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FROM THE BIRCH & SWINNERTON-DYER CONJECTURE OVER

THE EQUIVARIANT TAMAGAWA NUMBER CONJECTURE TO

NON-COMMUTATIVE IWASAWA THEORY - A SURVEY

AFTER BURNS/FLACH, FUKAYA/KATO, HUBER/KINGS, COATES, SUJATHA ...

OTMAR VENJAKOB

This paper aims to give a survey on Fukaya and Kato’s article [19] which establishes
the relation between the Equivariant Tamagawa Number Conjecture (ETNC) by Burns
and Flach [7] and the noncommutative Iwasawa Main Conjecture (MC) (with p-adic
L-function) as formulated by Coates, Fukaya, Kato, Sujatha and the author [11]. More-
over, we compare their approach with that of Huber and Kings [20] who formulate an
Iwasawa Main Conjecture (without p-adic L-functions). We do not discuss these con-
jectures in full generality here, in fact we are mainly interested in the case of an abelian
variety defined over Q. Nevertheless we formulate the conjectures for general motives
over Q as far as possible. We follow closely the approach of Fukaya and Kato but our
notation is sometimes inspired by [7, 20]. In particular, this article does not contain
any new result, but hopefully serves as introduction to the original articles. See [37] for
a more down to earth introduction to the GL2 Main Conjecture for an elliptic curve
without complex multiplication. There we had pointed out that the Iwasawa main con-
jecture for an elliptic curve is morally the same as the (refined) Birch and Swinnerton
Dyer (BSD) Conjecture for a whole tower of number fields. The work of Fukaya and
Kato makes this statement precise as we are going to explain in these notes. For the
convenience of the reader we have given some of the proofs here which had been left
as an exercise in [19] whenever we had the feeling that the presentation of the material
becomes more transparent thereby.
Since the whole paper bears an expository style we omit a lengthy introduction and
just state briefly the content of the different sections:

In section 1 we recall the fundamental formalism of (non-commutative) determinants
which were introduced first by Burns and Flach to formulate equivariant versions of
the TNC. In section 2 we briefly discuss the setting of (realisations of) motives as they
are used to formulate the conjectures concerning their L-functions, which are defined
in section 3. There, also the absolute version of the TNC is discussed, which predicts
the order of vanishing of the L-function at s = 0, the rationality and finally the precise
value of the leading coefficient at s = 0 up to the period and regulator. In subsection
3.1 we sketch how one retrieves the BSD conjecture in its classical formulation if one
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applies the TNC to the motive h1(A)(1) of an abelian variety A/Q. Though well known
to the experts this is not very explicit in the literature. In section 4 we consider a p-
adic Lie extension of Q with Galois group G. In this context the TNC is extended
to an equivariant version using the absolute version for all twists of the motive by
certain representations of G. The compatibility of the ETNC with respect to Artin-
Verdier/Poitou-Tate duality and the functional equation of the L-function is studied in
section 5. A refinement leads to the formulation of the local ǫ-conjecture in subsection
5.1. In order to involve p-adic L-functions one has to introduce Selmer groups or better
complexes. The necessary modifications of the L-function and the Galois cohomology -
in a way that respects the functional equation - are described in section 6. From this the
MC in the form of [11] is derived in subsection 6.2 after a short interlude concerning the
new ”localized K1”. In the Appendix we collect basic facts about Galois cohomology
on the level of complexes.

Acknowledgements: I am very grateful to Takako Fukaya and Kazuya Kato for providing
me with actual copies of their work and for answering many questions. I also would
like to thank John Coates for his interest and Ramdorai Sujatha for reading parts of
the manuscript and her valuable comments. Finally I am indebted to David Burns,
Pedro Luis del Angel, Matthias Flach, Annette Huber, Adrian Iovita, Bruno Kahn and
Guido Kings for helpful discussions.

1. Noncommutative determinants

The (absolute) TNC measures compares integral structures of Galois cohomology with
values of complex L-functions. For this purpose the determinant is the adequate tool
as is illustrated by the following basic

Example 1.1. Let T be a Zp-lattices in a finite dimensional Qp-vector space V and
f : T → T a Zp-linear map which induces an automorphism of V . Then the cokernel
of f is finite with cardinality |det(f)|−1

p where | − |p denotes the p-adic valuation
normalized as usual: |p|p = 1/p.

Since the equivariant TNC involves the action of a possibly non-commutative ring R
one needs a determinant formalism over an arbitrary (associative) ring R (with unit).
This can be achieved by either using virtual objects a la Deligne as Burns and Flach
[7, §2] do or by Fukaya and Kato’s adhoc construction [19, 1.2], both approaches lead
to an equivalent description.

Let P(R) denote the category of finitely generated projective R-modules and (P(R), is)
its subcategory of isomorphisms, i.e. with the same objects, but whose morphisms are
precisely the isomorphisms. Then there exists a category CR and a functor

dR : (P(R), is)→ CR
which satisfies the following properties:

a) CR has an associative and commutative product structure (M,N) 7→M ·N or
written just MN with unit object 1R = dR(0) and inverses. All objects are of
the form dR(P )dR(Q)−1 for some P,Q ∈ P(R).

b) all morphisms of CR are isomorphisms, dR(P ) and dR(Q) are isomorphic if
and only if their classes in K0(R) coincide. There is an identification of groups
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Aut(1R) = K1(R) and Mor(M,N) is either empty or an K1(R)-torsor where

α : 1R → 1R ∈ K1(R) acts on φ : M → N as αφ : M = 1R ·M
α·φ→ 1R ·N = N.

c) dR preserves the ”product” structures: dR(P ⊕Q) = dR(P ) · dR(Q).

This functor can be naturally extended to complexes. Let Cp(R) be the category of
bounded complexes in P(R) and (Cp(R), quasi) its subcategory of quasi-isomorphisms.
For C ∈ Cp(R) we set C+ =

⊕
i evenC

i and C− =
⊕

i odd C
i and define dR(C) :=

dR(C+)dR(C−)−1 and thus we obtain a functor

dR : (Cp(R), quasi)→ CR
with the following properties (C,C ′, C ′′ ∈ Cp(R))

d) If 0 → C ′ → C → C ′′ → 0 is a short exact sequence of complexes, then there
is a canonical isomorphism

dR(C) ∼= dR(C ′)dR(C ′′)

which we take as an identification,
e) If C is acyclic, then the quasi-isomorphism 0→ C induces a canonical isomor-

phism

1R → dR(C).

f) dR(C[r]) = dR(C)(−1)r
where C[r] denotes the rth translate of C.

g) the functor dR factorizes over the image of Cp(R) in Dp(R), the category of
perfect complexes (as full triangulated subcategory of the derived category
Db(R) of the homotopy category of bounded complexes of R-modules), and
extends to (Dp(R), is) (uniquely up to unique isomorphisms) 1.

h) If C ∈ Dp(R) has the property that all cohomology groups Hi(C) belong again
to Dp(R), then there is a canonical isomorphism

dR(C) =
∏

i

dR(Hi(C))(−1)i

.

Moreover, if R′ is another ring, Y a finitely generated projective R′-module endowed
with a structure as right R-module such that the actions of R and R′ on Y commute,
then the functor Y ⊗R − : P(R)→ P (R′) extends to a commutative diagram

(Dp(R), is)

Y⊗L
R−

��

dR // CR
Y⊗R−

��

(Dp(R′), is)
dR′

// CR′

.

In particular, if R→ R′ is a ring homomorphism and C ∈ Dp(R), we just write dR(C)R′

for R′ ⊗R dR(C).

1But property d) does not in general extend to arbitrary distinguished triangles, thus from a technical
point of view all constructions involving complexes will have to be made carefully avoiding this problem.
We will neglect this problem but see [7] for details.
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Now let R◦ be the opposite ring of R. Then the functor HomR(−, R) induces an anti-
equivalence between CR and CR◦ with quasi-inverse induced by HomR◦(−, R◦); both
functors will be denoted by −∗. This extends to a commutative diagram

(Dp(R), is)

RHomR(−,R)
��

dR // CR
−∗

��

(Dp(R◦), is)
dR◦

// CR◦

and similarly for RHomR◦(−, R◦).

For the handling of the determinant functor in practice the following considerations are
quite important:

Remark 1.2. (i) We have to distinguish at least two inverses of a map φ : dR(C) →
dR(D) with C,D ∈ Cp(R). The inverse with respect to composition will be denoted
by φ : dR(D)→ dR(C). But due to the product structure in CR and the identification
dR(C) · dR(C)−1 = 1R the knowledge of φ is equivalent to that of

1R dR(C) · dR(C)−1
φ·id

dR(C)−1
// dR(D) · dR(C)−1

or even

φ−1 : dR(C)−1 → dR(D)−1

which is by definition iddR(D)−1 · φ · iddR(C)−1 or in other words φ · φ−1 = id1R
. In

particular, φ : dR(C) → dR(C) corresponds uniquely to φ · iddR(C)−1 : 1R → 1R.
Thus it can and will be considered as an element in K1(R). Note that under this
identification the elements in K1(R) assigned to each of φ−1 and φ is the inverse to
the element assigned to φ. Furthermore, the following relation between ◦ and · is easily

verified: Let A
φ

// B and B
ψ

// C be morphisms in CR. Then the composite ψ◦φ
is the same as the product ψ · φ · idB−1 .
Convention: If φ : 1 → A is a morphism and B an object in CR, then we write

B
· φ

// B ·A for the morphism idB · φ. In particular, any morphism B
φ

// A can

be written as B
· (id

B−1 · φ)
// A .

(ii) The determinant of the complex C = [P0
φ→ P1] (in degree 0 and 1) with P0 =

P1 = P is by definition dR(C)
def

1R and is defined even if φ is not an isomorphism

(in contrast to dR(φ)). But if φ happens to be an isomorphism, i.e. if C is acyclic, then

by e) there is also a canonical map 1R
acyc

// dR(C) , which is in fact nothing else then

1R dR(P1)dR(P1)
−1

d(φ)−1·id
d(P1)−1

// dR(P0)dR(P1)
−1 dR(C)

(and which depends in contrast to the first identification on φ). Hence, the composite

1R
acyc

// dR(C)
def

1R corresponds to dR(φ)−1 ∈ K1(R) according to the first remark.

In order to distinguish the above identifications between 1R and dR(C) we also say
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that C is trivialized by the identity when we refer to dR(C)
def

1R (or its inverse

with respect to composition). For φ = idP both identifications agree obviously.

We end this section by considering the example where R = K is a field and V a
finite dimensional vector space over K. Then, according to [19, 1.2.4], dK(V ) can be

identified with the highest exterior product
∧top V of V and for an automorphism

φ : V → V the determinant dK(φ) ∈ K× = K1(K) can be identified with the usual
determinant detK(φ). In particular, we identify dK = K with canonical basis 1. Then

a map 1K
ψ

// 1K corresponds uniquely to the value ψ(1) ∈ K×.

