Übungen zur Algebraischen Zahlentheorie I

Wintersemester 2010/11

Universität Heidelberg Mathematisches Institut Prof. A. Schmidt Dr. A. Holschbach

Blatt 5

Abgabetermin: Mittwoch, 17.11.2010, 16.15 Uhr

Aufgabe 1. Sind die algebraischen Zahlen $\frac{3+2\sqrt{6}}{2-\sqrt{6}}$ und $\frac{1+\sqrt[3]{10}+\sqrt[3]{10}^2}{3}$ ganz über \mathbb{Z} ?

Aufgabe 2. Zeigen Sie, dass $\{1, \sqrt[3]{2}, \sqrt[3]{2}\}$ eine Ganzheitsbasis von $K := \mathbb{Q}(\sqrt[3]{2})$ ist, und bestimmen Sie die Diskriminante d_K von K.

Aufgabe 3. Sei K ein Zahlkörper, und sei $\alpha_1, \ldots, \alpha_n$ eine in \mathcal{O}_K gelegene Basis von K über \mathbb{Q} . Zeigen Sie: $d(\alpha_1, \ldots, \alpha_n)$ und d_K unterscheiden sich multiplikativ um ein Quadrat; ist $d(\alpha_1, \ldots, \alpha_n)$ quadratfrei, so bilden $\alpha_1, \ldots, \alpha_n$ eine Ganzheitsbasis von \mathcal{O}_K .

Aufgabe 4. Sei K ein quadratischer Zahlkörper mit Diskriminante d_K und $p \neq 2$ eine Primzahl. Zeigen Sie: $(p) := p\mathcal{O}_K$ ist genau dann ein Primideal in \mathcal{O}_K , wenn $\left(\frac{d_K}{p}\right) = -1$ gilt.

Zusatzaufgabe: Zeigen Sie, dass die Diskriminante d_K eines Zahlkörpers K stets kongruent 0 oder 1 modulo 4 ist.

Hinweis: Sei $\alpha_1, \ldots, \alpha_n$ eine Ganzheitsbasis von \mathcal{O}_K über \mathbb{Z} . Man schreibe mit der Leibnizformel

$$\det(\sigma_i(\alpha_j)_{i,j=1,\dots,n}) = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \prod_{i=1}^n \sigma_i \alpha_{\tau(i)} = P - N$$

mit
$$P = \sum_{\tau \in A_n} \prod_{i=1}^n \sigma_i \alpha_{\tau(i)}$$
 und $N = \sum_{\tau \in S_n \setminus A_n} \prod_{i=1}^n \sigma_i \alpha_{\tau(i)}$

und zeige, dass P+N sowie PN in $\mathbb Q$ liegen und ganze Zahlen sind. Mit $d_K=(P-N)^2=(P+N)^2-4PN$ erhält man dann die Aussage.