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These notes are aimed at providing a not too technical introduction to both the back-
ground from classical Iwasawa theory for, as well as a detailed discussion of, the principal
result (see Theorem 5.1) of Mahesh Kakde’s fundamental paper [12] proving, subject to
the Iwasawa conjecture, the non-commutative main conjecture for totally real p-adic Lie
extensions of a number field. Kakde’s work is the beautiful development of ideas initiated
by Kazuya Kato in his important paper [14]. The material covered roughly corresponds
to the oral lectures given by one of us at the Workshop. We have not attempted here to
discuss the detailed methods of proof used either by Kakde in his paper, or by Ritter and
Weiss in their important related work [13], leaving all of this to the written material of
the subsequent lecturers at the Workshop. We would also like to particularly thank R.
Greenberg and K. Ardakov for some very helpful comments which have been included in
the present manuscript. In particular, we are very grateful to Greenberg for providing us
with a detailed explanation of his observation (Theorem 4.6) that Wiles’ work (Theorems
4.4 and 4.5) on the abelian main conjecture for totally real number fields, can be extended
to include the case of abelian characters, whose order is divisible by p.

1 Notation

Throughout, F will denote a totally real finite extension of Q, and p an odd prime. As
always µpn , with 1 ≤ n ≤ ∞, is the group of all pn-th roots of unity. Write F cyc for the
unique Zp-extension of F contained in F (µp∞), and put Γ = Gal(F cyc/F ) so that Γ ' Zp.

Let Σ be a fixed finite set of finite primes of F which contains all the primes dividing
p, and write FΣ for the maximal extension of F , which is unramified outside the primes
in Σ and the infinite primes of F . If L is any extension of F contained in FΣ, put
GΣ(L) = Gal(FΣ/L). Also, define M(L) to be the maximal abelian p-extension of L
contained in FΣ, and put

X(L) = Gal(M(L)/L).
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Assume now that L is Galois over F , so that M(L) is also Galois over F . There is a
natural left action of Gal(L/F ) on X(L) defined by g · x = g̃xg̃−1, where g̃ denotes any
lifting of g in Gal(L/F ) to Gal(M(L)/F ). As usual, this left action extends to a left
action of the Iwasawa algebra Λ(Gal(L/F )), which is defined by

Λ(Gal(L/F )) = lim
←−
U

Zp[Gal(L/F )/U ],

where U runs over the open normal subgroups of Gal(L/F ). Also, if W is any abelian
group, W (p) will denote the p-primary subgroup of W .

A Galois extension F∞ of F is defined to be an admissible p-adic Lie extension of F if (i)
F∞ is totally real, (ii) the Galois group of F∞ over F is a p-adic Lie group, (iii) F∞/F is
unramified outside a finite set of primes of F , and (iv) F∞ contains F cyc. Given such an
admissible p-adic Lie extension, we shall always put

G = Gal(F∞/F ), H = Gal(F∞/F
cyc), Γ = Gal(F cyc/F ),

and take Σ to be a finite set of primes of F containing all primes which are ramified in
F∞/F . If I denotes the ring of integers of some finite extension of Qp, it will also be
convenient to write I[[Γ]] for the Iwasawa algebra of Γ with coefficients in I. Fixing a
topological generator γ of Γ, we can, as usual, identify I[[Γ]] with the ring I[[T ]] of formal
power series in an indeterminate T with coefficients in I, by mapping γ to 1 +T . Finally,
we shall write A(G) for the set of Artin representations of G, and LS(ρ, s) for the complex
Artin L-function, with the Euler factors for the primes in Σ removed, of each ρ in A(G).

2 Iwasawa’s work on the cyclotomic theory

.
We use the above notation, and we stress that the base field F is always assumed to

be totally real. In his fundamental paper [1], Iwasawa proved the following basic result
which is the starting point for the whole theory.

Theorem 2.1. For all totally real number fields F , X(F cyc) is a finitely generated and
torsion Λ(Γ)-module, which has no non-zero finite Λ(Γ)-submodule. Moreover, we have

(1) H2(GΣ(F cyc),Qp/Zp) = 0.

Recall that one form of Leopoldt’s conjecture, which remains unproven, is the assertion
that F cyc is the unique Zp-extension of F . The above theorem is established by noting
that X(F cyc) being Λ(Γ)-torsion is seen, by using the full force of global class field theory,
to be equivalent to the assertion that the defect in the Leopoldt conjecture (i.e. the
difference between the Z-rank of the unit group and the Zp-rank of its closure, in the p-
adic topology, in the product of the local unit groups at the primes above p) is bounded as
one mounts the finite layers of the Zp-extension F cyc/F . This boundedness of the defect
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of Leopoldt is then, in turn, shown to be implied by the boundedness of capitulation of
ideal classes in the extension F cyc/F . Finally, Iwasawa gives an ingenious proof of the
boundedness of this capitulation. The vanishing statement (1) is then a consequence of
an Euler characteristic argument which shows that, in the case of a totally real base field
F , the Pontrjagin duals of the two modules H i(GΣ(F cyc),Qp/Zp)(i = 1, 2) have the same
Λ(Γ)-rank.

In addition, a celebrated conjecture of Iwasawa will play an important role in the non-
abelian theory developed later. By the structure theory, a finitely generated Λ(Γ)-module
W is Λ(Γ)-torsion if and only if W/W (p) is a finitely generated Zp-module. Moreover,
W (p) is finite if and only if its Iwasawa µ-invariant is zero.

Conjecture A: For totally real F , X(F cyc) is a finitely generated Zp-module.

Note that, if Conjecture A is true, Theorem 2.1 shows that X(F cyc) is in fact a free
Zp-module of finite rank. The classical Iwasawa µ = 0 conjecture is the assertion that,
for every finite extension K of Q, the Galois group of the maximal unramified abelian
p-extension of Kcyc is a finitely generated Zp-module. It is well known that, by using an
argument from Kummer theory, this classical Iwasawa conjecture for the totally imaginary
field K = F (µp) implies Conjecture A for the totally real field F .

So far, Conjecture A has only been proven when F is an abelian extension of Q, where
it is a consequence of the Ferrero-Washington theorem for the cyclotomic Zp-extension of
the field F (µp), which is again an abelian extension of Q.

3 Admissible p-adic Lie extensions of F

.
The later material in this book will be concerned with an arbitrary admissible p-

adic Lie extension F∞/F , and the Λ(G) module X(F∞). We stress that this means, in
particular, that F∞ must also be totally real.