Remark 1.3. Note that every finite Zp-module A possesses a free resolution C as in
Remark 1.2 (ii), i.e. dZp(A) ∼= dZp(C)−1 = 1Zp . Taking into account the above and

Example 1.1 we see that modulo Z×
p the composite 1Qp

acyc
// dZp(C)Qp

def
1Qp corre-

sponds to the cardinality |A| ∈ Q×
p .

2. K-Motives over Q

In this survey we will be mainly interested in the Tamagawa Number Conjecture and
Iwasawa theory for the motive M = h1(E)(1) of an elliptic curve E or the slightly more
generalM = h1(A)(1) of an abelian variety A defined over Q. But as it will be important
to consider certain twists of M we also recall basic facts on the Tate motive Q(1) and
Artin motives. We shall simply view motives in the naive sense, as being defined
by a collection of realizations satisfying certain axioms, together with their motivic
cohomology groups. The archetypical motive is hi(X) for a smooth projective variety
X over Q with its obvious étale cohomology Hi

ét(X ×Q Q,Ql), singular cohomology
Hi(X(C),Q) and de Rham cohomology Hi

dR(X/Q), their additional structures and
comparison isomorphisms. More general, let K be a finite extension of Q. A K-motive
M over Q, i.e. a motive over Q with an action of K, will be given by the following data,
which for M = hn(X)K arise by tensoring the above cohomology groups by K over Q :

2.1. The l-adic realization Ml of M (for every prime number l). For a place λ
of K lying above l and denote by Kλ the completion of K with respect to λ. Then Mλ

is a continuous finite dimensional Kλ-linear representation of the absolute Galois group
GQ of Q. We put Kl := K ⊗Q Ql =

∏
λ|lKλ and we denote by Ml the free Kl-module∏

λ|lMλ.

2.2. The Betti realization MB of M . Attached toM is a finite dimensionalK-vector
space MB which carries an action of complex conjugation ι and a Q-Hodge structure
MB⊗QC ∼=

⊕Hi,j (over R) with ιHi,j = Hj,i whereHi,j are freeKC := K⊗QC ∼= CΣK -
modules and where ΣK denotes the set of all embeddings K → C. E.g. the motive
M = hn(X) is pure of weight w(M) = n, i.e. Hi,j = 0 if i+ j 6= n.

2.3. The de Rham realization MdR of M . MdR is a finite dimensional K-vector
space with a decreasing exhaustive filtration Mk

dR, k ∈ Z. The quotient tM = MdR/M
0
dR

is called the tangent space of M.
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2.4. Comparison between MB and Ml. For each prime number l there is an iso-
morphism of Kl-modules

(2.1) Kl ⊗K MB
gl

∼=
// Ml

which respects the action of complex conjugation, in particular it induces canonical
isomorphisms

(2.2) g+
λ : Kλ ⊗K M+

B
∼= M+

λ and g+
l : Kl ⊗K M+

B
∼= M+

l .

Here and in what follows, for any commutative ring R and R[G(C/R)]-module X
we denote by X+ and X− the R-submodule of X on which ι acts by +1 and −1,
respectively.

2.5. Comparison between MB and MdR. There is a G(C/R)-invariant isomorphism
of KC-modules

(2.3) C⊗Q MB
g∞

∼=
// C⊗Q MdR

(on the left hand side ι acts diagonally while on the right hand side only on C) such
that for all k ∈ Z

g∞(
⊕

i≥k

Hi,j(M)) ∼= C⊗Q M
k
dR.

This induces an isomorphism

(2.4) (C⊗Q MB)+ ∼= R⊗Q MdR

and the period map

(2.5) R⊗Q M
+
B

αM // R⊗Q tM

We say that M is critical if this happens to be an isomorphism2.

2.6. Comparison between Mp and MdR. Let BdR be the filtered field of de Rham

periods with respect to Qp/Qp, which is endowed with a continuous action of the

absolute Galois group GQp of Qp, and set as usual DdR(V ) = (BdR ⊗Qp V )GQp for a
finite-dimensional Qp-vector space V endowed with a continuous action of GQp . The

(decreasing) filtration Bi
dR of Bdr induces a filtration Di

dR = (Bi
dR ⊗Qp V )GQp of DdR.

Then there is an GQp-invariant isomorphism of filtered Kp ⊗Qp BdR-modules

(2.6) BdR ⊗Qp Mp
gdR

∼=
// BdR ⊗Q MdR

which induces an isomorphism of filtered Kp-modules by taking GQ-invariants

(2.7) DdR(Mp)
gdR

∼=
// Kp ⊗K MdR,

2By [10, lem. 3] M is critical if and only if one of the following equivalent conditions holds: a) both
infinite Euler factors L∞(M, s) and L∞(M∗(1),−s) (see section 5) are holomorphic at s = 0, b) if
j < k and Hj,k 6= {0} then j < 0 and k ≥ 0, and, in addition, if Hk,k 6= {0}, then ι acts on this space
as +1 if k < 0 and by −1 if k ≥ 0. See also [12, lem. 2.3] for another criterion.
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an isomorphism of Kp-modules

(2.8) t(Mp) := DdR(Mp)/D
0
dR(Mp)

gt
dR

∼=
// Kp ⊗K tM

and, for each place λ of K over p, an isomorphism of Kλ-vector spaces

(2.9) t(Mλ) := DdR(Mλ)/D
0
dR(Mλ)

gt
dR

∼=
// Kλ ⊗K tM .

The tensor product M ⊗K N of two K-motives is given by the data which arises from
the tensor products of all realizations and their additional structures. Similar the dual
M∗ of the K-motive M is given by the duals of the corresponding realizations. In
particular, we denote by M(n), n ∈ Z, the twist of M by the |n|-fold tensor product
Q(n) = Q(1)⊗n of the Tate motive if n ≥ 0 and of its dual Q(−1) = Q(1)∗ if n < 0.
For the motive M = hi(X)(j) where the dimension of X is d, Poincaré duality gives a
perfect pairing

hi(X)(j) × h2d−i(X)(d − j)→ h2d(X)(d) ∼= Q

which identifies M∗ with h2d−i(X)(d− j). Here Q = h0(spec(Q))(0) denotes the trivial
Q-motive.

Example 2.1. A) The Tate motive Q(1) = h2(P1)∗ should be thought of as h1(Gm)
even though the multiplicative group Gm is not proper. Its l-adic realisation is the
usual Tate module Ql(1) on which GQ acts via the cyclotomic character χl : GQ → Z×

l .
The action of complex conjugation on Q(1)B = Q is by −1, its Hodge structure is pure
of weight w(M) = −2 and given by H−1,−1. The filtration Q(1)kdR of Q(1)dR = Q is
either Q or 0, according as k ≤ −1 or k > −1, in particular we have tQ(1) = Q. Finally,
g∞ sends 1⊗ 1 to 2πi⊗ 1 while gdR sends 1⊗ 1 to t⊗ 1, where t = ”2πi” is the p-adic
period analogous to 2πi.

B) For the Q-motive M = h1(A)(1) of an abelian variety A over Q we have Ml =
H1
ét(AQ̄,Ql(1)) = HomQl

(VlA,Ql(1)) ∼= Vl(A
∨) via the Weil pairing. More gener-

ally, the Poincare bundle on A × A∨ induces isomorphisms M∗(1) ∼= h1(A∨)(1) and
M ∼= h1(A∨)∗, while by fixing a (very) ample symmetric line bundle on A, whose
existence is granted by [29, cor. 7.2], it is sometimes convenient to identify M with
h1(A) := h1(A)∗ using the hard Lefschetz theorem ([34, 1.15,thm. 5.2 (iii)], see also
[26]) (but in general better to work with the dual abelian variety A∨). Then Ml can be
identified with Vl(A), while MB = H1(A(C),Q)(1) can be identified with H1(A(C),Q),
the Hodge-decomposition (pure of weight −1) is given by H0,−1 = H0(A(C),Ω1

A)(∼=
HomC(H1(A(C),Ω0

A),C)) and H−1,0 = H1(A(C),Ω0
A)(∼= HomC(Ω1(A),C)). Further-

more, we have M−1
dR = MdR, M

0
dR is the image of Ω1

A/Q(A)(∼= H1(A,Ω0
A/Q)∗) and

M1
dR = 0. In particular, tM = H1(A,Ω0

A/Q) = Lie(A∨) (e.g. [27, thm. 5.11]) the Lie-

algebra of A∨, can be identified with th1(A) = HomQ(Ω1
A/Q(A),Q) = Lie(A). The map

αM for the motive M = h1(A), which is in fact an isomorphism, is induced by sending a
1-cycle γ ∈ H1(A(C),Q)+ to

∫
γ ∈ HomQ(Ω1

A/Q(A),R) = Lie(A)R which sends a 1-form

ω to
∫
γ ω ∈ R.

C) Artin motives [ρ] (with coefficients in a finite extension K of Q) are direct summands
of the K-motive h0(spec(F )) ⊗Q K but can also be identified with the category of
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finite-dimensional K-vector spaces V with an action by GQ, i.e. representations ρ :
GQ → AutK(V ) with finite image. We write [ρ] for the corresponding motive and have
[ρ]l = V ⊗KKl with GQ acting just on V, [ρ]B = V with Hodge-Structure pure of Type
(0, 0) and [ρ]dR = (V ⊗Q Q̄)GQ , where GQ acts diagonally. Since [ρ]kdR is either [ρ]dR
or 0 according as k ≤ 0 of k > 0, we have t[ρ] = 0. The inverse of g∞ is induced by

the natural inclusion (V ⊗Q Q̄)GQ ⊆ V ⊗Q Q̄. E.g. if ψ denotes a Dirichlet character
of conductor f considered via (Z/fZ)∗ ∼= G(Q(ζf )/Q) as character G → K× where
K = Q(ζϕ(f))) and ϕ denotes the Euler ϕ-function, then we obtain a basis of [ψ]dR over
K by the Gauss sum

∑

1≤n<f,(n,f)=1

ψ(n)⊗ e−2πin/f ∈ (K(ψ)⊗Q Q̄)GQ ,

where K(ψ) denotes the 1-dimensional K-vector space on which GQ acts via ψ.

Of course, h0(spec(F )) ⊗Q K corresponds to the regular representation of G(F/Q) on
K[G(F/Q)] considered as representation of GQ.

Other examples arise by taking symmetric products or tensor products of the above
examples. In particular, we will be concerned with the motives

D) [ρ]⊗ h1(A)(1), where ρ runs through all Artin representations.
E) Finally, the motive M(f) of a modular form is a prominent example, see [15, §7]
and [33].

2.7. Motivic cohomology. The motivic cohomology K-vector spaces
H0
f (M) := H0(M) and H1

f (M) may be defined by algebraic K-theory or motivic coho-
mology a la Voevodsky. They are conjectured to be finite dimensional. Instead of a
general definition we just describe them in our standard examples.

