nilpotent for any a ∈ O[[G]], u ∈ U . Hence the
image of 1− a(u− 1) is unit for any a, and so u− 1 is contained in the radical of O/m[G/V ].
-p.238 l.-10 replace ‘a pro-p-group’ by ‘a finitely generated pro-p-group’
-p.241 l.16 (noticed by M. Witte) replace ‘generated’ by ‘presented’
-p.242 l.-9 replace ‘[15], chap.VIII, §3, no.8’ by ‘[15], chap.VII, §3, no.8’
-p.245 l.-10 (noticed by O. Venjakob) replace ‘polynomial’ by ‘Weierstraß polynomial’
-p.248 l.7 (noticed by S. Schmidt) 5.3.14 (v) is only true if M is a Λ-torsion module.
-p.251 l.3 (noticed by S. Schmidt) replace ‘n ≥ λ(λ−1)

2 ’ by ‘n > λ(λ−1)
2 ’ (this correction is necessary if p = 2).

-p.251 l.10 (noticed by D. Vogel) replace ‘n0’ by ‘n1’ (2x) and insert ‘where n1 > max(n0,
1
2λ(λ− 1))’.
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-p. 251, l.-12 (noticed by A. Leesch) one should not use T as the variable of the characteristic polynomial of the endomorphism T :
replace ‘Tλ’ by ‘Xλ’
-p.251 l.-8ff (noticed by S. Schmidt) To include the case p = 2, the proof of (the corrected version of) (5.3.18) should read:

. . . . Therefore γp
m

= 1 on M ⊗Zp
Fp for m ≥ λ(λ−1)

2 . Now let n > λ(λ−1)
2 and let A ∈ M(λ × λ,Zp) be the matrix

corresponding to the action of γ on M with respect to some basis. Then

Ap
n−1

≡ I mod p

and so
Ap

n

≡ I mod p2,

where I denotes the unit matrix. It follows that

Ap
n(p−1) + · · ·+Ap

n

+ I ≡ pI mod p2,

-p.267 l.7. ‘From (5.4.9)(iii) . . . ’ This is somewhat unlucky since we have already used this reference in order to justify Definition
(5.5.1). According to (5.5.1) the exactness of the sequence in line 9 is trivial.
-p.267 l.16 (shorter argument, noticed by D. Vogel) The exact sequence in line 15 shows pdDM ≤ 1 and therefore DM has no
nontrivial finite Λ-submodules by (5.3.19).
-p.268 l.14ff (noticed by S. Schmidt) These lines can be deleted, since the equivalence of (b) and (c) in (5.5.3)(iv) follows from
(5.3.19)(i).
-p.291 l.-3ff (noticed by N. Naumann) The map ℘ := F − id is not given explicitly as written here (addition in Wn is not

component-wise). Furthermore, one needs the assumption that R is an integral domain in order to conclude that Wn(Fp) ∼=
Z/pnZ is the kernel of ℘ : Wn(R)→Wn(R).
-p.292 l.7 (noticed by N. Naumann) The surjectivity of ℘ : Wn(K̄) → Wn(K̄) in the sequence (∗) is obvious only in the case
n = 1. For n > 1 one can argue by induction using the exact diagram

0 // Wn(K̄)
V //

℘
����

Wn+1(K̄) //

℘

��

W1(K̄) //

℘
����

0

0 // Wn(K̄)
V // Wn+1(K̄) // W1(K̄) // 0.

-p.295 l.2 replace ‘of ϕ the’ by ‘of ϕ to the’ (noticed by D. Vogel)
-p.303 (noticed by Y. T. Lam): theorem (6.3.8) and its proof are incorrect. A correct formulation is the following:
(6.3.8) Theorem. For every Galois extension L|K and every n ≥ 1 there exists a natural injective map

BSn(L|K) ↪→ Br(L|K)

whose image is the set of classes in Br(L|K) which are represented by a central simple algebra of dimension n2 over K. If
[L : K] is finite and divides n, then the above map is bijective.
Proof: The exact sequence of G(L|K)-groups

1 −→ L× −→ GLn(L) −→ PGLn(L) −→ 1

induces a map (see I §3 ex.8)
δ : BSn(L|K) ∼= H1(G(L|K),PGLn(L)) −→ H2(G(L|K), L×).

A K-algebra A is central simple of dimension n2 and splits over L if and only if A ⊗K L ∼= Mn(L). Since AutL(Mn(L)) =
PGLn(L), the same arguments as in the case of Brauer-Severi varieties show that the set CSAn(L|K) of K-isomorphism classes
of such algebras is naturally isomorphic to H1(G(L|K),PGLn(L)). Thus we obtain a diagram