The first thing we should point out is that non-trivial examples of such admissible
p-adic Lie extensions are not easy to come by. If Conjecture A is valid for F , we can
always take F∞ to be the field M(F cyc). Moreover, it can be shown (see the Appendix)
that, assuming Conjecture A is valid for F , we can find an admissible p-adic Lie extension
of F such that (i) F∞ is not contained in M(F cyc), (ii) and G is pro-p with, only if the
Zp-rank of X(F cyc) is at least 2. Moreover, assuming that (i) Conjecture A is valid, (ii)
that G is pro-p with no element of order p, and that (iii) G has dimension at least 2 as
a p-adic Lie group, it follows from Theorem 2 below that X(F∞) 6= 0 if and only if the
Zp-rank of X(F cyc) is at least 2. Perhaps the most down to earth example of such an
admissible p-adic Lie extension F∞ with X(F∞) 6= 0 is to take F to be the maximal real
subfield of the field generated over Q by the p-th roots of unity, where p is any odd prime
such that at least two of the rational numbers

ζ(Q,−1), ζ(Q,−3), ..., ζ(Q, 4− p)
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have their numerators divisible by p (the smallest such prime is p = 157); here we take
Σ to consist of the unique prime of F above p, and ζ(Q, s) denotes the Riemann zeta
function. It is the classical main conjecture for X(F cyc) which guarantees that the Zp-
rank of X(F cyc) is at least 2 for such primes p. A much more esoteric example is given
by Ramakrishna [2], who proves the existence of infinitely many Galois extensions L∞ of
Q, which are totally real, whose Galois group J over Q, is either SL2(Z7) or the quotient
of SL2(Z7) by the subgroup generated by minus the identity −I (where I is the unit
matrix), and which are unramified outside a finite set T of primes of Q. Thus we can
take F∞ to be the compositum of L∞ and the cyclotomic Z7-extension of Q. Note that
if we define F to be the fixed field of the image in J of the group of matrices congruent
to the identity modulo 7 in SL2(Z7), then the Galois group of F∞/F will be pro-7, and
have no element of order 7. Defining Σ to be the set of primes of F lying above either 7
or the primes in T , it follows from the above remarks that, assuming that Conjecture A
is valid for F with p=7, then the Z7-rank of X(F cyc) is at least 2, and X(F∞) 6= 0.

The full analogue of Theorem 2.1 for any admissible p-adic Lie extension is proven
in the two papers [3], [7]. We say that a left Λ(G)-module W is Λ(G)-torsion if every
element of W is annihilated by a non-zero divisor in Λ(G).

Theorem 3.1. For every admissible p-adic Lie extension F∞/F , X(F∞) is a finitely
generated torsion Λ(G)-torsion module. Morevover, if G has no element of order p, then
X(F∞) has no non-zero pseudo-null submodule.

Assuming that G is both pro-p and has no element of order p, it follows from the final
assertion of Theorem 3.1 and the results of [7] that there is an exact sequence of Λ(G)-
modules

(2) 0→ X(F∞)(p)→
j=t⊕
j=1

Λ(G)/pnjΛ(G)→ D → 0,

where D is a pseudo-null Λ(G)-module. One then defines µG(X(F∞)) = n1 + · · ·+ nt. In
particular, we have X(F∞)(p) = 0 if and only if µG(X(F∞)) = 0. We shall see below that
a suitable form of Conjecture A implies a strong statement about the module X(F∞),
which shows, in particular, that µG(X(F∞)) = 0.

In our present state of knowledge, we do not know how to even formulate the main
conjecture using the result of this theorem alone (we cannot define a characteristic ele-
ment for X(F∞) assuming only that it is finitely generated and torsion over Λ(G), even
if we impose the additional hypothesis that µG(X(F∞)) = 0.). In order to overcome
this difficulty, we follow [5] and introduce the category MH(G) consisting of all finitely
generated Λ(G)-modules W such that W/W (p) is finitely generated over Λ(H), where we
recall that H = Gal(F∞/F

cyc). While it seems very reasonable to conjecture that X(F∞)
always belongs to the category MH(G), we unfortunately cannot prove this uncondition-
ally at present. Nevertheless, assuming this conjecture, the following result is proven in
the Appendix.
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Theorem 3.2. Assume that the p-adic Lie extension F∞/F is such that (i) G is pro-p
and has no element of order p, (ii) G has dimension at least 2 as a p-adic Lie group,
and (iii) X(F∞) belongs to the category MH(G). Then µG(X(F∞)) = µΓ(X(F cyc)), and
X(F∞)/X(F∞)(p) has Λ(H)-rank equal to r−1, where r is the Zp-rank of X(F cyc)/X(F cyc)(p).

Our present inability to prove that X(F∞) lies in the category MH(G) leads us to
work with a stronger conjecture in the subsequent analytic and algebraic arguments.

Iwasawa Conjecture: The admissible p-adic Lie extension F∞/F will be said to satisfy
the Iwasawa conjecture if there exists a finite extension F ′ of F in F∞ such that (i) the
Galois group of F∞ over F ′ is pro-p, and (ii) X(F ′cyc) is a finitely generated Zp-module.

We remark that, by the theorem of Ferrero-Washington, this Iwasawa conjecture is
true for all p-adic Lie extensions F∞/F such that F is an abelian extension of Q and
the Galois group G is pro-p. In particular, when F is an abelian extension of Q and
F∞ = M(F cyc), the Iwasawa conjecture is valid.

Theorem 3.3. . Assume that the p-adic Lie extension F∞/F satisfies the Iwasawa Con-
jecture. Then X(F∞) is finitely generated over Λ(H), and X(F∞)(p) = 0.

Proof. Put H ′ = Gal(F∞/F
′cyc). Then we have the exact sequence of inflation restriction

0→ H1(H ′,Qp/Zp)→ Hom(X(F ′cyc),Qp/Zp)→ Hom(X(F∞)H′ ,Qp/Zp)→ H2(H ′,Qp/Zp).

Now H i(H ′,Qp/Zp) is a cofinitely generated Zp-module for all i ≥ 0. Hence, assuming
that X(F ′cyc) is a finitely generated Zp-module, it follows that X(F∞)H′ is also a finitely
generated Zp-module. But, as H ′ is pro-p, Λ(H ′) is a local ring, and so it follows from
Nakayama’s lemma that X(F∞) is finitely generated over Λ(H ′), and so all the more so
over Λ(H). To prove the final assertion of the theorem, we note that we can find an
open subgroup H ′′ of H ′ such that H ′′ is pro-p and has no element of order p (possibly
H ′′ = 0). Since X(F∞) is also finitely generated over Λ(H ′′), a theorem of Venjakob
asserts that every Λ(G) submodule of X(F∞), which is Λ(H ′′)-torsion, is pseudo-null as
a Λ(G)-module, and so must be zero by Theorem 3.1. In particular, this shows that
X(F∞)(p) = 0.