Example 2.2. A) For the Tate motive we have H0
f (Q(1)) = H1

f (Q(1)) = 0 and for its

Kummer dual H0
f (Q) = Q while H1

f (Q) = 0.

B) If M = h1(A)(1) for an abelian variety A over Q one has H0
f (M) = 0 and H1

f (M) =

A∨(Q)⊗Z Q.

C) For M = h0(spec(F )) we have H0
f (M) = Q and H1

f (M) = 0 while for M∗(1) =

h0(spec(F ))(1) one has H0
f (M

∗(1)) = 0 and H1
f (M

∗(1)) = O×
F ⊗Z Q. More general, for

an K-Artin motive [ρ] one has H0
f ([ρ]) = Kn, where n is the multiplicity with which Q

occurs in [ρ].

Unfortunately the functor Hi
f does not behave well with tensor products, i.e. in general

one cannot derive H∗
f ([ρ]⊗ h1(A)(1)) from H∗

1([ρ]) and H∗
1(h

1(A)(1)) (e.g. in form of a

Künneth formula).

3. The Tamagawa Number Conjecture - absolute version

In [4] Bloch and Kato formulated a vast generalization of the analytic class number
formula and the BSD-conjecture. While the conjecture of Deligne and Beilinson links
the order of vanishing of the L-function attached to a motive M to its motivic coho-
mology and claims rationality of special L-values or more general leading coefficients
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(up to periods and regulators) the Tamagawa number conjecture by Bloch and Kato
predicts the precise L-value in terms of Galois cohomology (assuming the conjecture of
Deligne-Beilinson).

Later, Fontaine and Perrin-Riou [18] found an equivalent formulation using (commuta-
tive) determinants instead of (Tamagawa) measures3. In this section we follow closely
their approach.

Let us first recall the definition of the complex L-function attached to a K-motive M.
We fix a place λ of K lying over l and an embedding K → C. For every prime p take
a prime l 6= p and set

Pp(Mλ,X) = detKλ
(1− ϕpX|(Mλ)

Ip) ∈ Kλ[X],

where ϕp denotes the geometric Frobenius automorphism of p in GQp/Ip and Ip is the
inertia subgroup of p in GQp ⊆ GQ. It is conjectured that Pp(X) belongs to K[X] and
is independent of the choices of l and λ. For example this is known by the work of
Deligne proving the Weil conjectures for M = hi(X) for places p where X has good
reduction; by the compatibility of the system of l-adic realisations for abelian varieties
[17, rem. 2.4.6(ii)] and Artin motives it is also clear for our examples A)-D). Then we
have the L-function of M as Euler product

LK(M,s) =
∏

p

Pp(Mλ, p
−s)−1,

defined and analytic for ℜ(s) large enough.

Example 3.1. A) The L-function LQ(Q(1), s − 1) of the Tate motive is just the Rie-
mann zeta function ζ(s). In general, one has LK(M(n), s) = LK(M,s + n) for any
K-motive M and any integer n.
B) If M = h1(A)(1) for an abelian variety A over Q, then L(M,s − 1) is the classical
Hasse-Weil L-function of A∨, which coincides with that for A because A and A∨ are
isogenous.
C) LK([ρ], s) coincides with the usual Artin L-function of ρ, in particular we retrieve
the Dedekind zeta-function ζF (s) as LQ(h0(spec(F ), s).
D) The L-functions LK([ρ] ⊗ h1(A)(1), s) will play a crucial role for the interpolation
property of the p-adic L-function.

Also, the meromorphic continuation to the whole plane C is part of the conjectural
framework. The Taylor expansion

LK(M,s) = L∗
K(M)sr(M) + . . .

defines the leading coefficient L∗
K(M) ∈ C×, which can be shown to belong to R×

actually, and the order of vanishing r(M) ∈ Z of LK(M,s) at s = 0. The aim of the
conjectures to be formulated now is to express L∗(M) and r(M) in terms of motivic
and Galois cohomology.

Conjecture 3.2 (Order of Vanishing; Deligne-Beilinson).

r(M) = dimK H1
f (M

∗(1)) − dimK H0
f (M

∗(1))

3The name comes from an analogy with the theory of algebraic groups, see [4].
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According to the remark in [16] the duals of Hi
f (M

∗(1)) should be considered as ”mo-

tivic cohomology with compact support H2−i
c (M)” and thus r(M) is just their Euler

characteristic. This explains why the Kummer duals M∗(1) are involved here.

The link between the complex world, where the values L∗(M) live, and the p-adic world,
where the Galois cohomology lives, is formed by the fundamental line in CK following
the formulation of Fontaine and Perrin-Riou [18]:

∆K(M) : = dK(H0
f (M))−1dK(H1

f (M))dK(H0
f (M

∗(1))∗)dK(H1
f (M

∗(1))∗)−1

dK(M+
B )dK(tM )−1.

The relation of ∆K(M) with the Betti and de Rham realization of M is given by the
following

Conjecture 3.3 (Fontaine/Perrin-Riou). There exist an exact sequence of KR := R⊗Q

K-modules

0 // H0
f (M)R

c // ker(αM )
r∗B // (H1

f (M
∗(1))R)∗

h // H1
f (M)R

rB // coker(αM )
c∗ // (H0

f (M
∗(1))R)∗ // 0

where by −R we denote the base change from Q to R (respectively from K to KR), c is
the cycle class map into singular cohomology, rB is the Beilinson regulator map and (if
both H1

f (M) and H1
f (M

∗(1)) are nonzero so that M is of weight −1, then) h is a height
pairing.

Example 3.4. A),C) For the motive M = h0(spec(F )) the above exact sequence is
just the R-dual of the following

0 // O×
F ⊗Z R

r // Rr1 × Cr2 Σ // R // 0 ,

where r is the Dirichlet(=Borel) regulator map (see [5] for a comparison of the Beilinson
and Borel regulator map) and r1 and r2 denote the number of real and complex places
of F, respectively.
B) The Neron height pairing (see [3] and the references there)

<,>: A∨(Q)⊗Z R×A(Q)⊗Z R→ R

induces a homomorphism A∨(Q) ⊗Z R → HomZ(A(Q),R), the inverse of which gives
the exact sequence for the motive M = h1(A)(1).

We assume this conjecture. Using property e) and change of rings of the functor d, it
induces a canonical isomorphism (period-regulator map)

(3.10) ϑ∞ : KR ⊗K ∆K(M) ∼= 1KR
.

Conjecture 3.5 (Rationality; Deligne-Beilinson). There is a unique isomorphism

ζK(M) : 1K → ∆K(M)

such that for every embedding K → C we have

L∗
K(M) : 1C

ζK(M)C
// ∆K(M)C

(ϑ∞)C
// 1C
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In other words, the preimage ϑ∞(L∗
K(M)) of L∗

K(M) with respect to ϑ∞ generates
the K-vector space ∆K(M) if the determinant functor is identified with the highest
exterior product. Thus up to a period and a regulator (the determinant of ϑ∞ with
respect to a K-rational basis) the value L∗

K(M) belongs to K.

The rationality enables us to relate L∗
K(M) to the p-adic world which we will describe

now.

Let S be a finite set of places of Q containing p,∞ and the places of bad reduction
of M, then U := spec(Z[ 1

S ]) is an open dense subset of spec(Z). Then we have com-
plexes RΓc(U,Mp), RΓf (Q,Mp) and RΓf (Qv,Mp) calculating the (global) cohomol-
ogy Hi

c(U,Mp) with compact support, the finite part of global and local cohomology,
Hi
f (Q,Mp) and Hi

f (Qv,Mp), respectively, see 7. These complexes fit into a distinguished

triangle (see (7.60))

(3.11) RΓc(U,Mp) // RΓf (Q,Mp) //
⊕

v∈S RΓf (Qv,Mp) // .

On the other hand motivic cohomology specializes to the finite parts of global Galois
cohomology:

Conjecture 3.6. There are natural isomorphisms H0
f (M)Ql

∼= H0
f (Q,Ml) (cycle class

maps) and H1
f (M)Ql

∼= H1
f (Q,Ml) (Chern class maps).

Hence, as there is a duality Hi
f (Q,Ml) ∼= H3−i

f (Q,M∗
l (1))∗ for all i, this conjecture

determines all cohomology groups Hi
f (Q,Ml).

Using properties d), g) and change of rings of the determinant functor, the conjecture
3.6 for l = p, the canonical isomorphisms (see appendix 7.64)

ηp(Mp) : 1Kp → dKp(RΓf (Qp,Mp)) · dKp(t(Mp)),(3.12)

ηl(Mp) : 1Kp → dKp(RΓf (Ql,Mp)),(3.13)

the comparison isomorphisms (2.2) and (2.8) as well as (3.11), we obtain a canonical
isomorphism (p-adic period-regulator map)

(3.14) ϑp : ∆K(M)Kp
∼= dKp(RΓc(U,Mp))

−1,

which induces for any place λ above p

(3.15) ϑλ : ∆K(M)Kλ
∼= dKλ

(RΓc(U,Mλ))
−1.

Now let Tλ be a Galois stable Oλ-lattice of Mλ and RΓc(U, Tλ) its Galois cohomology
with compact support, see section 7. Here, Oλ denotes the valuation ring of Kλ.
Note that by Artin-Verdier/Poitou-Tate duality (see 7.61) the ”cohomology” RΓc(U, Tλ)
with compact support can also be replaced by the complex RΓ(U, T ∗

λ (1))∗ ⊕ (T ∗
λ (1))+

where RΓ(U, T ∗
λ (1)) calculates as usual the global Galois cohomology with restricted

ramification.

The following conjecture, for every prime p, gives a precise description of the special
L-value L∗

K(M) ∈ R× up to O×
K , i.e. up to sign if K = Q, where OK denotes the ring

of integers in K:
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Conjecture 3.7 (Integrality; Bloch/Kato, Fontaine/Perrin-Riou). Assume conjecture
3.5. Then for every place λ above p there exist a (unique) isomorphism

ζOλ
(Tλ) : 1Oλ

→ dOλ
(RΓc(U, Tλ))

−1

which induces via Kλ ⊗Oλ
− the following map

(3.16) ζOλ
(Tλ)Kλ

: 1Kλ

ζK(M)Kλ // ∆K(M)Kλ

ϑλ // dKλ
(RΓc(U,Mλ))

−1.

If we identify again the determinant functor with the highest exterior product, this con-
jecture can be rephrased as follows: ϑλϑ∞(L∗

K(M)) generates the Oλ-lattice
dKλ

(RΓc(U, Tλ))
−1 of dKλ

(RΓc(U,Mλ))
−1. In other words, this generator is determined

up to a unit in Oλ.
It can be shown that this conjecture is independent of the choice of S and Tλ.

Example 3.8. (Analytic class number formula) For the motive M = h0(spec(F )) we

have that r(M) = r1 + r2 − 1 if F ⊗Q R ∼= Rr1 × Cr2 and that L∗(M) = −|Cl(OF )|R
|µ(F )| for

the unit regulator R. Thus Conjectures 3.2,3.5 and 3.7 are theorems in this case!