H1(G(L|K),PGLn(L))
δ−→ H2(G(L|K), L×)yo yo

CSAn(L|K)
can−→ Br(L|K),

where the map can sends a central simple algebra to its similarity class in Br(L|K). Two similar central simple algebras of the
same dimension are isomorphic and therefore can is injective. The statement of the theorem now follows from the fact (see [94],
V §30) that the above diagram commutes. Finally, if n = m · [L : K], then the class in H2(G(L|K), L×) of a 2-cocycle α is
represented by the algebra C(L,G(L|K), α)⊗K Mm(K).
-p.306 l.-6 (noticed by D. Vogel) replace ‘Hn(K,µ⊗nN )’ by ‘Hn(F, µ⊗nN )’
-p.307 l.1 replace ‘Xn’ by ‘XN ’.
-p.307 l.9,10 (noticed by Z. Chen) add the subscript ‘Fi’ to ‘(1− ai, ai)’ and ‘(1− ai, aNi )’
-p.359 l.-2 (noticed by Z. Chen) replace ‘K’ by ‘F ’.
-p.307 l.-7 In the meantime a proof of the Milnor conjecture has been published by V. Voevodsky, see [V1], [V2].
-p.310 l.5 (noticed by J. Stix) replace ‘number’ by ‘integer’.
-p. 316, l. 2 (noticed by L. Wan) replace ‘algebraic’ by ‘separable’.
-p.317 l.1 replace ‘K’ by ‘k(t1, . . . , tn)’.
-p.317 l.-12 (noticed by J.-L. Colliot-Thélène) In fact, this is known: Qp is not Ci for any i, see [AK] (see also the review of D.
Coray in mathscinet). In contrast, notice that the fields Fp((X)) are C2, see [54], Cor. 4.9.
-p.317 l.-6 In the meantime a proof of the Milnor conjecture has been published by V. Voevodsky, see [V1], [V2].
-p.319, l.-6 (noticed by A. Leesch) replace ‘0’ by ‘1’
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-p.323 l.12 (noticed by J. Stix) insert: ‘assume that the order of tors(A) is prime to char(k). If . . . ’ .
-p. 323, l.-15–-13 (noticed by T. Keller) replace these lines by
‘together with cdpΓ = 1 yields by (2.1.4)

Hi+1(k,A) ∼= Hi(Γ,H1(k̃, A)) = 0 for i ≥ 2,
hence cdp(k) ≤ 2.’
Furthermore, it would be quicker to refer to (3.3.7) in order to conclude that cdp(k) ≤ 2.
-p.329 l.10 (noticed by Rongzheng Jiao) replace ‘K×’ by ‘k×’.
-p.332 l.-8 replace ‘(7.2.12)’ by ‘(7.2.13)’ (noticed by D. Vogel)
-p.332 l.-4 (noticed by J. Stix) replace ‘δ : k×/k×m −→∼ H1(k, µm)’ by ‘−δ : k×/k×m −→∼ H1(k, µm)’.
-p.335 l.13 (noticed by M. Föhl) replace ‘H0(T0,Hom(tor(A), µ)∗’ by ‘H0(T0,Hom(tor(A), µ))∗’
-p.339 l.4 (noticed by J. Stix) replace ‘ Let V be a finitely generated Z`[G]-module’ by ‘Let V be a Z`[G]-module such that V`
and `V are finite’.
-p. 339, l. 7 (noticed by J. Stix) The proof of (i) is incorrect (A is not an Fp[G]-module). Replace the proof by the following:
Proof: We prove (ii) first. Using a filtration of V/W by Z`[G]-modules such that the subquotients are F`[G]-modules, we may
assume that V/W is an F`-module. Consider the diagram

0 // W //

`

��

V //

`

��

V/W //

`

��

0

0 // W // V // V/W // 0.

The snake lemma gives the exact sequence
0 −→ `W −→ `V −→ V/W −→W` −→ V` −→ V/W −→ 0,

and hence the result. Assertion (i) follows by applying (ii) to V = A, W = 0.
-p.341, proof of (3.7.4) (noticed by L. Yongqi). Delete the sentence starting in line -15 and then argue as follows: Let
H = H(`′) × H` be a cyclic subgroup of G where H` is the `-Sylow subgroup of H . Let M be a simple F`[H]-module.
By (1.7.4), MH` 6= 0. Since MH` is also an H-module, we obtain M = MH` , hence an isomorphism of F`[H]-modules

IndH
(`′)

H ResH
H(`′)M ∼= M ⊗Z F`[H`]. Therefore the class of IndH

(`′)

H ResH
H(`′)M in K ′0(F`[H]) is n[M ], where #H` = `n, and

so the images of K ′0(F`[H])⊗Q and K ′0(F`[H(`′)])⊗Q under Ind⊗Q in K ′0(F`[G])⊗Q are the same.
-p.342 l.10 (noticed by T. Schmidt) replace ‘||b||k′ = ||b||[k

′:k]
k = ||a||k’ by ‘||a||k′ = ||a||[k

′:k]
k = ||b||k’

-p.345 l.-2 (noticed by J. Stix) Replace ‘wi` := max
{
`n
∣∣∣ [k(µ`n) : k] | i

}
’ by ‘wi` := max

{
`n
∣∣∣ exp

(
G(k(µ`n)|k)

)
| i
}

,
where exp(G) denotes the exponent of a finite group G’.
If k(µ`∞)/k is pro-cyclic (the contrary can only happen if k is a dyadic number field, i.e. a finite extension of Q2 and ` = 2),
then obviously wi` = max

{
`n
∣∣∣ [k(µ`n) : k] | i

}
.