4 The classical abelian main conjecture

In this section, we discuss the classical abelian main conjecture for an arbitrary admissible
p-adic Lie extension F∞/F which will be assumed throughout this section to satisfy the:-

Abelian Hypothesis. G = Gal(F∞/F ) is an abelian p-adic Lie group of dimension 1.

As before, S will denote the set of primes of F which ramify in F∞. We fix a lifting of
Γ = Gal(F cyc/F ) to G, which we denote by the same symbol Γ. Thus, since G is abelian,
this means that we have G = H × Γ. We define K to be the fixed field of the subgroup
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Γ of G, so that K ∩ F cyc = F , and F∞ is the compositum of K and F cyc. Let Ĥ be the
group of 1-dimensional characters of H. Write

κF : Gal(F (µp∞)/F )→ Z×p
for the cyclotomic character. As we can view Γ as a subgroup of Gal(F (µp∞)/F ), it makes
sense to consider the restriction of κF to Γ. In what follows, we then consider κF as a
character of G by defining it always to be trivial on H.

While complex L-functions can be defined in great generality via Euler products,
nothing like this seems to be true in the p-adic world, and, at present, our only way to
define p-adic L is via p-adic interpolation of essentially algebraic special values of complex
L-functions. Viewing an element χ in Ĥ as being complex valued, let LΣ(χ, s) be the
imprimitive complex L-function attached to χ, with the Euler factors corresponding to
the primes in Σ omitted from its Euler product. The following basic result is due to
Siegel.

Theorem 4.1. For each χ in Ĥ, and each even integer n > 0, LΣ(χ, 1 − n) belongs to
the field Q(χ), which is generated over Q by the values of χ.

In fact, Siegel’s proof shows that

(3) LΣ(χσ, 1− n) = LΣ(χ, 1− n)σ

for all σ in the absolute Galois group of Q, and all even integers n > 0, and even allows
us to define this value intrinsically when the character χ is no longer assumed to have
complex values. In fact, we shall assume from now on that the χ in Ĥ all have values in
the algebraic closure of Qp.

Let O be the ring of integers of the field obtained by adjoining the values of all χ in Ĥ
to Qp, and let ΛO(G) be the Iwasawa algebra of G with coefficients in O. Write QO(G)
for the ring of fractions of ΛO(G) (i.e. the localization of this ring with respect to its set
of non-zero divisors). An element µ of QO(G) is defined to be a pseudo-measure on G if
(σ − 1)µ is in ΛO(G) for all σ in G. If ψ : G → O× is any continuous homomorphism,
which is distinct from the trivial homomorphism of G, which we denote by 1, it is easily
seen that one can define the integral of ψ against µ, which we denote by∫

G

ψdµ,

and which is a well defined element of the fraction field of O. The following theorem,
which generalizes many earlier results starting with Kummer, is due to Cassou-Nogues
and Deligne-Ribet.

Theorem 4.2. Assume that F∞/F satisfies the abelian hypothesis. Then there exists a
unique pseudo-measure ζF∞/F on G = H × Γ such that, for all χ in Ĥ, we have

(4)

∫
G

χκF
ndζF∞/F = LΣ(χ, 1− n),

for all integers n > 0 with n ≡ 0 mod δ, where δ = [F (µp) : F ].
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This theorem is easily seen to imply the following assertion. For each character χ in
Ĥ, let Oχ be the ring of integers of the field obtained by adjoining the values of χ to Qp,
and let Oχ[[T]] be the ring of formal power series in an indeterminate T with coefficients
in Oχ. Fix, for the remainder of this section, a topological generator γ of Γ. Then, if
χ 6= 1, there exists a unique formal power series Wχ(T ) in Oχ[[T]] such that

Wχ(κF (γ)n − 1) = LΣ(χ, 1− n),

for all integers n > 0 with n ≡ 0 mod δ. In addition, if χ = 1, there exists a unique power
series W1(T ) in Zp[[T]] such that

W1(κ(γF )n − 1)/(κF (γ)n − 1) = ζΣ(F, 1− n),

where ζΣ(F, s) denotes the complex zeta function of F , with the Euler factors removed
at the primes in Σ. Let πχ be any fixed local parameter for the ring Oχ. We plainly can
write

(5) Wχ(T ) = πµχχ Vχ(T ),

where µχ is a non-negative integer, and Vχ(T ) is a power series in Oχ[[T]], with at least
one of its coefficients a unit in Oχ. It is conjectured that we always have µχ = 0 for

every F∞/F and every χ in Ĥ, but this has only been proven in the case F = Q by
Ferrero-Washington, and it is unknown for every other totally real base field other than
Q.

The aim of the abelian main conjecture is to give a precise relation between the ana-
lytic pseudo-measure ζF∞/F on the one hand, and the algebraic structure of the arithmetic
ΛO(G)-module X(F∞) on the other hand. However, the exact formulation of this rela-
tionship is not straightforward from a classical point of view, because there is no known
structure theory for finitely generated torsion ΛO(G)-modules when p divides the order
of H. For each χ in Ĥ, let

eχ = #(H)−1
∑
h∈H

χ(h)h−1

be the orthogonal idempotent of χ in the group ring of H with coefficients in the field of
fractions L of Oχ. The simplest thing to do is to simply consider

(6) Z(F∞) = X(F∞)⊗Zp L, Z(F∞)χ = eχZ(F∞),

which are both finite dimensional vector spaces over L by Theorem 2.1. We then define
Rχ(T ) to be the characteristic polynomial of γ − 1 acting on Z(F∞)χ. We omit the proof
of the following technical lemma, which is due to Greenberg ( see [10], Proposition 1).

Lemma 4.3. Let χ be any element of Ĥ, and let K ′ be any intermediate field between F
and K such that χ is trival on Gal(K/K ′). Write χ′ for χ, when viewed as a character of
Gal(K ′/F ), and let F ′∞ be the compositum of K ′ and F cyc. Then Z(F∞)χ is isomorphic
to Z(F ′∞)χ′ as representations of Γ.
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In particular, this lemma shows that the polynomial Rχ(T ) depends only the character
χ of H, and not on the particular finite extension of F such that χ factors through the
Galois group over F of this extension.

The first fundamental result of Wiles (see Theorem 1.3 of [11]) in the direction of the
main conjecture for all totally real number fields F is the following.