For other known cases of these conjectures we refer the reader to the excellent survey
[16], where in particular the results of Burns-Greither [8] and Huber-Kings [21] are
discussed.

Another example will be discussed in the following section.

3.1. Equivalence to classical formulation of BSD. I am very grateful to Matthias
Flach for some advice concerning this section, in which we assume p 6= 2 for simplicity.
In order to see that the above conjectures for the motive M = h1(A)(1) of an abelian
variety A are equivalent to the classical formulation involving all the arithmetic invari-
ants of A one has to consider also integral structures for the finite parts of global and
local Galois cohomology. For Tp we take the Tate-module Tp(A

∨) of A∨. In particular
one can define perfect complexes of Zp-modules RΓf (Q, Tp) and RΓf (Qv, Tp) such that
the analogue of (3.11) holds, see [6, §1.5]. We just state some results concerning their
cohomology groups Hi

f in the following

Proposition 3.9 ([6, (1.35)-(1.37)]). (a)(global) If the Tate-Shafarevich group X(A/Q)
is finite, then one has

H0
f (Q, Tp) = 0 H3

f (Q, Tp)
∼= HomZ(A(Q)tors,Qp/Zp)(3.17)

H1
f (Q, Tp)

∼= A∨(Q)⊗Z Zp Hi
f (Q, Tp) = 0 for i 6= 0, 1, 2, 3(3.18)

and an exact sequence of Zp-modules

(3.19) 0 // X(A/Q)(p) // H2
f (Q, Tp) // HomZ(A(Q),Zp) // 0.

(b)(local) For all primes l one has

H0
f (Ql, Tp) = 0 H1

f (Ql, Tp) ∼= A∨(Ql)
∧p Hi

f (Ql, Tp) = 0 for i 6= 0, 1,(3.20)

where A∨(Ql)
∧p denotes the p-completion of A∨(Ql).
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Note that one has Hi
f (−, Tp)⊗Zp Qp

∼= Hi
f (−,Mp) for the local and global versions.

Recall from Example 2.2 B) that we have
(3.21)
∆Q(M) = dQ(A∨(Q)⊗Z Q))dQ(HomZ(A(Q),Q))−1dQ(H1(A

∨(C),Q)+)dQ(Lie(A∨))−1

In order to define the period and regulator we have to choose bases: we first fix
P∨

1 , . . . , P
∨
r ∈ A∨(Q) (respectively P1, . . . , Pr ∈ A(Q)), r = rkZ(A∨(Q)) = rkZ(A(Q)),

such that setting TA∨ :=
⊕

ZP∨
i (respectively T dA :=

⊕
ZP di ⊆ HomZ(A(Q),Z), where

P di denotes the obvious dual ”basis”) we obtain

A∨(Q) ∼= A∨(Q)tor ⊕ TA∨ HomZ(A(Q),Z) ∼= T dA.(3.22)

Similarly we fix a Z-basis γ+ = (γ+
1 , . . . , γ

+
d+

) of T+
B := H1(A

∨(C),Z)+ and Z-basis δ =

(δ1, . . . , δd+) of the Z-lattice LieZ(A∨) := HomZ(Ω1
B/Z(B),Z) of Lie(A∨), respectively.

Here B/Z denotes the (smooth, but not proper) Neron model of A∨ over Z. Thus we
obtain an integral structure of ∆Q(M) :

(3.23) ∆Z(M) := dZ(TA∨)dZ(T dA)−1dZ(T+
B )dZ(LieZ(A∨))−1

together with a canonical isomorphism

(3.24) 1Z

canZ // ∆Z(M)

induced by the above choices of bases.4

Define the period Ω+
∞(A) and the regulator RA of A to be the determinant of the maps

αM and h with respect to the bases chosen above, respectively. Then Conjecture 3.5
tells us that

(3.25) ζQ(M) =
L∗(M)

Ω+
∞(A) · RA

· canQ,

where canQ : 1Q → ∆Q(M) is induced from canZ by base change. Indeed, we have
Ω+
∞(A)RA = (ϑ∞)C ◦ (canQ)C and L∗(M) = (ϑ∞)C ◦ (ζQ(M))C in AutCC

(1C) = C× and

thus ζQ(M) differs from canQ by L∗(M)

Ω+
∞(A)·RA

.

On the other hand, using among others property h) of the determinant functor, Propo-
sition 3.9 and the identification T+

B ⊗Z Zp ∼= T+
p (induced from (2.2)) one easily verifies

that there is an isomorphism

∆Zp(M) := ∆Z(M)Zp
∼= dZp(RΓf (Q, Tp))

−1dZp(T
+
p )dZp(LieZp(A

∨))−1

· dZp(X(A/Q)(p))dZp(A(Q)(p))−1dZp(A
∨(Q)(p))−1,

(3.26)

where LieZp(A
∨) := LieZ(A∨)⊗Z Zp is a Zp-lattice of t(Mp) ∼= H1(A,OA)⊗Q Qp.

In order to compare this with the integral structure RΓc(U, Tp) of RΓc(U,Mp) we have
to introduce the local Tamagawa numbers cl(Mp) [18, I §4].

4The choice of the basis P∨

i of TA∨ induces a map Zr → TA∨ and, taking determinants, canP∨ :
dZ(Zr) → dZ(TA∨). Similarly, we obtain canonical isomorphisms canP d , canγ+ and canδ for T d

A, T
+
B

and LieZ(A∨), respectively. Set canZ := canP∨ · can−1

P d · canγ+ · can−1
δ .
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We first assume l 6= p. Then there is an exact sequence (cf. [18, §4.2])

(3.27) 0 // T Ilp
1−φl // T Ilp // H1

f (Ql, Tp) // H1(Il, Tp)
GQl
tors

// 0

which induces an isomorphism

(3.28) ψl : 1Zp → dZp([ T
Il
p

1−φl // T Ilp ]) ∼= dZp(RΓf (Ql, Tp))dZp(H
1(Il, Tp)

GQl
tors)

−1

∼= dZp(RΓf (Ql, Tp)).

Here the first map arises as trivialization by the identity, the second comes from the
above exact sequence (interpreted as short exact sequence of complexes) while the last
comes again from trivializing by the identity according to Remark 1.3.

We define cl(Mp) := |H1(Il, Tp)
GQl
tors| and remark that (ψl)Qp differs from ηl(Mp) precisely

by the map 1Qp

acyc
// dZp(dZp(H

1(Il, Tp)
GQl
tors)Qp

def
1Qp , which appealing to Remark 1.3

we also denote by cl(Mp). In other words we have

(3.29) (ψl)Qp = cl(Mp) · ηl(Mp).

Note also, that one has |A∨(Ql) ⊗Z Zp| = |Pl(Mp, 1)|−1
p · cl(Mp) and that cl(Mp) = 1

whenever A has good reduction at l.

It can be shown [35, Exp. IX,(11.3.8)] that cl is the order of the p-primary part of the
group of Fl-rational components (E/E0)(Fl) ∼= E(Fl)/E0(Fl) ∼= A(Qp)/A0(Qp) of the
special fibre E := AFl

of the smooth (but not necessarily proper) Neron model A of A
over Z.5

Now let l = p. Similarly one defines maps (both depending on the choice of δ)

(3.30) ψp : 1Zp → dZp(RΓf (Qp, Tp))dZp(LieZp(A
∨)),

(3.31) cp(Mp) : 1Qp → 1Qp ,

such that

(3.32) (ψp)Qp = cp(Mp) · ηp(Mp)

holds.6

5The first isomorphism is a consequence of the theorem of Lang [28] that the map x 7→ φ(x)x−1 on

the k-rational points of a connected algebraic group over a finite field k (with Frobenius φ) is surjective.
6Assume that A has dimension d and let B̂ be the formal group of A∨ over Zp, i.e. the formal

completion of B along the zero-section in the fibre over p. Note that LieZp(A∨) can be identified with

the tangent space tB̂(Zp) of B̂ with values in Zp (a good reference for formal groups is [14]). Furthermore

we write Ĝa for the formal additive group over Zp, B
◦ and B̃◦ for the connected component of the

identity of B and its fibre B̃ over p, respectively, and Φ for the group of connected components of B̃.

Again by Lang’s theorem we have Φ(Fp) = B̃(Fp)/B̃
◦(Fp). Moreover there are exact sequences

0 // B◦(Zp) // B(Zp) // Φ(Fp) // 0

and

0 // B̂(Zp) // B◦(Zp) // B̃◦(Fp) // 0.
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Using the integral version of (3.11), the maps ψl (analogously as ηl for ϑp (3.14))induce
a canonical map

(3.33) κp : ∆Zp(M)→ dZp(RΓc(Q, Tp))

where all the terms dZp(X(A/Q)(p)), dZp(A(Q)(p))−1 and dZp(A
∨(Q)(p))−1 are triv-

ialized by the identity. Hence, using again Remark 1.3, we have

(3.34) (κp)Qp =
|X(A/Q)|

|A(Q)tors||A∨(Q)tors|
∏

cl(Mp) · ϑp

modulo Z×
p . Since ζZp(Tp) equals κp ◦ canZp up to an element in Z×

p , it follows imme-
diately from (3.34),(3.25) and (3.16) that

(3.35)
L∗(M)

Ω+
∞(A) · RA

∼ |X(A/Q)|
|A(Q)tors||A∨(Q)tors|

∏
cl(Mp) mod Z×

p .

For all primes p this implies the classical statement of the BSD-Conjecture up to sign
(and a power of 2 due to our restriction p 6= 2).

4. The TNC - equivariant version

The first equivariant version of the TNC with commutative coefficients (other than
number fields) was given by Kato [24, 23] observing that classical Iwasawa theory is,
roughly speaking, nothing else than the ETNC for a ”big” coefficient ring. Inspired by
Kato’s work Burns and Flach formulated an ETNC where the coefficients of the motive
are allowed to be (possibly non-commutative) finite-dimensional Q-algebras, using for
the first time the general determinant functor described in section 1 and relative K-
groups. Their systematic approach recovers all previous versions of the TNC and more
over all central conjectures of Galois module theory. It were Huber and Kings [20] who
realized that the formulation of the ETNC by relative K-groups is equivalent to the
perhaps more suggestive use of ”generators,” i.e. maps of the form 1R → dR(?) in the
category CR for various rings R instead, see also Flach’s survey [16, §6]. They used
this approach to give - for motives of the form M∗(1− k) with k big enough, i.e. with
very negative weight - the first version of a ETNC over general p-adic Lie extensions,
which they call Iwasawa Main Conjecture (while in this survey we reserve this name
for versions involving p-adic L-functions). While Burns and Flach use ”equivariant”

Now the logarithm map

LieZp(A∨) ⊇ (pZp)
d = Ĝa(Zp)

d B̂(Zp) ⊆ A
∨(Qp)

∧p = H1
f (Qp, Tp)

log

∼=oo

induces the map ψp by trivializing all finite subquotients of the above line by the identity. Note that the
first subquotient on the left has order pd. Using [4, ex. 3.11], which says that the Bloch-Kato exponential
map coincides, up to the identification induced by the Kummer map, with the usual exponential map
of the corresponding formal group, it is easy to see that cp(Mp) := η−1

p · (ψp)Qp = η̄p ◦ (ψp)Qp equals

modulo Z×

p

cp(Mp) = p−d|P (Mp, 1)|
−1
p #B̃◦(Fp)(p)#Φ(Fp)(p) = #Φ(Fp)(p),

where we used the relation |P (Mp, 1)|p = |P (Ml, 1)|p = p−d#B̃◦(Fp)(p). For elliptic curves this is well
known [36, appenndix §16], the general case is an exercise using the description of the reduction of
abelian varieties in [35, Exp. IX].
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motives and L-functions in their general formalism, Fukaya and Kato realized that, at
least for the connection with Iwasawa theory which we have in mind, it is sufficient
to use non-commutative coefficients only for the Galois cohomology, but to stick to
number fields as coefficients for the involved motives. In this survey we closely follow
their approach.