-p.346 l.15 (in the remark) replace ‘ · · · ∼= H2−i(Gk,Q`/Z`(1− i))∨ ∼= · · · ’ by ‘ · · · ∼= H2−j(Gk,Q`/Z`(1− i))∨ ∼= · · · ’
-p.348 theorem (7.4.2) (noticed by O. Venjakob): Part (ii) of this theorem is incorrect as it stands. The problem occurs if there
are finitely many p-power roots of unity contained in K. In this case already the elements ai are not uniquely determined. Let,
for example #µp∞(K) = p and G ∼= Zp. Let γ ∈ G be a topological generator and choose σ1 = . . . = σn+2 = γ. Then the
sequence on p.351. l.12 is not exact. The image of the first map is a principal ideal in Zp[[G]] while the kernel of the second map
is the maximal ideal, which is not a principal ideal. A correct formulation of part (ii) of th.(7.4.2) is the following
(ii) Let σ1, . . . , σn+2 be topological generators of G = G(k̄|k) and let ai ∈ Zp with σi(ζ) = ζai for all ζ ∈ µp∞(k̄), i =
1, . . . , n+ 2. Let σ̄i be the image of σi in G, i = 1, . . . , n+ 2. Then there exists an exact sequence

0 −→ Zp[[G]] −→ Zp[[G]]n+2 −→ Y −→ 0,
1 7−→ (σ̄i − ai)i,

where Y = IG /IH IG , as in V §6. If µp∞(K) = 1, then Y is a free Zp[[G]]-module of rank n+ 1.
-p.348 lemma (7.4.3) replace ‘A(K)⊗Qp’ by ‘A(K)⊗Q’ and ‘U(K)⊗Qp’ by ‘U(K)⊗Q’. Similar at several places in the
proof.
-p.351 starting from l.11 the proof of (7.4.2)(ii) must be changed to the following:

Since ai ∈ Z×p , (5.6.6) implies the exact sequence

Zp[[G ]]n+2 −→ Zp[[G ]] −→ Zp −→ 0
ei 7−→ ai(σ̄

−1
i − 1),

where {ei | i = 1, . . . , n+ 2} is a basis of Zp[[G ]]n+2. Tensoring by Zp(−1), using the isomorphism

Zp[[G ]]⊗ Zp(−1)
∼−→ Zp[[G ]]

g ⊗ 1 7−→ χcycl(g) · g
and taking G(k̄|K)-coinvariants, we obtain the exact sequence

Zp[[G]]n+2 −→ Zp[[G]] −→ (µp∞(K))∨ −→ 0
ei 7−→ (σ̄−1

i − ai),
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Since (µp∞(K)∨)U is finite for every open normal subgroup U of G, we have (µp∞(K)∨)+ = 0. Thus the last sequence implies
the exact sequence

0 −→ Zp[[G]] −→ Zp[[G]]n+2 −→ D((µp∞(K))∨) −→ 0
1 7−→ (σ̄i − ai)i,

Finally note that Y ' D(µp∞(K)∨).
-p.358 l.4 (noticed by M. Föhl) replace ‘(5.7)(ii)’ by ‘(5.7)(i)’
-p.358 l.-5 (noticed by M. Föhl) replace ‘Zp ⊕ · · · ’ by ‘Z⊕ · · · ’
-p.366 l.15 (noticed by M. Föhl) replace ‘0 for i = 1’ by ‘1 for i = 1’
-p. 373, l. 7 (noticed by L. Wan) In the middle term replace ‘corKk (c)’ by ‘corKk (c)p’.
-p.373 l.-12 (noticed by T. Schmidt) replace ‘invK’ by ‘invk’.
-p.374 l.8 (noticed by T. Schmidt) replace ‘

∑
p

χ
(
(αp,Kp|kp)

)
’ by ‘

∑
p

χp

(
(αp,Kp|kp)

)
’.

-p. 375, proof of (8.1.15) (noticed by D. Harari and G. Kings) The first part of the proof uses Čebotarev density, a result whose
proof uses global class field theory. The last argument of the proof uses the fact that (a,K|k) = 1 for a ∈ k×, also a result which
we do not have at hand at this moment. To avoid a ‘flavour of circularity’, the proof should be replaced by the following:
Proof: We start by showing that invK|k : H2(G, IK) → 1

[K:k] Z/Z is surjective. We first assume that [K : k] is a prime
power, say pn. Let K ′ be the unique extension of degree p inside K|k. If all primes of k would split in K ′, then the norm
map NK′|k : IK′ → Ik would be surjective, and so would be the norm map NK′|k : CK′ → Ck. Since this contradicts
#Ĥ0(G(K ′|k), CK′) = p, we find a prime p of k which is inert in K ′, and hence also in K. Therefore G = Gp = G(Kp|kp),
and we know that

invKp|kp : H2(Gp,K
×
p ) −→ 1

[Kp:kp] Z/Z

is bijective. We conclude that invK|k : H2(G, IK)→ 1
[K:k] Z/Z is surjective if [K : k] is a prime power. The general case now

easily follows from (8.1.10).
Since G is cyclic, H3(G,K×) = H1(G,K×) = 0. Moreover, H1(G,CK) = 0, and so the exact sequence 0 → K× →

IK → CK → 0 yields the exact sequence
0 −→ H2(G,K×) −→ H2(G, IK) −→ H2(G,CK) −→ 0;

in particular, the mapH2(G,K×)→ H2(G, IK) is injective and, by (8.1.1), its cokernel has order #H2(G,CK) = #Ĥ0(G,CK)
= [K : k].