Theorem 4.4. Assume that F∞/F satisfies the abelian hypothesis. Then, for all charac-
ters χ of H, we have

(7) Vχ(T )Oχ[[T]] = Rχ(T)Oχ[[T]].

The problem with this result is that it does not tell us anything about the µ-invariants
on either the analytic or the algebraic sides. Of course, the analytic µ-invariant is the
integer µχ appearing in (5), and is valid for all characters χ of H, irrespective of whether
the order of χ is divisible by p or not. The definition of the algebraic µ-invariant is much
more delicate. We first explain what to do in the easy case, when the order of χ is prime
to p. Assuming this to be the case, we may also suppose that K is exactly the fixed field
of the kernel of χ, as this does not change the polynomial Rχ(T ) by Lemma 4.3. Define

X(F∞)χ = eχ(X(F∞)⊗Zp Oχ).

Now, by Theorem 2.1, X(F∞)χ is a finitely generated torsion Oχ[[T]]-module, and thus,
by the well known structure theory for such modules and the Weierstrass preparation the-
orem, it has a characteristic ideal of the form Cχ(T )Oχ[[T]], where Cχ(T) is a polynomial
in Oχ[T ] of such that

(8) Cχ(T ) = πνχχ Rχ(T ),

for some integer νχ ≥ 0; here Rχ(T ) is, as above the characteristic polynomial of γ − 1
acting on Z(F∞)χ. The second fundamental result of Wiles (see Theorem 1.4 of [11]) is
the following.

Theorem 4.5. Assume that F∞/F satisfies the abelian hypothesis. If χ in Ĥ, has order
prime to p, we have

(9) µχ = νχ.

In particular, when combined with Theorem 4.4, this result proves the main conjecture
asserting that

(10) Wχ(T )Oχ[[T]] = Cχ(T)Oχ[[T]],

for all characters χ of H of order prime to p.

We are very grateful to R. Greenberg (private communication) for the following ex-
planation of how one can define the analogue of the algebraic µ-invariant νχ appearing in
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(8) even for characters χ of H whose order is divisible by p, and then show that the main
conjecture (10) still remains valid for such characters. As we shall need to vary the base
field F in this argument, for the remainder of this section we shall write WF,χ(T ), µF,χ,...
to indicate the dependence of the above quantities on the base field F . Fix a character
χ of H, whose order is divisible by p. We shall assume that K is the fixed field of the
kernel of χ. Now we can write χ in the form χ = ψρ, where ψ is a character of H of order
prime to p, and ρ has p-power order. Define ρ′ = ρp, and write L′, L for the fixed fields
of Ker(ρ′), Ker(ρ), respectively. We can now take the restriction ψL (resp. ψL′) of ψ to
the absolute Galois group of L (resp. the absolute Galois group of L′). Then K is the
fixed field of Ker(ψL), and we define K ′ to be the fixed field of Ker(ψL′). Thus we have
the tower of fields

(11) F ⊂ L′ ⊂ L ⊂ K ′ ⊂ K.

Write F ′∞ for the compositum of K ′ with F cyc, and, as before, let F∞ be the compositum
of K with F cyc. To lighten our notation, put

(12) J = Oψ, I = Oρ, E = Oχ,

so that E is the ring generated over J by the values of ρ. We first observe that, up to
a pseudo-isomorphism of Γ-modules, we can identify X(F ′∞) with a quotient of X(F∞).
Indeed, let P (resp. P ′) be the Sylow p-subgroup of Gal(K/F ) (resp. Gal(K ′/F )), and
put

(13) Ω = Ker(P → P ′),

so that Ω has order p. Then the natural map from X(F∞)Ω to X(F ′∞), which is the dual
of the restriction map on Galois cohomology, has finite kernel and cokernel. Indeed, the
cokernel is finite because it is dual to H1(Gal(K/K ′),Qp/Zp), and the kernel is finite
because it is dual to a submodule of H2(Gal(K/K ′),Qp/Zp). In particular, it follows that
X(F∞)Ω and X(F ′∞) have the same characteristic power series as Γ-modules. We then
define

(14) Π(F∞) = Ker(X(F∞)→ X(F∞)Ω).

Explicitly, we have Π(F∞) = (τ − 1)X(F∞), where τ is any generator of Ω. Now the
group ring Zp[P ] acts on Π(F∞), and this action factors through an action of the ring

B = Zp[P ]/(1 + τ + ...+ τ p−1)Zp[P ].

But evaluation at the character ρ defines an isomorphism from B onto the ring I. Thus we
see that Π(F∞) has a natural structure as an I[[Γ]]-module. Now ψ is a faithful character
of Gal(K/L) of order prime to p, and thus, for any Zp[Gal(K/L)]-module A, we may
define

Aψ = eψ(A⊗Zp J).
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In particular, we have

(15) Π(F∞)ψ = Ker(X(F∞)ψ → (X(F∞)ψ)Ω).

It is clear that Π(F∞)ψ has a structure as an E[[Γ]]-module, because I acts on Π(F∞).
Moreover, since X(F∞) is a finitely generated torsion Zp[[Γ]]-module, it follows that
Π(F∞)ψ is a finitely generated torsion E[[Γ]]-module. As before, let πχ be any local
parameter of the ring E = Oχ. Then, by the structure theory for finitely generated
torsion E[[Γ]]-modules, Π(F∞)ψ will have a characteristic ideal of the form Cχ(T )E[[T]],
where Cχ(T ) is a polynomial such that

(16) Cχ(T ) = πνχχ Rχ(T),

where νχ is some integer ≥ 0, and Rχ(T) is a monic polynomial in E[T ]. It is this integer
νχ which we define to be the algebraic µ-invariant of χ when p divides the order of χ. On
the other hand, since (X(F∞)ψ)Ω is pseudo-isomorphic as a J [[Γ]]-module to X(F ′∞)ψ,
it follows from (15) that the µ-invariant of Π(F∞)ψ as a J [[Γ]]-module must be equal to
νψ,L − νψ,L′ , where the subscripts L and L′ indicate that these invariants are now taken
with respect to these respective base fields. But, as E is a totally ramified extension of
J of degree pm−1(p − 1), where pm is the exact order of the character ρ, it is clear that
the µ-invariant of Π(F∞)ψ as an E[[Γ]]-module is equal to to its µ-invariant as a J [[Γ]]-
module. This is because the residue fields of J and E have the same order. Hence we
obtain

(17) νχ = νψ,L − νψ,L′ .

Recall that he analytic invariant µχ is defined by the equation (5). As Greenberg has
remarked, we can now easily establish the following generalization of Theorem 4.5.