To be more precise, consider for any motive M the motive h0(spec(F )) ⊗M (both
defined over Q) for some finite Galois extension F of Q with Galois group G = G(F/Q).
This motive has a natural action by the group algebra Z[G] and thus will be of particular
interest for Iwasawa theory where a whole tower of finite extensions Fn of Q is considered
simultaneously. Since there is an isomorphism of K-motives (for K sufficiently big)

h0(spec(F ))K ⊗M ∼=
⊕

ρ∈Ĝ

[ρ∗]nρ ⊗M

where ρ runs through all absolute irreducible representations of G and nρ denotes the
multiplicity with which it occurs in the regular representation of G on K[G], it suffices
- on the complex side - to consider the collection of K-motives [ρ∗] ⊗ M and their
L-functions or more precisely the corresponding leading terms and vanishing orders.
Indeed, the C-algebra C[G] can be identified with

∏
ρ∈ĜMnρ(C) and thus its first K-

group identifies with
∏
ρ∈Ĝ C× ∼= center(C[G]). In contrast, on the p-adic side, even

more when integrality is concerned, such a decomposition for Zp[G] is impossible in
general.

This motivated Fukaya and Kato to choose the following form of the ETNC. In fact,
in order to keep the presentation concise, we will only describe a small extract of their
complex and much more general treatment.

Let F be a p-adic Lie extension of Q with Galois group G = G(F/Q). By Λ = Λ(G) we
denote its Iwasawa algebra. For a Q -motive M over Q we fix a GQ-stable Zp -lattice
Tp of Mp and define a left Λ-module

T := Λ⊗Zp Tp

on which Λ acts via multiplication on the left factor from the left while GQ acts diago-
nally via g(x⊗ y) = xḡ−1 ⊗ g(y), where ḡ denotes the image of g ∈ GQ in G. This is a
”big Galois representation” in the sense of Nekovar [31]. Choose S as in the previous
section and such that T is unramified outside S and denote, for any number field F’, by
GS(F ′) the Galois group of the maximal outside S unramified extension of F ′. Then by
Shapiro’s Lemma the cohomology of RΓ(U,T) for example is nothing else than the per-
haps more familiar Λ(G)-module Hi

Iw(F, Tp) := lim←−F ′
Hi(GS(F ′), Tp) where the limit is

taken with respect to corestriction and F ′ runs over all finite subextensions of F/Q.

Let K be a finite extension of Q, λ a finite place of K, Oλ the ring of integers of
the completion Kλ of K at λ and assume that ρ : G → GLn(Oλ) is a continuous
representation of G which, for some suitable choice of a basis, is the λ-adic realization
Nλ of a some K-motive N. We also write ρ for the induced ring homomorphism Λ →
Mn(Oλ) and we consider Onλ as a right Λ-module via action by ρt on the left, viewing
Onλ as set of column vectors (contained in Kn

λ .) Note that, setting M(ρ∗) := N∗ ⊗M,
we obtain an isomorphism of Galois representations

Onλ ⊗Λ T ∼= Tλ(M(ρ∗)),
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where Tλ(M(ρ∗)) is the Oλ-lattice ρ∗ ⊗ Tp of M(ρ∗)λ and ρ∗ denotes the contragredi-
ent(=dual) representation of ρ.

Now the equivariant version of conjecture 3.7 reads as follows

Conjecture 4.1 (Equivariant Integrality; Fukaya/Kato). There exists a (unique)7 iso-
morphism

ζΛ(M) := ζΛ(T) : 1Λ → dΛ(RΓc(U,T))−1

with the following property:

For all K,λ and ρ as above the (generalized) base change Onλ ⊗Λ − sends ζΛ(M) to
ζOλ

(Tλ(M(ρ∗))).

Note that this conjecture assumes conjecture 3.7 for all K-motives M(ρ∗) with varying
K. Furthermore, it is independent of the choice of S and of the lattices Tp(M) and
Tλ(M(ρ∗)).

One obtains a slight modification - to which we will refer as the Artin-version - of
the above conjecture by restricting the representations ρ in question to the class of all
Artin representations of G, (i.e. having finite image). If F/Q is finite, both versions
coincide. Moreover, it is easy to see8 that in this situation the conjecture is equivalent
to (the p-part of) Burns and Flach’s equivariant integrality conjecture [7, conj. 6] for
the Q-algebra Q[G] with Z-order Z[G]. Also, T = Zp[G] ⊗ Tp(M) identifies with the

induced representation IndGF

GQ
Tp(M).

Assume now that F =
⋃
n Fn is the union of finite extensions Fn of Q with Galois groups

Gn. Putting ζQp[Gn](M) = Qp[Gn]⊗Λ ζΛ(M) one recovers the ”generator” δp(Gn,M, k)9

(for k big enough) in [20] as ζQp[Gn](M
∗(1 − k)). Hence, up to shifting and Kummer

duality, the Artin-version of conjecture 4.1 for F is (morally) equivalent to [20, Conj.
3.2.1]. Hence, using [20, lem. 6.0.2] we obtain the following

7 In fact, Fukaya and Kato assign such an isomorphism to each pair (R,T) where R belongs to a
certain class of rings containing the Iwasawa algebras for arbitrary p-adic Lie extensions of Q as well
as the valuation rings of finite extensions of Qp and where T is a projective R-module endowed with a
continuous GQ-action. Then ζ?(?) is supposed to behave well under arbitrary change of rings for such
pairs. Moreover they require that the assignment T 7→ ζR(T) is multiplicative for short exact sequences.
Only this full set of conditions leads to the uniqueness [19, §2.3.5], while e.g. for finite a group G the
map K1(Zp[G])→ K1(Q[G]) need not be injective and thus ζZp[G](?) might not be unique if considered

alone.
8If we assume that K is big enough such that K[G] decomposes completely into matrix algebras with

coefficients in K, then the equivariant integrality statement (inducing (absolute) integrality for M(ρ∗)
for all Artin representations of G) amounts to an integrality statement for the generator ζKλ[G](M) :=
Kλ[G]⊗Zp[G] ζZp[G](M) and thus Burns and Flach’s version for the Q-algebra K[G] with order OK [G].
Using the functorialities of their construction [7, thm. 4.1], it is immediate that taking norms leads to
the conjecture for the pair (Q[G],Z[G]).

9To be precise, this is only morally true, since Huber and Kings take for the definition of their
generators the leading coefficients of the modified L-function without the Euler factors in S. It is not
clear to what extent this is compatible with our formulation above
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Proposition 4.2 (Huber/Kings). Assume Conjectures 3.2, 3.5 and 3.7 for all M(ρ∗)
where ρ varies over all absolutely irreducible Artin representations of G. Then the ex-
istence of ζΛ(G)(M) satisfying the Artin-version of Conjecture 4.1 is equivalent to the
existence of ζΛ(Gn)(M) for all n.

In general, as remarked in footnote 7, ζZp[Gn](M) might not be unique (if it is consid-
ered alone). But it is realistic to hope uniqueness for infinite G (cf. [25]) and then
the previous zeta isomorphism would be unique by the requirement ζZp[Gn](M) =
Zp[Gn] ⊗Λ(G) ζΛ(G)(M). Indeed, this is true at least if G is big enough, see [19, prop.
2.3.7]. Moreover, as Huber and Kings [20, §3.3] pointed out, by twist invariance (over
trivializing extensions F/Q for a given motive) arbitrary zeta-isomorphism ζΛ(M) are
reduced to those of the form ζZp[G(F/Q)](Q) for the trivial motive and where F runs
through all finite extensions of Q.

Question: Does the Artin-version imply the full version of Conjecture 4.1 ?

5. The functional equation and ǫ-isomorphisms

The L-function of a Q-motive satisfies conjecturally a functional equation, which we
want to state in the following way (to ease the notation we suppress the subscript Q in
this section)

L(M,s) = ǫ(M,s)
L∞(M∗(1),−s)
L∞(M,s)

L(M∗(1),−s)

where the factor L∞ at infinity is built up by certain Γ-factors and certain powers of
2 and π depending on the Hodge structure of MB . The ǫ-factor decomposes into local
factors

ǫ(M,s) =
∏

v∈S

ǫv(M,s),

where the definition for finite places is recalled in footnotes 11 and 14; ǫ∞(M,s) is
a constant equal to a power of i.10 We assume this conjecture. Then, taking leading
coefficients induces

L∗(M) = (−1)ηǫ(M)
L∗
∞(M∗(1))

L∗
∞(M)

L∗(M∗(1))

where ǫ(M) =
∏
ǫv(M) with ǫν(M) = ǫ(M, 0) and η denotes the order of vanishing at

s = 0 of the completed L-function L∞(M∗(1), s)L(M∗(1), s).

Example 5.1. For the motive M = h1(A)(1) of an abelian variety one has L∞(M,s) =

L∞(M∗(1), s) = 2(2π)−(s+1)Γ(s + 1), L∗
∞(M) = L∗

∞(M∗(1)) = π−1, ǫ∞(M) = −1 and
η = 0.

It is in no way obvious that the ETNC is compatible with the functional equation
and Artin-Verdier/Poitou-Tate duality. The following discussion is a combination and
reformulation of [7, section 5] and [32, Appendix C]. In order to formulate the precise

10We fix once and for all the complex period 2πi, i.e. a square root of −1, and, for every l, the l-adic
period t = ”2πi”, i.e. a generator of Zl(1).
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condition under which the compatibility holds we first return to the absolute case and
define ”difference” terms

L∗
dif (M) := L∗(M)L∗(M∗(1))−1 = (−1)ηǫ(M)

L∗
∞(M∗(1))

L∗
∞(M)

and

∆dif (M) := dQ(MB)dQ(MdR)−1.