It remains to show that inv is trivial on the image of H2(G,K×). We prove this without the assumption of K|k being
cyclic. So let α ∈ Br(k) be arbitrary. If k is a function field, then, by (8.1.14) and the following remark, we may assume that
α ∈ Br(K|k), where K = k(ζn) for some n prime to char(k). If k is number field, let K be a finite extension of k which is
Galois over Q and such that α ∈ Br(K|k). Then invk(α) = invK|k(α) = invK|Q(corkQα). Hence we may assume that k = Q
and, by the same argument as in the function field case, α ∈ Br(K|Q) for a cyclic subextension K of Q(ζn)|Q for some n. In
both cases, let G = G(K|k) and let χ be a generator of H1(G,Q/Z). Then δχ is a generator of H2(G,Z), and the cup-product

δχ∪ : Ĥ0(G,K×) −→ H2(G,K×)

is the periodicity isomorphism (see (1.6.12)). Hence every element of H2(G,K×) is of the form ā ∪ δχ with a ∈ k×. By
(8.1.11), we have

invK|k(ā ∪ δχ) = χ((a,K|k)).

It therefore remains to show that (a,K|k) = 1 for a ∈ k×. Hence it suffices to show that (a, k(ζn)|k)ζn = ζn, where k is
a function field and (n, char(k)) = 1 or k = Q and n arbitrary. Let k be a function field. Then, for any place p of k, we

have (a, kp)ζn = ζ
#k(p)vp(a)

n . The ‘product formula’ yields
∏

p #k(p)vp(a) = 1, hence (a, k)ζn = ζ
∏

p #k(p)vp(a)

n = ζn. The
argument in the case k = Q is similar, but the computation of the local norm residue symbols at the primes p | n is much more
involved, see, e.g., [160], VI, (5.3). This proves the theorem. �
-p.376 l.-10 (noticed by M. Föhl) replace ‘theorem’ by ‘corollary’.
-p.383 l.2 (noticed by D. Vogel): replace ‘I∞ =

∏
p∈S∞k

×
p ’ by ‘Ũ =

∏
p∈S∞ Up, where Up = R×+ if p|∞ is real and

Up = k×p = C× if p|∞ is complex’.
-p.385 l.9 The exponentiation does not make Uk = Ū × Ũ a Z̄ = Ẑ × R-module. Ū is a Ẑ-module, but the map R × Ũ → Ũ
has just the property that for any fixed ũ ∈ Ũ , the map R → Ũ , λ 7→ ũλ is a continuous homomorphism. But that is all we use
in the following.
-p.385 l.-14 (noticed by J. Stix) replace ‘εz11 · · · ε

zr−1

r−1 = 1’ by ‘ε̄z11 · · · ε̄
zr−1

r−1 = 1’.
-p.391 l.-13 replace ‘N(S) = {n ∈ N | vp(n) = 0 for all p /∈ S}’ by ‘N(S) = {n ∈ N | n ∈ O×k,S}’
-p. 392, l. -7 (noticed by L. Wan) d(α) is not always −1 as asserted, but ±1. Put f = Xp −X − a. We have d(α) = disc(f) =

(−1)p(p−1)/2Res(f, f ′) =

{
−1 if p ≡ 1 mod 4
+1 else.

-p.393 l.7 (noticed by G. Wiese) replace ‘P ∈ S’ by ‘P /∈ S’.
-p. 396, l. 15 (noticed by Martin Sigl) replace ‘is 1 or 2’ by ‘is of order 1 or 2’.
-p.397, l.8 replace ‘µp∞’ by ‘µp∞ ’
-p.399 (noticed by D. Vogel) The formulation of (8.3.13) is somewhat misleading as in the number field case every open subgroup
of CS(k) has finite index and contains DS(k).
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-p.401 l.-9 (noticed by T. Schmidt) replace ‘C̄S(L)/CS(K)’ by ‘C̄S(L)/CS(L)’
-p.401 l.-1 (noticed by T. Schmidt) replace ‘

⋂
K⊆L⊆kS

NL|KC̄L = UK,SK
×/K×’ by ‘

⋂
K⊆L⊆kS

NL|KCL = UK,SK
×/K×’.

-p.402 l.2 (noticed by M. Föhl) replace ‘strict’ by ‘strict’.
-p.402 l.7 By the results of [S], the assumptions of (8.3.17) may be weakened to Sp ⊂ S and, if p = 2, S contains no real primes.
-p.402 l.-10 By the results of [S], the statement of (8.3.18) may be sharpened in the following way. If to S2 ⊂ S then
cd2(GS(K)) =∞ if and only if S contains a real prime and cd2(GS(K)) ≤ 2 otherwise.
-p.404 end of (8.3.20) (noticed by D. Harari) O×k,S is not the closure of O×k,S in Ik,S but the closure in

∏
p∈S Gkab

p

-p.410 l.-1 replace ‘N(S) = {n ∈ N | vp(n) = 0 for all p /∈ S}’ by ‘N(S) = {n ∈ N | n ∈ O×k,S}’
-p.411 l.2 (noticed by M. Föhl) replace ‘modules which’ by ‘modules A which’.
-p.415 l.-1 (noticed by T. Schmidt) replace ‘

∏
p∈S

Ip(A)ḠP ’ by ‘
∏
p∈S

Ip(A)GP ’.