Theorem 4.6. Assume that F∞/F satisfies the abelian hypothesis, where H is an arbi-
trary finite abelian group. Then, for all characters χ of H , we have

(18) µχ = νχ.

Proof. Since we can view ψ, which has order prime to p, as a character of both Gal(K/L)
and Gal(K ′/L′), we can apply Theorem 4.5 to both of the extensions F∞/L and F ′∞/L

′.
We conclude that

(19) µψ,L = νψ,L, µψ,L′ = νψ,L′ ,

where again the subscripts L and L′ mean the invariants are taken relative to the respective
base fields. Thus it follows from (17) that

(20) νχ = µψ,L − µψ,L′ .

To conclude the proof, we need an analytic argument. Let D be the set of characters of
Gal(L/F ) which do not factor through Gal(L′/F ). Plainly D consists of all the characters
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η = ρa, where a runs over the integers mod pm which are prime to p. It then follows easily
from the Artin formalism for complex L-functions that

(21) Wψ,L(T ) = Wψ,L′(T )× Π
η
Wψη,F (T ),

where now η runs over all elements of D. Write ∆ for the Galois group of the fraction
field of E over the fraction field of J , and recall that this extension is totally ramified of
degree p(m−1)(p − 1). We conclude easily from (3) that all of the power series Wψη,F (T )
with η ∈ D are conjugate under the action of ∆. Hence, since our extension is totally
ramified, it follows that all of these power series must have the same µ-invariant, which
must be equal to µχ because χ is one of the characters in D. Noting that the invariants
µψ,L and µψ,L′ are defined using a local parameter of the unramified extension J of Zp, it
now follows from (21) that

(22) µψ,L − µψ,L′ = µχ.

Combining (21) and (22), the proof of the theorem is now complete.

In particular, when combined with Theorem 4.4, Theorem 4.6 proves the abelian main
conjecture in general, asserting that, for every character χ of H we have

(23) Wχ(T )Oχ[[T]] = πνχχ Rχ(T)Oχ[[T]].

5 The non-abelian main conjecture

Throughout this section, F∞/F will be an arbitrary admissible p-adic Lie extension, which
we will always assume for simplicity satisfies:-

Hypothesis B. The group G = Gal(F∞/F ) has no element of order p.

While the non-abelian main conjecture can be formulated for all admissible p-adic Lie
extensions, the point of imposing this hypothesis is that it makes the whole discussion
of the homological properties of the G-module X(F∞) much simpler. In particular, Hy-
pothesis B implies that the Iwasawa algebra Λ(G) has finite global dimension, and that
G has finite p-homological dimension, which is equal to the dimension of G as a p-adic
Lie group. Note that Iwasawa [1] has proven that, for every finite extension F of Q, there
is no non-zero finite Λ(Γ)-submodule of X(F cyc). Hence, whenever Conjecture A is valid
for F (for example, when F is an abelian extension of Q), it follows that Hypothesis B is
valid in the important example given by taking F∞ = M(F cyc). Note also that Leopoldt’s
conjecture implies that such a G must be non-commutative whenever F∞ 6= F cyc.

We now rapidly recall the statement of the main conjecture. As in [5], let S be the
subset of Λ(G) defined by

(24) S = {f ∈ Λ(G) : Λ(G)/Λ(G)f is a finitely generated Λ(H)−module.}.
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Further, let S∗ be the subset of Λ(G) consisting of all elements pns, where n is some
integer ≥ 0, and s is in S. Then the following results are proven by rather elementary
arguments in [5]. Firstly, S, and so also S∗, are multiplicatively closed sets of non-zero
divisors in Λ(G), which satisfy the left and right Ore condition. Thus we can define the
localized rings Λ(G)S and Λ(G)S∗, which are, of course, non-commutative once G is not
abelian. Secondly, let NH(G) (resp. MH(G)) be the category of all finitely generated left
Λ(G)-modules W such that W (resp. W/W (p)) is finitely generated over Λ(H). Then
NH(G) (resp. MH(G)) is precisely the category of finitely generated left Λ(G)-modules
which are S-torsion (resp. S∗-torsion). Write K0(NH(G)) (resp. K0(MH(G))) for the
Grothendieck groups of these two categories. For any ring R with unit, denote by K1(R)
the K1-group of R. By classical algebraic K-theory, we have boundary maps

(25) ∂ : K1(Λ(G)S)→ K0(NH(G)), ∂∗ : K1(Λ(G)S∗)→ K0(MH(G)),

whose kernel in both cases is the relevant image of K1(Λ(G)). Moreover, it is shown in [5]
that both of these maps are surjective. Thus, for each module W in the category NH(G)
(resp. MH(G)), we define a characteristic element of W to be any ζW in K1(Λ(G)S) (resp.
K1(Λ(G)S∗) such that ∂(ζW ) (resp. ∂∗(ζW )) is equal to the class of W in the relevant K0.

Granted that our Λ(G)-module X(F∞) lies in the appropriate category, the main con-
jecture, will, as always, assert that its characteristic element can be taken to be a p-adic
L-function, in a sense that we now make precise. Firstly, as is explained in [5], we can
always evaluate an element ζ of K1(Λ(G)S) (resp. K1(Λ(G)S∗) at any continuous homo-
morphism from G into GLn(O), where O is the ring of integers of some finite extension
of Qp, obtaining a well-defined value ζ(ρ) in the fraction field of O, or the value ∞. In
particular, let A(G) be the set of all Artin representations of G. Thus an element ρ of
A(G) will be a homomorphism

(26) ρ : G→ GLn(O),

which factors through a finite quotient of G, where again O is the ring of integers of some
finite extension of Qp. For each ρ ∈ A(G), write LΣ(ρ, s) for the complex L-function
of ρ, with the Euler factors for the primes in Σ omitted from its Euler product. Now,
combining Theorem 4.1 with Brauer’s theorem on finite groups, it follows that, for each
even integer n > 0 and each ρ in A(G), the value LΣ(ρ, 1 − n) is an algebraic number
satisfying

(27) LΣ(ρσ, 1− n) = LΣ(ρ, 1− n)σ,

for all σ in the absolute Galois group of Q. We then have the following conjectural
analogue of Theorem 4.2.

Conjecture C. For every admissible p-adic Lie extension F∞/F , there exists ζF∞/F in
K1(Λ(G)S∗) such that

(28) ζF∞/F (ρκnF ) = LΣ(ρ, 1− n),
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for all ρ ∈ A(G) and all integers n > 0 with n ≡ 0 mod [F (µp) : F ]; here κF is the
character giving the action of the absolute Galois group of F on the group of all p-power
roots of unity.