We obtain an isomorphism

ϑPD : ∆Q(M) ·∆Q(M∗(1))∗ ∼= ∆dif (M)

which arises from the mutual cancellation of the terms arising from motivic cohomology,
the following isomorphism

M+
B ⊕ (M∗

B(1)+)∗ ∼= M+
B ⊕MB(−1)+ ∼= MB,

where the last map is (x, y) 7→ x+2πiy, and from the Poincare duality exact sequence

(5.36) 0 // (tM∗(1))
∗ // MdR

// tM // 0.

On the other side define an isomorphism

ϑdif∞ : ∆dif (M)R
∼= 1R

applying the determinant to (2.4) and to the following isomorphism

(5.37) (C⊗Q MB)+ = (R⊗Q M
+
B )⊕ (R(2πi)−1 ⊗Q M

−
B ) ∼= (MB)R

where the last map is induced by R(2πi)−1 → R, x 7→ 2πix.

Due to the autoduality of the exact sequence of Conjecture 3.3 (see [7, lem. 12]) we
have a commutative diagram

∆Q(M) ·∆Q(M∗(1))∗

ϑ∞(M)·ϑ∞(M∗(1))∗

��

ϑPD
R // ∆dif (M)

ϑdif
∞

��

1R

id1R // 1R

Thus we obtain the following

Proposition 5.2 (Rationality). Assume that Conjecture 3.5 is valid for the Q-motive
M. Then it is also valid for its Kummer dual M∗(1) if and only there exists a (unique)
isomorphism

ζdif (M) : 1Q → ∆dif (M)

such that we have

L∗
dif (M) : 1C

ζdif (M)C
// ∆dif (M)C

(ϑdif
∞ )C

// 1C

Putting tH(M) :=
∑

r∈Z rh(r) with h(r) := dimK gr
r(MdR)(= dimKλ

grr(DdR(Mλ)))
for a K-motive M and noting that tH(M) = tH(det(M)), we have in fact the following

Theorem 5.3 (Deligne [15, thm. 5.6], Burns-Flach [7, thm. 5.2]). If the motive det(M)
is of the form Q(−tH(M)) twisted by a Dirichlet character, then ζdif (M) exists.
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Deligne [15] conjectured that the condition of the theorem is satisfied for all motives.
It is known to hold in all examples A)-E).

See (5.41) below for the rationality statement which is hidden in the formulation of this
theorem. Now we have to check the compatibility with respect to the p-adic realizations.
To this aim we define the isomorphism

ϑdifp : ∆dif (M)Qp
∼= dQp(Mp) ·

∏

S\S∞

dQp(RΓ(Ql,Mp))

as follows: Apply the determinant to (2.2) and multiply the resulting isomorphism with

idd(MdR)−1 ·
∏

l∈S\S∞

Θl(Mp) : d(MdR)−1 →
∏

S\S∞

dQp(RΓ(Ql,Mp))

where Θl(Mp) = ηl(M) · ηl(M∗(1)) is defined in the appendix 7.

On the other hand Artin-Verdier/Poitou-Tate Duality induces the following isomor-
phism

dQp(RΓc(U,Mp))
−1 ∼= dQp(RΓ(U,Mp))

−1dQp(
⊕

v∈S

RΓ(Qv,Mp))

∼= dQp(RΓc(U,M
∗
p (1))∗)dQp((M

∗
p (1)+)∗)

∏

v∈S

dQp(RΓ(Qv,Mp))

∼= dQp(RΓc(U,M
∗
p (1))∗)dQp(Mp(−1)+)dQp(M

+
p )

∏

l∈S\S∞

dQp(RΓ(Ql,Mp)).

Using the identification

(5.38) M+
p ⊕Mp(−1)+ = M+

p ⊕M−
p (−1) ∼= Mp,

where the last map is induced by multiplication with the p-adic period t = ”2πi” :
M−
p (−1)→M−

p , we obtain

ϑAVp : dQp(RΓc(U,Mp))
−1 ·dQp(RΓc(U,M

∗
p (1))∗)−1 ∼= dQp(Mp) ·

∏

S\S∞

dQp(RΓ(Ql,Mp)).

Again one has to check the commutativity of the following diagram (cf. [7, lem. 12])

∆Q(M)Qp ·∆Q(M∗(1))∗Qp

ϑp(M)·ϑp(M∗(1))∗

��

(ϑPD)Qp
// ∆dif (M)Qp

ϑdif
p

��

dQp(RΓc(U,Mp))
−1 · dQp(RΓc(U,M

∗
p (1))∗)−1

ϑAV
p

// dQp(Mp) ·
∏
S\S∞

dQp(RΓ(Ql,Mp)).

Note that analogous maps exist and analogous properties hold also if we replace Mp

by a Galois stable Zp-lattice Tp or even by the free Λ-module T. Thus we obtain the
following
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Proposition 5.4 (Integrality). Assume that Conjecture 3.7 is valid for the Q-motive
M. Then it is also valid for its Kummer dual M∗(1) if and only there exists a (unique)
isomorphism

ζdifZp
(Tp) : 1Zp → dZp(Tp) ·

∏

S\S∞

dZp(RΓ(Ql, Tp)).

which induces via Qp ⊗Zp − the following map

1Qp

ζdif (M)Qp
// ∆dif (M)Qp

ϑdif
p

// dQp(Mp) ·
∏
S\S∞

dQp(RΓ(Ql,Mp)).

If this holds we have, using the above identifications, the functional equation

ζZp(Tp) = (ζZp(T
∗
p (1))∗)−1 · ζdifZp

(Tp)

Note that (ζZp(T
∗
p (1))∗)−1 is the same as ζZp(T

∗
p (1))∗ · iddZp (RΓc(U,T ∗

p (1))∗) according to

Remark 1.2(i). Needless to say that all the above has an analogous version for K-
motives whose formulation we leave to the reader. Then it is clear how the equivariant
version of this proposition looks like:

Proposition 5.5 (Equivariant Integrality). Assume that Conjecture 4.1 is valid for
the Q-motive M. Then it is also valid for its Kummer dual M∗(1) if and only if there
exists a (unique) isomorphism

ζdifΛ (M) : 1Λ → dΛ(T) ·
∏

S\S∞

dΛ(RΓ(Ql,T)).

with the following property (∗) :

For all K,λ and ρ as before Conjecture 4.1 the (generalized) base change Onλ⊗Λ− sends

ζdifΛ (M) to ζdifOλ
(Tλ(M(ρ∗))), the analogue of ζdifZp

(Tp) for the K-motive M(ρ∗).

If this holds we have the functional equation

ζΛ(M) = (ζΛ(M∗(1))∗)−1 · ζdifΛ (M)

Thus we formulate the

Conjecture 5.6 (Local Equivariant Tamagawa Number Conjecture). The isomor-

phism ζdifΛ (M) in the previous Proposition exists (uniquely).

5.1. ǫ-isomorphisms. One obtains a refinement of the above functional equation if
one looks more closely to which part of the Galois cohomology (and comparison iso-
morphisms) the factors occurring in L∗

dif (M) belong precisely. We first recall from [32]

(5.39)
L∗
∞(M∗(1))

L∗
∞(M)

= ±2d−(M)−d+(M)(2π)−(d−(M)+tH (M))
∏

j∈Z

Γ∗(−j)−hj(M)

where Γ∗(−j) is defined to be Γ(j) = (j − 1)! if j > 0 and lims→j(s − j)Γ(s) =
(−1)j((−j)!)−1 otherwise.

The factor (2π)−(d−(M)+tH (M)) arises as follows. Assume for simplicity that det(M) =
Q(−tH(M)). Then fixing a Q- basis γ = (γ+, γ−) of MB and ω = (δM , δM∗(1)) of
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MdR which induce the canonical basis (cf. example A)) of det(M)B and det(M)dR,
respectively, gives rise to a map

(5.40) 1Q

canγ,ω
// dQ(MB)dQ(MdR)−1.

Base and change and the comparison isomorphism (2.3) induce

1C

(canγ,ω)C
// dQ(MB)CdQ(MdR)−1

C

d(g∞)
// 1C

whose value Ωdif
∞ in C× is nothing else than the inverse of the determinant over C of

the comparison isomorphism

C⊗Q det(M)B → C⊗Q det(M)dR

and thus Ωdif
∞ = (2πi)−tH (M). But note that due to the definition of (5.37) the above

map differs from (ϑdif∞ )C ◦ (canγ,ω)C by the factor (2πi)−d−(M). Thus we obtain an

explanation of the factor (2πi)−(tH (M)+d−(M)). Moreover, Theorem 5.3 and Proposition
5.2 tell us that
(5.41)

L∗
dif (M)

(2πi)−d−(M)Ωdif
∞

= ±2d−(M)−d+(M) ǫ∞(M)

i−(tH (M)+d−(M))

∏

l∈S\S∞

ǫl(M)
∏

j∈Z

Γ∗(−j)−hj(M)

is rational and that ζdif (M) is the map canγ,ω multiplied by this rational number.

The factor 2d−(M)−d+(M) arises as quotient of the Tamagawa factors of M and M∗(1)
at infinity. One can either cover it by defining Θ∞ (see below) or changing the last
map of the identification in (5.38) as follows: on the summand M+

p multiply with 2

and on M−
p by 1

2 (as Fukaya and Kato do).

The map (5.40) induces 1Qp → ∆dif (M)Qp
∼= dQp(Mp)dQp(DdR(Mp))

−1 and further-
more

1BdR

(canγ,ω)BdR // ∆dif (M)BdR

dQp(gdR)BdR // 1BdR

whose value Ωdif
p in B×

dR is nothing else than the inverse of the determinant over BdR
of the comparison isomorphism

BdR ⊗Qp DdR(det(M)p)→ BdR ⊗Qp det(M)p

and thus Ωdif
p = (2πi)−tH (M), where we consider the p-adic period t = 2πi as an element

of BdR. Note that (BdR)Ip = Q̂nr
p , the completion of the maximal unramified extension

Qnr
p of Qp. We need the following

Lemma 5.7 ([19, prop. 3.3.5],[32, C.2.8]). The map ǫp(M) ·Ωdif
p · (can)BdR

comes from
a map

ǫdR(Mp) : 1
Q̂nr

p
→ d

Q̂nr
p

(Mp)dQ̂nr
p

(DdR(Mp))
−1.

Moreover, let L be any finite extension of Qp. Then a similar statement holds for any
finite dimensional L-vector space V with continuous GQp-action instead of Mp

11. We

11ǫp(V ) = ǫ(Dpst(V )) where Dpst(V ) is endowed with the linearized action of the Weil-group and
thereby considered as a representation of the Weil-Deligne group, see [19, §3.2], [18] or [32, appendix C].
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write ǫdR(V ) for the corresponding map, which is defined over L̃ := Q̂nr
p ⊗Qp L (see [19,

prop. 3.3.5] for details).