-p.416 l.-4 replace ‘category discrete’ by ‘category of discrete’
-p.418 l.-14 The argument only works if S is finite or A is finite or A is torsion-free. If S is infinite, one has to add an argument
how deduce the statement for general A from that for finite A and for torsion-free A.
-p.419 l.12 (noticed by L. Wan) The diagram is erroneous and the argument should be replaced by the following: Consider the
canonical injections ⊕

p∈S\T (k)

H1(kp, A)/H1
nr(kp, A) ↪→

⊕
p∈S\T (k)

H1(Tp, A)
diag
↪→

∏
P∈S\T (kT )

H1(TP, A),

where Tp denotes the inertia group of the local group G(k̄p|kp) for a prime p. We obtain the commutative and exact diagram

H1(G(kS |kT ), A)
∏

P∈S\T (kT )

H1(TP, A)

H1(GS , A) P 1(GS , A)

H1(GT , A) P 1(GT , A)×
∏

p∈S\T (k)

H1
nr(kp, A) = PT .

Since A is a trivial G(kS |kT )-module and since the images of the inertia groups TP, P ∈ S r T (kT ), generate G(kS |kT ) as a
normal subgroup, the upper horizontal map is injective. Thus . . .
-p.420 l.7 (noticed by M. Föhl) replace ‘VIII §6’ by ‘(8.5.2)’
-p.423 l.-12 im(ξ∨) is not closed if k is a function field and A is infinite. But this does not matter. All one needs is that im(ξ∨)
is dense in ker(ε)
-p.423 l.-3 (noticed by G. Wiese) Replace this paragraph by: ‘For finite modules we can describe this pairing explicitly. For
every finite module A ∈ ModS(GS) we consider the “new” pairing . . . ’
-p.424 l.3 Replace ‘As . . . ’ by ‘As H3(GS ,OS)(p) = 0 for every prime number p ∈ N(S) (see (8.3.10)), there is a cochain . . . ’
-p.429 l.6 replace NGS

I(µm) by lim
←− K,Norm

mIK,S .

-p.429 l.-1 (noticed by T. Schmidt) replace ‘
∏

p∈S∞

NGp
Hom(µm, IS)’ by ‘

∏
p∈S∞

NGp
Hom(µm,C×)’.

-p.430 l.-1 ff. (noticed by Ch. Kaiser): The argument must be modified in the following way: Obviously, imλ′S ⊆ (imλS)⊥.
Let x ∈ (imλS)⊥. Then, for all sufficiently large finite subsets T ⊂ S, we have πT (x) ∈ (imλT )⊥ = imλ′T . Hence

x ∈
⋂
T

π−1
T (imλ′T ) = imλ′S = imλ′S .

-p.431 l.-10 (noticed by T. Schmidt) replace ‘using (8.6.13)(i)’ by ‘using (8.6.8) and (8.6.3)’.
-p.432 l.5 (noticed by M. Föhl) in the index of the sum replace ‘i− 1 by ‘i=1’.
-p.432 l.14 (noticed by M. Föhl) replace ‘χ(G,µp)’ by ‘χ(GS , µp)’.

-p.432 l.10 (noticed by T. Schmidt) replace ‘p
Θ

(
2∑

i=0
(−1)i[Hi(GS ,M)]

)
’ by ‘p

Θ

(
2∑

i=0
(−1)i[Hi(G(kS |K),M)]

)
’.

-p.433 l.12ff (noticed by M. Föhl) in the diagram on the middle of the page replace ‘λ3’ by ‘λ3’ (twice).
-p.433 l.-12 replace (8.6.13)(ii) by (8.6.13)(i)
-p.437 l.7 (noticed by T. Schmidt) replace

‘H0(Ḡ, Ind
ḠP

Ḡ
A) =

⊕
σ∈Ḡ|ḠP

σH0(ḠP, A)’ by ‘H0(Ḡ, Ind
ḠP

Ḡ
A) = H0(ḠP, A)’.

-p.437 l.11 (noticed by T. Schmidt) replace ‘−
∑
P|p

dimFp
AḠP ’ by ‘− dimFp

AḠP ’

-p.437 l.-9 replace ‘k’ by ‘k’ (noticed by D. Vogel)

-p.446 l.8 replace ‘
2∑
i=1

’ by ‘
2∑
i=0

’ (noticed by A. Matar)
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-p.450 l.-1 replace ‘N(S) = {n ∈ N | vp(n) = 0 for all p /∈ S}’ by ‘N(S) = {n ∈ N | n ∈ O×k,S}’
-p.453 Prop. (9.1.4) contains a mistake (noticed by M.Fenn). As a result, several modifications are necessary. In particular, there
is also a ‘special case’ for function fields:
— p.452 l.16 add: ‘or k is a function field of characteristic `, ` ≡ −1 mod 2r and F`(µ2r ) ∩ k = F`’
— p.452 l.-7 add: ‘If k is a number field, δ(S) = 1 and T is ...’
— p.452 l.-2 add: ‘If k is a function field, δ(S) = 1 and δ(T ) < 1/[k(µ2r ) : k], then the special case does not occur.’
— p.453 l.4 add: ‘or p = 2, m ≥ 2, char(k) = ` ≡ −1 mod 2m and F`(µ2m) ∩ k = F`.’
— p.453 l.7 remove: ‘or char(k) 6= 0’
— p.453 l.9 remove: ‘If p is odd,’
— p.453 l.10 remove: ‘and if p = 2, then α = ±(1 + 2su), 2 - u, s ≥ 2, since 〈σ〉 is cyclic.’
— p.454 l.6 replace ‘ 2v′ ’ by ‘ 2m−1v′ ’
— p.454 l.-13 add: ‘Now let p = 2, m ≥ 2 and char(k) = ` 6= 0. Then

Ĥi(G(k(µ2m)|k), µ2m) = Ĥi(G(F`(µ2m)|k ∩ F`(µ2m)), µ2m)

and this group is non-zero (and then equal to µ2) if and only if `[F`(µ2m )∩k:F`] ≡ −1 mod 2m. Indeed, G := G(F`(µ2m)|k ∩
F`(µ2m)) = 〈σ〉 ∼= Z/2m−sZ, 1 ≤ s ≤ m, is cyclic. Write ζσ = ζα, α ∈ Z×2 , then

α = −1 or α = ±(1 + 2su), 2 - u, s ≥ 2 .