Granted the existence of this p-adic L-function, the general main conjecture can now
be stated as follows. If W is any module in MH(G), write [W ] for the class of W in the
Grothendieck group of this category.

Conjecture D. Let F∞/F be an admissible p-adic Lie extension satisfying Hypothesis
B. Assume that X(F∞) belongs to the category MH(G), and that there exists ζF∞/F in
K1(Λ(G)S∗) satisfying (28) . Then

(29) ∂∗(ζF∞/F )) = [X(F∞)]− [Zp].

In his remarkable paper [12], Kakde has proven this main conjecture, provided the ad-
missible p-adic Lie extension satisfies the generalized Iwasawa conjecture.

Theorem 5.1. Assume that F∞/F is an admissible p-adic Lie extension satisfying Hy-
pothesis B. If the generalized Iwasawa conjecture holds for F∞/F , then there exists ζF∞/F
in K1(Λ(G)S), satisfying (28) for all ρ ∈ A(G) and all integers n > 0 with n ≡ 0 mod
[F (µp) : F ], and such that

∂(ζF∞/F ) = [X(F∞)]− [Zp].

The lectures in this conference are aimed primarily at an account of his proof. The most
important unconditional case of this theorem is as follows.

Corollary 5.2. Let F be a real abelian field, and take F∞ = M(F cyc). Then there exists
ζF∞/F in K1(Λ(G)S), satisfying (28) for all ρ ∈ A(G) and all integers n > 0 with n ≡ 0
mod [F (µp) : F ], and such that

∂(ζF∞/F ) = [X(F∞)]− [Zp].

For example, if we take F to be the maximal real subfield of Q(µ157), take Σ to consist
of the unique prime of F above p , and let F∞ = M(F cyc), then H = Zp2, and Theorem
6.6 shows that X(F∞) is non-zero, being isomorphic as a Λ(H)-module to a submodule
of finite index of Λ(H).

We end by briefly discussing possible applications of Theorem 5.1. Write d+ 1, where
d is an integer ≥ 0, for the dimension of G. We continue to assume that G has no
element of order p, so that G has p-homological dimension equal to d+ 1. At present, all
known applications of Theorem 5.1 are to the computation of the G-Euler characteristics
of certain twists of the the Iwasawa module X(F∞). If W is any finitely generated Λ(G)-
module, we recall that W is said to have finite G-Euler characteristic if all of the homology
groups Hi(G,W ) are finite for all i = 0, ..., d + 1, and then this Euler characteristic is
defined to be

(30) χ(G,W ) =
d+1∏
i=0

(#(Hi(G,W )))(−1)i .
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Similarly, if V is any finitely generated Λ(Γ)-module, we have the analogous notion of it
having a finite Γ-Euler characteristic, defined by

χ(Γ, V ) = #(H0(Γ, V ))/#(H1(Γ, V )).

Moreover, the Hochschild-Serre spectral sequence shows that W will have finite G-Euler
characteristic if and only if the Γ-modules Hi(H,W ) have finite Γ-Euler characteristic for
all i = 0, ..., d, and when this is the case, we will have

(31) χ(G,W ) =
d∏
i=0

χ(Γ, Hi(H,W ))(−1)i .

Also, if m is any integer, W (m) will denote as usual the m-fold Tate twist of W (i.e. the
tensor product over Zp of W with the m-fold tensor product with itself of the Tate module
of µp∞ , endowed with the diagonal action of the absolute Galois group of F ). Note also
that when m is any integer with m ≡ 0 mod [F (µp) : F ], G acts on Zp(m).

Our aim now is to see what can be proven about theG-Euler charactersitic ofX(F∞)(−n)
when n is any integer> 0 with n ≡ 0 mod [F (µp) : F ]. In the special case when F∞ = F cyc,
it is a classical consequence of the abelian main conjecture that, for such integers n > 0,
X(F cyc)(−n) has finite Γ-Euler characteristic, given by

(32) χ(Γ, X(F cyc)(−n)) = |wn(F )ζΣ(F, 1− n)|−1
p ,

where wn(F ) denotes the largest integer r such that the Galois group of F (µr) over F has
exponent n. In the general case, the following proposition holds:-

Proposition 5.3. Let n be any integer > 0 with n ≡ 0 mod [F (µp) : F ]. Then X(F∞)(−n)
has finite G-Euler characteristic if and only if Zp(−n) has finite G-Euler characteristic.
Moreover, assuming that these Euler characteristics are finite, we have

(33) χ(G,X(F∞)(−n))/χ(G,Zp(−n)) = |ζΣ(F, 1− n)|−1
p .

Proof. We first note that H acts trivially on Zp(−n) when n ≡ 0 mod [F (µp) : F ]. Thus
Proposition (6.1) gives immediately an isomorphism of Γ-modules

(34) Hi(H,X(F∞)(−n)) ' Hi+2(H,Zp(−n)),

for all i ≥ 1. Similarly, Proposition (43) gives the exact sequence of Γ-modules
(35)

0 // H2(H,Zp(−n)) // H0(H,X(F∞)(−n)) // X(F cyc)(−n) // H1(H,Zp(−n)) // 0.

Now X(F∞)(−n) has finite G-Euler characteristic if and only if the

(36) Hi(H,X(F∞)(−n)) (i = 0, ..., d)
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all have finite Γ-Euler characteristics. As X(F cyc)(−n) has finite Γ-Euler characteristic,
we conclude from the exact sequences (33) and (35) that the Γ-modules (36) will have
finite Euler characteristics if and only if the Γ-modules Hi(H,Zp(−n)), for i = 2, ..., d, all
have finite Euler characteristics. Moreover, H1(H,Zp(−n)) has finite Euler characteristic
since it is a quotient of X(F cyc)(−n), and

(37) χ(Γ, H0(H,Zp(−n))) = |wn(F )|−1
p .

Combining these results, it follows that X(F∞)(−n) has finite G-Euler characteristic if
and only if Zp(−n) has finite G-Euler characteristic. Moreover, assuming these Euler
characteristics are finite, and using (31) and (32), the assertion (33) follows immediately,
completing the proof.

It is perhaps worth remarking that, assuming the finiteness of the G-Euler character-
istics of X(F∞)(−n) and Zp(−n), and also that X(F∞) belongs to the category MH(G),
one can also deduce (33) from the non-commutative main conjecture (Conjecture D).
Moreover, in the special case when F∞ = M(F cyc) and H = Zp, then it is well known
(see the remark at the end of the Appendix) that X(F∞) = 0, so that, in this case,
χ(G,Zp(−n)) is indeed finite, and, by virtue of (33), is given by

(38) χ(G,Zp(−n))) = |ζΣ(F, 1− n)|p.