For any V as in the lemma we define an isomorphism

ǫp,L(V ) : 1L̃ →
(
dL(RΓ(Qp, V ))dL(V )

)
L̃

as product of ΓL(V ) :=
∏

Z Γ∗(j)−h(−j), Θp(V ) (see appendix 7.65) and ǫdR(V ), where
h(j) = dimL gr

jDdR(V ).

Now let T be a Galois stable O := OL-lattice of V and set Õ := W (Fp) ⊗Zp O,
where W (Fp) denotes the Wittring of Fp. The following conjecture is a local integrality
statement

Conjecture 5.8 (Absolute ǫ-isomorphism). There exists a (unique) isomorphism

ǫp,O(T ) : 1
Õ
→

(
dO(RΓ(Qp, T ))dO(T )

)
Õ

with induces ǫp,L(V ) by base change L⊗O −.

This conjecture, which is equivalent to conjecture CEP (V ) in [18, III 4.5.4], or more
precisely its equivariant version below is closely related to the conjecture δZp(V ) [32]
via the explicit reciprocity law Réc(V ), which was conjectured by Perrin-Riou and
proven independently by Benois [1], Colmez [13], and Kurihara/Kato/Saito [22]. In
particular, the above conjecture is known for ordinary cristalline p-adic representations
[32, 1.28,C.2.10] and for certain semi-stable representations, see [2].

To formulate an equivariant version, define

Λ̃ := Ẑnrp [[G]] = lim←−
n

(
W (Fp)⊗Zp Zp[G/Gn]

)
,

where Ẑnrp = W (Fp) denotes the ring of integers of Q̂nr
p . We assume L = Qp and set as

before T := Λ⊗Zp T (but later T might differ from our global Tp). We write T (ρ∗) for
the O-lattice ρ∗ ⊗ T of ρ∗ ⊗ V, which we assume de Rham.

Conjecture 5.9 (Equivariant ǫ-isomorphism). There exists a (unique)12 isomorphism

ǫp,Λ(T) : 1Λ̃ →
(
dΛ(RΓ(Qp,T))dΛ(T)

)
Λ̃

such that for all ρ : G→ GLn(O) ⊆ GLn(L), L a finite extension of Qp with valuation
ring O, we have

On ⊗Λ ǫp,Λ(T) = ǫp,O(T (ρ∗)).

Furthermore, we suppress the dependence of the choice of a Haar measure and of t = 2πi in the notation.

The choice of t = (tn) ∈ Zp(1) determines a homomorphism ψp : Qp → Q̄p
×

with ker(ψp) = Zp sending
1

pn to tn ∈ µpn .
12Again, Fukaya and Kato assign such an isomorphism to each triple (R,T, t), where R is as before,

T is a projective R-module endowed with a continuous GQp -action and t is a generator of Zp(1). Then
ǫp,?(?) is supposed to behave well under arbitrary change of rings for such pairs. Moreover they require
that the assignment T 7→ ǫp,R(T) is multiplicative for short exact sequences, that it satisfies a duality

relation when replacing T by T∗(1), that the group Gab
Qp

acts on a predetermined way (modifying t)

compatible in a certain sense with the Frobenius ring homomorphism on Λ̃ induced from the absolute
Frobenius of Fp. Only this full set of conditions may lead to the uniqueness in general.
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If T = Tp ⊆Mp is fixed we also write ǫp,Λ(M) for ǫp,Λ(T).

Similarly we proceed in the case l 6= p, formulating just one

Conjecture 5.10. There exists a (unique)13 isomorphism

ǫl,Λ(T) : 1
Λ̃
→ dΛ(RΓ(Ql,T))

Λ̃

such that for all ρ : G→ GLn(L), L a finite extension of Qp, we have

On ⊗Λ ǫl,Λ(T) = ǫl,O(T (ρ∗)).

Here ǫl,O(T (ρ∗)) is the analogue of the above with respect to O instead of Λ and required
to induce

L⊗O ǫl,O(T (ρ∗))) = Θl(V ) · ǫl(V (ρ∗))

and its existence is part of the conjecture14.

For commutative Λ this conjecture was proved by S. Yasuda [38] and it seems that he
can extend his methods to cover the non-commutative case, too.

If T = Tp ⊆Mp we also write ǫl,Λ(M) for ǫl,Λ(T).

Finally we set ǫ∞,Λ(M) = ±2d−(M)−d+(M) ǫ∞(M)

i−(tH(M)+d−(M)) where the sign is that which

makes (5.39) correct. The following result is now immediate.

Theorem 5.11 (cf. [19, conj. 3.5.5]). Assume Conjectures 5.8, 5.9 and 5.10. Then

Conjecture 5.6 holds, ζdifΛ (M) =
∏
v∈S ǫv,Λ(M) and we have the functional equation

ζΛ(M) = (ζΛ(M∗(1))∗)−1 ·
∏

v∈S

ǫv,Λ(M)

6. p-adic L-functions and the Iwasawa main conjecture

A p-adic L-function attached to a Q-motive M should be considered as a map on certain
class of representations of G which interpolates the L-values of the twists M(ρ∗) at 0.
The experience from those cases where such p-adic L-functions exist, shows that one
has to modify the complex L-values by certain factors before one can hope to obtain
a p-adic interpolation (cf. [9, 10] or [32] ). The reason for this becomes clearer if one
considers the Galois cohomology involved together with the functional equation; in fact,
that was the main motivation of the previous section.

In order to evaluate e.g. the ζ-isomorphism or a modification of it at a representation
ρ over a finite extension L of Qp, one needs that the complex ρ ⊗Λ C, where C is (a
modification of) RΓc(U,T), becomes acyclic: then the induced map 1L → dL(ρ⊗ΛC)→
1L can be considered as value in K1(L) = L× at ρ.

13A similar comment as in the previous statement applies here.
14 ǫl(V ) = ǫ(V ) where V is considered as representation of the Weil-Deligne group of Ql and where

we suppress the dependence of the choice of a Haar measure and of t = 2πi in the notation. The choice

of t = (tn) ∈ Zl(1) determines a homomorphism ψl : Ql → Q̄l
×

with Ker(ψl) = Zl sending 1
ln

to
tn ∈ µln . The formulation of this conjecture is equivalent to [19, conj. 3.5.2] where the constants ǫ0 are
used instead of ǫ and where θl does not occur. More precisely, our ǫl,Λ(T) equals ǫ0,Λ(Ql, T, ξ) · sl(T )
in [19, 3.5.2,3.5.4]



BSD, ETNC AND MC 25

In general, RΓc(U,T) does not behave good enough and will have to be replaced by some
Selmer complex, which we well achieve in two steps. This modification corresponds to
a shifting of certain Euler- and ǫ-factors from one side of the functional equation to the
other such that both sides are balanced.

Though the following part of the theory holds in much greater generality (e.g. in the
ordinary good reduction case, but not in the supersingular good reduction case) we just
discuss the case of abelian varieties in order to keep the situation as concise as possible.
Thus let A be an abelian variety over Q with good ordinary reduction at a fixed prime
p 6= 2 and set M = h1(A)(1) as before. Let F∞ be an infinite p-adic Lie extension of Q

with Galois group G. For simplicity we assume also that G has no element of order p,
hence its Iwasawa algebra Λ = Λ(G) is a regular ring.

Due to our assumption on the reduction type of A, we have the following fact: There is
a unique Qp-subspace V̂ of V = Mp which is stable under the action of GQp and such
that

(6.42) DdR(V̂ ) ∼= DdR(V )/D0
dR(V ).

More precisely, V̂ = Vp(Â∨) where Â∨ denotes the formal group of the dual abelian
variety A∨, i.e. the formal completion of the Neron model A/Zp of A∨ along the

zero section of the special fibre Ã. Then (6.42) arises from the unit root splitting

D0
dR(Vp(Ã)) ∼= D0

dR(V ) ⊆ DdR(V ) (see [30, 1.31]) which is induced from applying
D0
dR(−) to the exact sequence of GQp-modules

0 // Vp(Â∨) // Vp(A
∨) // Vp(Ã) // 0.

Let T be the GQ-stable Zp-lattice Tp(A
∨) of V and set

T̂ := T ∩ V̂ ,
a GQp-stable Zp-lattice of V̂ . As before let T denote the big Galois representation

Λ⊗Zp T and put T̂ := Λ⊗Zp T̂ similarly. Then T̂ is GQp-stable sub-Λ-module of T. In
fact, it is a direct summand of T and we have an isomorphism of Λ-modules

(6.46) β : dΛ(T+) ∼= dΛ(T̂).15

15which arises as follows: Choose a basis γ+ = (γ+
1 , . . . , γ

+
r ) of H1(A

∨(C),Q)+ and γ− =
(γ−

1 , . . . , γ
−

r ) of H1(A
∨(C),Q)−, which gives rise to a Zp-basis of T+ ∼= (H1(A

∨(C),Z) ⊗Z Zp)
+ and

T− ∼= (H1(A
∨(C),Z) ⊗Z Zp)

− respectively, where r = d+(M) = d−(M). Then we obtain an isomor-
phisms

(6.44) Λr ∼= T
+ and φ : dΛ(Λr)→ dΛ(T+)

using the Λ-basis 1+ι
2
⊗ γ+

j + 1−ι
2
⊗ γ−

j , 1 ≤ j ≤ r, of T+. On the other hand one can choose a Q-basis

δ = (δ1, . . . , δr) of Lie(A∨) (e.g. a Z-basis of LieZ(A∨) as in section 3.1) such that the isomorphism

(6.45) dQp(Qr
p)Q̂nr

p

∼= dQp(Qp ⊗Q tM )
Q̂nr

p

∼= dQp(DdR(V̂ ))
Q̂nr

p

∼= dQp(V̂ )
Q̂nr

p
,

which is induced by δ, (2.8), (6.42) and ǫdR(V̂ )) (according to Lemma 5.7, but note that ǫp(V̂ ) = 1 due
to the good reduction), comes from an isomorphism

dZp(Zr
p)Ẑnr

p

∼= dZp (T̂ )
Ẑnr

p
,

where Ẑnr
p := W (Fp). Then base change Λ̃⊗

Ẑnr
p
− induces an isomorphism

(6.46) ψ : dΛ(Λr)Λ̃
∼= dΛ(T̂)Λ̃.
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In this good ordinary case one can now first replace RΓc(U,T) by the Selmer complex

SCU := SCU (T̂,T) (see (7.66)) which fits into the following distinguished triangle

(6.47) RΓc(U,T) // SCU // T+ ⊕RΓ(Qp, T̂) //

and thus induces an isomorphism

dΛ(RΓc(U,T))−1 ∼= dΛ(SCU )−1dΛ(T+)dΛ(RΓ(Qp, T̂)).

The p-adic L-function LU = LU,β(M,F∞/Q) arises from the zeta-isomorphism ζΛ(M)
by a suitable cancellation of the two last terms, compatible with the functional equation.
This is achieved by putting

(6.48) LU := (β · id
dΛ(SCU )−1dΛ(T̂)−1) ◦ (ǫp,Λ(T̂)−1 · ζΛ(M)) : 1Λ̃ → dΛ(SCU )−1

Λ̃
.