It follows that

NG(ζ) =

 ζ2m−sv , if α = 1 + 2su ,

ζ2m−1v′ , if α = −(1 + 2su) ,
1 , if α = −1 ,

with 2 - vv′, and (µ2m)G =

 µ2s , if α = 1 + 2su ,
µ2 , if α = −(1 + 2su) ,
µ2 , if α = −1 .

Hence Ĥ0(G,µ2m) is trivial in the first two cases (and then all cohomology groups are trivial) and equal to µ2 if α = −1. This
is equivalent to the statement `[F`(µ2m )∩k:F`] ≡ −1 mod 2m resp. ` ≡ −1 mod 2m and F`(µ2m) ∩ k = F`.
— p.455 l.-11 and p.456 l.5 add: ‘or k is a function field of characteristic `, p = 2, r ≥ 2 and ` ≡ −1 mod 2r, F`(µ2r )∩k = F`’
— p.456 l.8 Replace ‘If T is finite’ by ‘If k is a number field, δ(S) = 1 and δ(T ) < 1

2 ’
— p.456 l.11 (typographical) replace ‘does’ by ‘do’
— p.456 l.13 add: ‘If k is a function field and S is the set of all primes, then k(µ2r )|k is cyclic and there exists a prime p not

contained in T such that G(k(µ2r )|k) ∼= G(kp(µ2r )|kp).’
— p.457 l.-2 and p.461 l.-12 add: ‘except k is a number field and we are in the special case (k,m, T )’
-p.458 l.6 Obviously, one can weaken the assumption of (9.1.8)(i) by replacing ‘pr|#A’ by ‘pr|exp(A).
-p.459 l.8 replace ‘Assume ζs ∈ k but ζs+1 /∈ k.’ by ‘Assume ηs ∈ k but ηs+1 /∈ k.’
-p.460 l.-1 (noticed by D. Vogel): in (9.2.2)(vi) replace ‘ cs(k(A′)|k) ⊂∼ S ’ by ‘ δ(S) = 1 ’
-p.461 l.-15 ff There is some logical confusion in the formulation of corollary (9.2.3). Add as a second sentence: ‘Assume we
are not in the special case (k, exp(A), T ).’ and remove the ’except . . . ’ from the last sentence.
-p.461 l.-11 Replace ’The above statement can be formulated as follows:’ by ‘We show the following stronger statement:’
-p.463, l.5 replace ‘(9.2.3)’ by ‘(9.2.2)’
-p.463 l.12 ff This should be formulated in a more defensive way (see below)
-p.463 l.-8 and -p.464 l.1 (noticed by G. Wiese) In the theorems (9.3.2) and (9.3.3) the assumption that P1, . . . ,Pr have
pairwise different restrictions to the fixed field Z of H is missing. (This assumption is used in the first paragraph of the proof. It
is obviously fulfilled, if they have pairwise different restrictions to k.) If this assumption is not true, then H is the free product of
the decomposition groups of any maximal subset of {P1, . . . ,Pr} which has pairwise different restrictions to Z. This does not
occur if r = 2, but for r ≥ 3 this actually occurs: Let us consider the case r = 2 first. Let Z1 and Z2 be the decomposition fields
of P1 and P2 in kM(p) and Z = Z1 ∩Z2. If P1 ∩Z 6= P2 ∩Z, then the proof of (9.3.3) shows that H is the free product of G1

and G2. If the restrictions to Z are equal, then G1 and G2 are conjugated in H and therefore (say) G1 generates H as a normal
subgroup. Since we are dealing with pro-p-groups, we conclude thatH = G1 = G2 and Z = Z1 = Z2. But P1∩Z1 = P2∩Z2

has exactly one extension to kM(p), which shows P1 = P2 in contrast to our assumption.
Now take any element in σ ∈ H = G1 ∗ G2 not contained in G1 and put P3 = σP1. We immediately see that G3 is

contained in H and is conjugated to G1. This gives the generic counterexample.
Now let P1, . . . ,Pr be arbitrary and, after renumbering, assume that for an s ≤ r the set {P1, . . . ,Ps} is a maximal subset