When G has dimension at least 3 as a p-adic Lie group, it seems highly likely that Zp(−n)
should have finite G-Euler characteristic for all integers n > 0 with n ≡ 0 mod [F (µp) : F ].
However, it does not seem easy to formulate a general conjecture for the value of this Euler
characteristic, assuming that it is finite. We briefly mention two very different specific
cases.

Lemma 5.4. Let F∞/F be an admissible p-adic Lie extension such that H is isomorphic
to an open subgroup of SL2(Zp). Then χ(G,Zp(−n)) = 1 for all integers n > 0 with n ≡ 0
mod [F (µp) : F ].

Proof. We have H0(H,Zp) = Zp, and we are grateful to K. Ardakov for pointing out to us
that standard arguments with Lie algebra cohomology show that Hi(H,Zp) is finite for
i = 1, 2, and has Zp-rank 1 for i = 3, and that G acts trivially on all of these homology
groups modulo their torsion subgroups. Now, as H acts trivially on Zp(−n), we can
move this Tate twist inside the H-homology groups. Since the Γ-homology of a finite
module is 1, it now follows immediately from (31) and the multiplicativity of the Γ-Euler
characteristics in exact sequences, that Zp(−n) has finite G-Euler characteristic equal to
1.

Secondly, consider the case when H is abelian, say H = Zpd, with d ≥ 2. We then
have

(39) H1(H,Zp) = H.
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and it is well known that Hi(H,Zp) is the i-th exterior power of H as a Zp-module. Now
the abelian main conjecture shows that H(−n) has finite Γ-Euler characteristic for all
integers n > 0 with n ≡ 0 mod [F (µp) : F ]. However, we do not know enough about the
roots of the p-adic zeta function of F at present to be able to prove that the i-th exterior
power of H has finite Γ-Euler characteristic for any of i = 2, ..., d, for all such integers n.
Thus we cannot even establish the finiteness of the G-Euler characteristic of Zp(−n), let
alone compute its exact value. However, if we make the additional hypothesis that n is
divisible by a sufficiently large power of p, one easily sees that

(40) χ(Γ, H0(H,Zp(−n))) = |wn(F )|−1
p ,

d∏
i=1

χ(Γ, Hi(H,Zp(−n)))(−1)i = 1.

Thus for all positive integers n, with n ≡ 0 mod [F (µp) : F ] and n divisible by a sufficiently
large power of p, we conclude that Zp(−n) has finite G-Euler characteristic given by

χ(G,Zp(−n)) = |wn(F )|−1
p .

6 Appendix

.
Throughout, we assume that both F∞/F is an admissible p-adic Lie extension of

totally real fields, and we shall establish some results relating X(F∞) to X(F cyc). We
recall that if G is a p-adic Lie group, and A is a discrete p-primary G-module, then it is
well known that, for all i ≥ 0, the Pontryagin dual of H i(G, A) is canonically isomorphic
to the homology group Hi(G, B), where B = Hom(A,Qp/Zp) is the compact Pontryagin
dual of A.

Proposition 6.1. Let F∞/F be any admissible p-adic Lie extension. Then, for all i ≥ 1,
we have

Hi(H,X(F∞)) ' Hi+2(H,Zp).

Proof. Since (1) is valid not only for F itself, but also for every finite extension of F
contained in F∞, we conclude that

(41) H i(GS(F∞),Qp/Zp) = 0 (i ≥ 2).

Applying the Hochschild-Serre spectral sequence to GS(F cyc) and its closed normal sub-
group GS(F∞), we conclude from (41) (see Theorem 3 of [6]) that, for all j ≥ 1, there is
a long exact sequence

(42) Hj(H,Qp/Zp) // Hj(GS(F cyc),Qp/Zp) // Hj−1(H,X(F∞)) //

Hj+1(H,Qp/Zp) // Hj+1(GS(F cyc),Qp/Zp).

Taking j = i+ 1 with i ≥ 1, and again using (1), the proof of the proposition is complete
after taking Pontrjagin duals.
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Proposition 6.2. For any admissible p-adic Lie extension F∞/F , we have the exact
sequence

(43) 0 // H2(H,Zp) // H0(H,X(F∞)) // X(F cyc) // H1(H,Zp) // 0.

.

Proof. Takeing j = 1 in (42), we obtain result on noting that the first arrow on the left
in (42) is injective, and the group on the right in (42) is still zero.

We assume now that G is pro-p of dimension d+ 1 with d ≥ 1, and that G no element
of order p. We recall that µG(X(F∞)) is defined via the exact sequence (2). If V is any
finitely generated torsion Λ(Γ)-module, we write µΓ(V ) for its classical µ-invariant. Since
G has finite homological dimension, these mu-invariants, for p-primary modules, are well
known to be related to Euler characteristics as follows (see Corollary 1.7 of [8]). If A
is a finitely generated p-primary Λ(G)-module, and B is a finitely generated p-primary
Λ(Γ)-module, define the Euler characteristics

χ(G,A) =
d+1∏
i=0

(#(Hi(G,A)))(−1)i , χ(Γ, B) = #(H0(Γ, B))/#(H1(Γ, B)).

Then we have

(44) pµG(A) = χ(G,A), pµΓ(B) = χ(Γ, B).

Lemma 6.3. Assume that G is pro-p of dimension d + 1 with d ≥ 1, and that G has
no element of order p. Then Hi(H,X(F∞)(p)) is a finitely generated torsion torsion
Λ(Γ)-module for all i ≥ 0, and

(45) µG(X(F∞)) =
d∑
i=0

(−1)iµΓ(Hi(H,X(F∞)(p))).

Proof. The first assertion is obvious. To prove the second, we note that, for i ≥ 1, the
Hochschild-Serre spectral sequence gives the exact sequence

0 // H0(Γ, Hi(H,X(F∞)(p))) // Hi(G,X(F∞)(p)) // H1(Γ, Hi−1(H,X(F∞)(p))) // 0 ,

whence we obtain

χ(G,X(F∞)(p)) =
d∏
i=0

χ(Γ, Hi(H,X(F∞)(p))(−1)i .

The conclusion of the lemma is now clear from (44).

17



Define the Λ(G)-module Y∞ by the exact sequence

(46) 0→ X(F∞)(p)→ X(F∞)→ Y∞ → 0.

Since X(F∞) is annihilated by pn for all sufficiently large n, we can view Y∞ as a Λ(G)-
submodule of X(F∞), and so we also have a short exact sequence

(47) 0 // Y∞ // X(F∞) // W∞ // 0 ,

for some Λ(G)-module W∞.