with pairwise different restrictions to the fixed field Z of H =< G1, . . . , Gr >. Then G1, . . . , Gs generated H as a normal
subgroup, hence they generate H . Therefore H is the free product of G1, . . . , Gs and each Gi, s < i ≤ r is conjugated to one of
the G1, . . . , Gs.
-p.466 l.13 Add: ‘E(G) is called finite if E is.’
-p.467 l.4 and l.9 (noticed by F. Löwner) replace ‘tr’ by ‘tg’
-p.468, l.-8 (noticed by L. Wan) replace ‘ψ′(σ)ψ−1(σ)’ by ‘ψ′(σ)ψ(σ)−1’
-p.471 l.4 (noticed by G. Wiese) Replace ‘Every embedding’ by ‘Every finite embedding’.
-p.471 l.6 replace ‘Let an embedding’ by ‘Let a finite embedding’.
-p.475 l.10 replace ‘Then by (9.2.2)(ii)’ by ‘If p 6= char(k), then by (9.2.2)(ii)’; add in line 13: ‘If p = char(k), then the same is
true by the strong approximation theorem using (8.3.2) and (6.1.2).’
-p.475 l.-12 replace ‘N ∼= Z/pmZ’ by ‘N ∼= (Z/pZ)m’.
-p.476 l.17 For those who need a slightly more refined statement: The proof of theorem (9.5.1) shows that we can choose K in
such a way that finitely many given primes split completely in K.
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-p.489 l.9 replace ‘y ∈ H1(kS |K,µp)’ by ‘ 1
2y ∈ H

1(kS |K,µp)’.
-p.496 l.-12 (noticed by T. Keller) replace ‘v’ by ‘ν’ (twice)
-p.496 l.-8 this is not true, condition (i) might be affected. There are many ways to overcome this calamity, for one possibility,
see the proof in the second edition of our book.
-p.514 l.4 (noticed by T. Keller) replace ‘chap.IV, §4’ by ‘chap.IV, §2’.
-p.517 l.4 (noticed by T. Keller) replace ‘i ∈ Z’ by ‘i > 0’.
-p.517 l.18 (noticed by M. Föhl) replace ‘VII §6’ by ‘VII §5’.
-p.518 l.10ff We find a complete local ring A with residue field k and algebraically closed quotient field K of characteristic 0
but, of course, not a dvr. Therefore the following should be modified as follows. Let A be a complete dvr with residue field k
and quotient field K of characteristic 0 (e.g., the ring of Witt vectors over k). Then replace XK by XK̄ in in the definition of sp
and in (10.1.4), where K̄ is an algebraic closure of K.
-p.525 l.1 (noticed by T. Keller) replace ‘G∅(Kk̄)’ by ‘G∅(Kk̄)(p)’ (twice).
-p.528 l.14. replace ‘§6’ by ‘§7’ , replace ’Later in chapter XII’ by ’In §9’ (noticed by D. Vogel)
-p.530 l.-5. Remove the sentence starting with "Since .." and replace (3.3.4) by (3.3.8) in the next sentence.
-p.534 l.-1. Replace ‘U1

K’ by ‘U1
k ’.

-p.536 l.15. There is of course another possibility: K might be a cubic field which is not totally real.
-p.548 l.-8 (noticed by S. Schmidt) replace ‘surjectivity’ by ‘injectivity’ and in the next line ‘�’ by ‘←↩’.
-p.549 l.8 (noticed by S. Schmidt) replace ‘be’ by ‘be a’ (twice).
-p.550 l.15 Replace ‘finite’ by ‘finitely generated’
-p.550 l.-10 See [S] for an extension of the results of §4 to the case that p = 2 and S does not necessarily contain all infinite
primes.
-p.551 l. -11 (noticed by J. Bartels) replace ‘i ≥ 1’ by ‘i ≥ 2’
-p.552 l.-16 Replace ‘finite field’ by ‘finite number field’
-p.553 l.10 replace ‘exact sequence’ by ‘inclusion’ and the sequence in l.11 by

pH
2(G(L|K ′),O×L,S) ↪→ p

(∏
p∈S

H2(K ′p, µp∞)

)
-p.554 l.3 replace ‘is a finite torsion group’ by ‘and ClS(K ′) is a torsion group’
-p.555 l.8 remove the second and the third ‘be’.
-p.556 l.1 Riemann’s existence theorem is also true, if we only assume that S ⊃ T ⊃ Sp, see [S]. (This is a nontrivial statement
only for p = 2.)
-p.556 l.2 remove the second and third ‘be’
-p.557 l.10 It might be helpful to notice at this point that kT (p) contains the cyclotomic Zp-extension of k.
-p.570 l.-4 remove ‘(observe that Sp 6⊆ S0)’
-p.573 l.9 In definition (10.7.3) replace ‘every subset’ by ‘a subset’
-p.579 l.-11 remove the second ‘be’
-p.579 l.-10 remove the word ‘be’
-p.581 l.6 (noticed by G. Wiese) replace ‘H−1’ by ‘Ĥ−1’
-p.581 l.9 (noticed by O. Thomas) replace ‘U×P ’ by ‘UP’
-p.586 l.13 replace ‘GS(K)’ by ‘GS(k)’
-p.586 l.14 replace ‘GS(K)’ by ‘GS(k)’
-p.588 1st footnote l.1 (noticed by D. Vogel) replace ‘originally’ by ‘original’
-p.592 l.12 (noticed by M. Föhl) replace ‘max{g − 1, 0})’ by ‘max(g − 1, 0)’.
-p.597 l.-10 (noticed by S. Schmidt) replace ‘this’ by ‘these’.
-p.601 l.9 (noticed by D. Vogel) replace the exact sequence by the following:

Tn/[Tn, G(H|kn)]→ G(H|kn)ab → G(Hn|kn)→ 0.
-p.601 l.-13ff (noticed by S. Schmidt) These lines are confusing and should be replaced by: ‘where τi ∈ TPi

(H|kn), i =
1, . . . , s∞, lifts the generator γp

n ∈ Γn, where γ is a chosen generator of Γ ’.
-p.607 l.-6 One should note that (5.6.11) does not apply directly but in an obvious manner.
-p.613 l.15–16 (noticed by S. Schmidt) remove ‘P (X)’ and replace ‘supp(X)’ by ‘supp(torΛX)’.
-p.626 l. -13ff: -l.-13,-12 replace these lines by: Let K|k be a finite Galois extension of degree prime to p with Galois group ∆
and assume that k is totally imaginary if p = 2. Let K∞ be the cyclotomic Zp-extension of K. Then
-l.-8,-7 replace in both lines ‘Λ[∆]r2+r1 ’ by ‘Λ[∆]r1+2r2 ’. (noticed by S. Schmidt)
-l.-6 Add (before XΣ): Assume in addition that K = k(µp). Then
-p.627 l.17 (noticed by S. Schmidt) add ‘if multiplication by 2 is an isomorphism on A’.
-p.629 l.2ff replace this paragraph by
‘It is easy to see that the map ϕ2 is given explicitly by

ϕ2 : M −→ ClΣ(k∞)(p), α⊗ p−n 7−→ [a1] ∈ ClΣ(km)(p),

where α ∈ k×m and αOkm = ap
n

1 a2 with an ideal a2 having only prime divisors in Sp(km). Since all primes dividing p have an
infinite ramification index in k∞|k, we see that, for sufficiently large s, αOkm+s

= ap
n

for some ideal a in km+s. We define ϕ1

by sending α⊗ p−n to the class [ a ] ∈ Cl(k∞)(p). The map ϕ2 is the composition of ϕ1 with the natural projection Cl(k∞)(p)
to ClΣ(k∞)(p).’
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-p.634 l.-8ff (noticed by R. Sharifi) replace
⊕

p prime of k+∞
p-p

Ind
GP

G IGP
by

⊕
p prime of k+∞

p-p, p splits in k∞

Ind
GP

G IGP

–p.634 l.-7 replace
⊕

p∈S(k+∞)

µp⊆k+∞,p

Ind
GP

G IGP
by

⊕
p∈S(k+∞)

p splits in k∞

Ind
GP

G IGP

–p.635 l.-6 replace
⊕

p prime of k+∞
p-p

IGP
by

⊕
p prime of k+∞

p-p, p splits in k∞

IGP

–p.635 l.-3 replace
⊕

P∈Sp(K+
∞)

µp⊆K+
∞,p

Qp by
⊕

p∈Sp(k+∞)

p splits in k∞

⊕
P|p

Qp

–p.635 l.-2 replace λ−nr(k) = λ−cs(k) + #{p ∈ Sp(k
+
∞) | µp ⊆ k+∞,p} by λ−nr(k) = λ−cs(k) + #{p ∈ Sp(k

+
∞) | p splits in k∞}

–p.636 l.5 replace
∑

p prime of k+∞
P-p

∑
P|p

(eP − 1) by
∑

p prime of k+∞
p-p, p splits in k∞

∑
P|p

(eP − 1)

–p.636 l.7 replace
∑

p∈S(k+∞)

µp⊆k+∞,p

∑
P|p(eP − 1) by

∑
p∈S(k+∞)

p splits in k∞

∑
P|p(nP − 1),

where nP is the local degree of K+
∞|k+

∞ with respect to a prime P of K+
∞.

-p.641 in the diagram above proposition (11.5.2) replace k̃(p) by k̃
-p.649 l.-5 (noticed by D. Vogel) replace ‘Cassou-Nougués’ by ‘Cassou-Noguès’
-p.657 l.3 (noticed by O. Venjakob) replace ‘µ(X)’ by ‘µχ’ .
-p.658 l.4-5 (noticed by O. Venjakob) replace these lines by:
L(0, ωi) for i = 1, 3, . . . , p− 4. Finally the congruence

L(0, ωi) ≡ −Bi+1

i+ 1
mod p

-p. 668, l. -2,-1 (noticed by Martin Sigl) replace ‘group’ by ‘set’ (twice)

Remarks on the bibliography

[6] replace ‘Artin, M.’ by ‘Artin, E.’ (noticed by S. Böge)
[35] the correct title is ‘The group of the maximal p-extension of a local field’ (in Russian)
[45] replace ‘FESENKOV’ by ‘FESENKO’ (noticed by I. Fesenko)
[51] remove the point after ‘Nauk’
[52] the correct title is: Infinitude of the number of relations in the Galois group of the maximal p-extension of a local field with

restricted ramification (noticed by M. Fenn)
[54] replace ‘of’ by ‘on’
[61] replace ‘Revètements Étales et Groupe de Fondamental’ by ‘Revêtements Étales et Groupe Fondamental’ (noticed by M.

Föhl)
[90] replace ‘71–79’ by ‘71–98’ (noticed by T. Keller)
[94] replace ‘Viehweg’ by ‘Vieweg’ (noticed by D. Vogel)

[122] replace ‘(1986)’ by ‘(1984)’ (noticed by D. Vogel)
[128] replace ‘carieties’ by ‘varieties’
[133] has appeared in Invent. math. 138 (1999) 319–423
[140] the correct reference is: Freie Produkte pro-endlicher Gruppen und ihre Kohomologie. Archiv der Math. 22 (1971) 337–

357
[173] the page numbers 295–319 have to be added (noticed by D. Vogel)
[178] has appeared in J. reine angew. Math. 517 (1999) 145–160
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