Proposition 6.4. Assume that G is pro-p of dimension d+ 1 with d ≥ 1, and that G has
no element of order p. Then Hi(H, Y∞) is a finitely generated torsion Λ(Γ)-module for
all i ≥ 0. Moreover, Hd(H,Y∞) = 0.

Proof. We first prove that all the groups Hi(H, Y∞) are torsion Λ(Γ)-modules. Taking
H-homology of (46), we obtain, for each i ≥ 1, the exact dequence

Hi(H,X(F∞))→ Hi(H, Y∞)→ Hi−1(H,X(F∞)(p)).

The first term is finitely generated over Zp by Proposition 6.1, and the third term is
annihilated by a power of p. Therefore Hi(H, Y∞) is Λ(Γ)-torsion. The assertion for i = 0
follows from (43), since X(F cyc) is Λ(Γ)-torsion and Hj(H,Zp) is a finitely generated over
Zp-module for all j ≥ 0. To prove the second assertion, we note that H has homological
dimension d. Thus, taking H-homology exact of (47), we get the exact sequence

(48) 0→ Hd(H, Y∞)→ Hd(H,X(F∞)).

But, as d ≥ 1, we have Hd(H,X(F∞)) ' Hd+2(H,Zp), and the latter group is zero since
the homological dimension of H is d.

Proposition 6.5. Assume that G is pro-p of dimension d+ 1 with d ≥ 1, and that G has
no element of order p. Then we have

µG(X(F∞)) = µΓ(X(F cyc))−
d−1∑
i=0

(−1)iµΓ(Hi(H, Y∞)).

Proof. From (43), we know that µΓ(X(F cyc)) = µΓ(H0(H,X(F∞))) since the first and
last terms in (43) are finitely generated over Zp. Taking H-homology of (46), we obtain
the exact sequence
(49)

H1(H,X(F∞)) // H1(H,Y∞) // X(F∞)(p)H // X(F∞)H // (Y∞)H // 0 .

By Proposition 6.1, H1(H,X(F∞)) = H3(H,Zp) is finitely generated over Λ(H). Hence
we obtain

µΓ(X(F∞)) = µΓ((X(F∞))H)− µΓ((Y∞)H) + µΓ(H1(H,Y∞).
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Morever, for i ≥ 1, homology exact sequence derived from (46) yields

µΓ(Hi(H,X(F∞)(p))) = µΓ(Hi+1(H, Y∞))

since for all i ≥ 1, again by Proposition 6.1, Hi(H,X(F∞)) = Hi+2(H,Zp) is finitely
generated over Zp. The assertion of the proposition now follows immediately (45).

Recall that when H is pro-p and has no elements of order p, we define the rank of Y∞
as a Λ(H)-module by

rkΛ(H)Y∞ = dimQ(H)Y∞ ⊗Λ(H) Q(H),

where Q(H) is the skew field of fractions of Λ(H).

Theorem 6.6. Assume that G is pro-p of dimension d+ 1 with d ≥ 1, and that G has no
element of order p. Suppose further that X(F∞) is in the category MH(G). Let r be the
Zp-rank of X(F cyc)/X(F cyc)(p). Then µG(X(F∞)) = µΓ(X(F cyc)) and the Λ(H)-rank of
X(F∞)/X(F∞)(p) is r − 1.

Proof. Our hypothesis that X(F∞) is in MH(G) implies that Y∞ is finitely generated as
a Λ(H)-module. Hence the Hi(H,Y∞) are finitely generated as Zp-modules for all i ≥ 0,
and hence have Γ µ-invariant equal to 0. Thus Proposition 6.5 gives immediately that
µG(X(F∞)) = µΓ(X(F cyc)). Now we compute the Λ(H)-rank of Y∞. Since H is pro-p
and has no elements of order p, it is well known that

(50) rkΛ(H)V =
∑
i≥0

(−1)irkZpHi(H, V ),

for any finitely generated Λ(H)-module V . Now using the long exact sequence of (46),
we see immediately that rkZpHi(H,Y∞) = rkZpHi(H,X(F∞)) for all i ≥ 0. On the other
hand, since the Λ(H)-module Zp clearly as Λ(H)-rank 0, we have

0 =
∑
i≥0

(−1)irkZpHi(H,Zp)

=
2∑
i=0

(−1)irkZpHi(H,Zp) +
∑
i≥1

(−1)irkZpHi(H,X(F∞))

= 1 + rkZpX(F∞)H − r +
∑
i≥1

(−1)irkZpHi(H,X(F∞))

= 1− r +
∑
i≥0

(−1)irkZpHi(H,Y∞)

= 1− r + rkΛ(H)Y∞.

The first and last equalities are (50), the second is Proposition 6.1, and the third follows
from the inflation-restriction sequence

0→ H2(H,Zp)→ H1(GS(F∞),Zp)H → H1(GS(F cyc),Zp)→ H1(H,Zp)→ 0.
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Remark 6.7. Notice that the hypotheses of the above theorem imply, in particular, that
necessarily r ≥ 1. We are grateful to Ralph Greenberg for pointing out to us that this
fact is a consequence of Proposition 3.9.1 in [9], which is also known as Burnside Basis
Theorem. Indeed, as he remarked to us, one can easily deduce from this Burnside Basis
Theorem that if Conjecture A holds for F and X(F cyc) has Zp-rank at most 1, then
M(F cyc) is the maximal pro-p extension of F , which is unramified outside S.

The simplest unconditional example of Theorem 6.6 is as follows. Take F to be the
maximal real subfield of Q(µp) for an add prime p, and Σ to consist of the unique prime
of F above p. Since Conjecture A is valid for F by the theorem of Ferrero-Washington,
we can take F∞ = M(F cyc). By Theorem 2.1, the Galois group G is then pro-p and has
no element of order p, and the subgroup H is a free Zp-module of rank r ≥ 0. Moreover,
X(F∞) is a finitely generated Λ(H)-module, which has no Λ(H)-torsion by Theorem 3.1.
The classical theory of cyclotomic fields tells us that r ≥ 1 if and only if p is an irregular
prime, and X(F∞) is zero when r = 1. When r ≥ 2, Theorem 6.6 and the classical
commutative structure theory of finitely generated Λ(H)-modules shows that there is an
exact sequence

0→ X(F∞)→ Λ(H)r−1 → D → 0,

where D is a pseudo-null Λ(H)-module. The smallest prime p for which r ≥ 2 is p = 157,
and the largest value of r for p < 12, 000, 000 is r = 7.
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