In order to arrive at a p-adic L-function which is independent of U one has to replace
SCU by another Selmer complex SC := SC(T̂,T) ((7.67)), which fits into a distin-
guished triangle

(6.49) SCU // SC //
⊕

l∈S\{p,∞} RΓf (Ql, T̂) // ,

where for l 6= p

(6.50) RΓf (Ql, T̂) ∼= [ T̂Il
1−ϕl // T̂Il]

in the derived category. Replacing T̂Il by a projective resolution if necessary and using
the identity isomorphism of it we obtain isomorphisms

(6.51) ζl(M) = ζl(M,F∞/Q) : 1Λ → dΛ(RΓf (Ql, T̂))−1

and we define the p-adic L-function

(6.52) L = L(M) = LU ·
∏

l∈S\{p,∞}

ζl(M) : 1Λ̃ → dΛ(SC)−1

Λ̃
.

Let Υ be the set of all l 6= p such that the ramification index of l in F∞/Q is infinite.
Note that Υ is empty if G has a commutative open subgroup.

Lemma 6.1. [19, prop. 4.2.14(3)] T̂Il = 0 and thus ζl(M) = 1 in K1(Λ) for all l in Υ.

Let us derive the interpolation property of LU and L. Whenever Ln ⊗L
Λ SCU is acyclic

for a continuous representation ρ : G→ GLn(OL), L a finite extension of Qp, we obtain

an element LU (ρ) ∈ L̂nr× from the isomorphism

1L̃
Ln⊗ΛLU // dL̃(Ln ⊗L

Λ SCU )−1 acyclic
// 1L̃

which via K1(L̃)→ K1(L̂nr) can be considered as element of L̂nr
×
.

Let K be a finite extension of Q, ρ : G → GLn(OK) an Artin representation, [ρ∗]
the Artin motive corresponding to ρ∗. Fix a place λ of K above p, put L := Kλ and
consider the L-linear representation of GQ or its restriction to GQl

W := M(ρ∗)λ = [ρ∗]λ ⊗Qp Mp

Now β = βγ,δ is ψ ◦ φ.
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and the GQp-representation

Ŵ := [ρ∗]λ ⊗Qp V̂ .

For a GQp-representation V define PL,l(V, u) := detL(1 − ϕlu|V Il) ∈ L[u] if l 6= p and
PL,p(V, u) := detL(1− ϕpu|Dcris(V )) ∈ L[u] otherwise.

Some conditions for acyclicity are summarized in the next

Proposition 6.2 ([19, 4.2.21, 4.1.6-8]). Assume the following conditions:

(i) Hj
f (Q,W ) = Hj

f (Q,W
∗(1)) = 0 for j = 0, 1,

(ii) PL,l(W, 1) 6= 0 for any l ∈ Υ (respectively for any l ∈ S \ {p,∞}).
(iii) {PL,p(W,u)PL,p(Ŵ , u)−1}u=1 6= 0 and PL,p(Ŵ

∗(1), 1) 6= 0.

Then the following complexes are acyclic: Ln ⊗L
Λ,ρ SC (respectively Ln ⊗L

Λ,ρ SCU ),

RΓf (Ql,W ) = Ln ⊗L
Λ,ρ RΓf (Ql,T), for any l ∈ Υ (respectively for any l ∈ S \ {p}).

Furthermore, there is a quasi-isomorphism

RΓ(Qp, Ŵ )→ RΓf (Qp,W ).

Finally, assuming Conjectures 3.2 and 3.6, LK(M(ρ∗), s) has neither zero or pole at
s = 0.

Henceforth we assume the conditions (i)-(iii).

We define Ω∞(M(ρ∗)) ∈ C× to be the determinant of the period map C⊗RαM(ρ∗) with
respect to the K-basis which arise from γ (respectively δ) and the basis given by ρ. It
is easy to see that we have

(6.53) Ω∞(M(ρ∗)) = Ω+
∞(M)d+(ρ)Ω−

∞(M)d−(ρ),

where d±(ρ) = d±([ρ]) and Ω±
∞(M) is the determinant of C ⊗Q M

±
B
∼= C ⊗Q tM with

respect to the basis γ± and δ. Assuming Conjecture 3.5 we have

LK(M(ρ∗), 0)

Ω∞(M(ρ∗))
∈ K×.

We claim that, using Proposition 7.2, the isomorphism LU (ρ)

1
ζΛ(M)(ρ)=

ϑλ◦ζ(M(ρ∗))
// d(RΓc(U,W ))−1

=· ǫp,L(Ŵ )−1

· ǫp,Λ(T̂)−1(ρ)
// d(SCU (Ŵ ,W ))−1d(Ŵ )−1d(W+) //

id·β(ρ)
// d(SCU (Ŵ ,W ))−1

acyc
// 1

(we suppress for ease of notation the subscripts and remind the reader of our convention
in Remark 1.2) is the product of the following automorphisms of 1 :

(1) LK(M(ρ∗), 0)Ω∞(M(ρ∗))−1,

(2) ΓL(Ŵ )−1 = ΓQp(V̂ )−1,

(3) Ωp(M(ρ∗)) which is, by definition, the composite
(6.54)

d(Ŵ )
· ǫdR(Ŵ )−1

// d(DdR(Ŵ ))
d(gt

dR)
// d(tM(ρ∗))

· canγ,δ
// d

(
(M(ρ∗)+B)L

) d(g+
λ

)
// d(W+)

β(ρ)
// d(Ŵ )



28 OTMAR VENJAKOB

where we apply Remark 1.2 to obtain an automorphism of 1,16

(4)
∏
S\{p,∞} PL,l(W, 1) : 1

∏
ηl(W )

//
∏

d(RΓf (Ql,W ))
acyc

// 1 where the first map

comes from the trivialization by the identity and the second from the acyclicity,

(5) {PL,p(W,u)PL,p(Ŵ , u)−1}u=1 : 1
ηW ·η−1

Ŵ // d(RΓf (Qp,W ))d(RΓ(Qp, Ŵ ))−1
quasi

// 1,

where we use that t(W ) = DdR(Ŵ ) = t(Ŵ ) and the quasi-isomorphism mentioned
in the above Proposition, and

(6) PL,p(Ŵ
∗(1), 1) : 1

(η
Ŵ∗(1)

)∗
// d(RΓf (Qp, Ŵ

∗(1)))
acyc

// 1, where we use that

t(Ŵ ∗(1)) = D0
dR(Ŵ ) = 0.

For L we need beneath Lemma 6.1 another

Lemma 6.3 ([19, lem. 4.2.23]). Let l 6= p be not in Υ. Then Ln ⊗L
Λ,ρ RΓf (Ql, T̂) is

acyclic if and only if PL,l(W, 1) 6= 0. If this holds then we have ζl(M)(ρ) = PL,l(W, 1)
−1.

Thus we obtain the following

Theorem 6.4 ([19, thm. 4.2.26]). Under the conditions (i)-(iii) from Proposition 6.2

and assuming Conjecture 4.1 for M and Conjecture 5.9 for T̂ the value L(ρ) (respec-
tively LU (ρ)) is

LK(M(ρ∗), 0)

Ω∞(M(ρ∗))
· Ωp(M(ρ∗)) · ΓQp(V̂ )−1·

· {PL,p(W,u)PL,p(Ŵ , u)−1}u=1 · PL,p(Ŵ ∗(1), 1) ·
∏

B

PL,l(W, 1),

where B = Υ ⊆ S \ {p,∞} (respectively B = S \ {p,∞}).
Remark 6.5. Note that conditions (ii) and (iii) are satisfied in the case of an abelian vari-
ety with good ordinary reduction and p. Furthermore, the quotient Ωp(M(ρ∗))/Ω∞(M(ρ∗)
is independent of the choice of basis γ and δ. Also, it is easy to see17 that for some
suitable choice we have Ωp(M(ρ∗)) = ǫp(Ŵ )−1 which, according to standard prop-

erties of ǫ-constants (cf. [19, §3.2]) using that V̂ is unramified as module under the

Weil-group, in turn is equal to ǫp(ρ
∗)−k · ν−fp(ρ) where k = dimQ(tM ) = dimQp(V̂ ),

ν = detQp(ϕp|Dcris(V̂ )) and where fp(ρ) is the p-adic order of the Artin-conductor of

16Using Remark 1.2(i) it is easy to see that this amounts to taking the product of the following
isomorphisms and identifying the target with 1 afterwards

1
canγ,δ

// d
(
(M(ρ∗)+B)L

)
d(tM(ρ∗))

−1, 1
id−·d(g+

λ
)

// d(W+)d
(
(M(ρ∗)+B)L

)
−1
,

1
id−·d(gt

dR)
// d(DdR(Ŵ ))−1d(tM(ρ∗)), 1

ǫdR(Ŵ )−1

// d(Ŵ )−1d(DdR(Ŵ )),

1
id−·β(ρ)

// d(Ŵ )d(W+)−1,

where the identity maps are those of d
(
(M(ρ∗)+B)L

)
−1
, d(DdR(Ŵ ))−1 and d(W+)−1, respectively.

17Note that in the definition of β and thus in β(ρ) the epsilon factor ǫp(V̂ ) in ǫdR(V̂ ) equals 1 and

thus Ωp(M(ρ∗)) = β(ρ) ◦ (ǫp(Ŵ )−1 · β(ρ)).
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ρ. Due to the compatibility conjecture CWD in [17, 2.4.3], which is known for abelian
varieties (loc.cit., rem 2.4.6(ii)) and for Artin motives, one obtains the ǫ- and Euler-
factors either from Dpst(W ) or from the corresponding l-adic realisations with l 6= p.

Furthermore, we have PL,p(W, 1) 6= 0 and PL,p(Ŵ , 1) 6= 0 for weight reasons. Thus,

noting that for abelian varieties Γ(V̂ ) = 1, the above formula becomes

(Int)
LK,Υ′(M(ρ∗), 0)

Ω∞(M(ρ∗))
· ǫp(ρ∗)−k · ν−fp(ρ) · PL,p(Ŵ

∗(1), 1)

PL,p(Ŵ , 1)
,

where LK,Υ′ denotes the modified L-function without the Euler-factors in Υ′ := Υ ∪
{p}.18

Proof. We consider the case LU . First observe that due to the vanishing of the motivic
cohomology the map

ζK(M(ρ∗)) : 1K → d(∆(M(ρ∗))) = d(M(ρ∗)+B)d(tM(ρ∗))
−1

is just the map canγ,δ : 1 ∼= d(M(ρ∗)+B)d(tM(ρ∗))
−1, induced by the bases arising from γ

and δ, multiplied with LK(M(ρ∗), 0)Ω∞(M(ρ∗))−1. Secondly, since d(RΓf (Q,W )) = 1,
the isomorphism ϑλ(M(ρ∗)) : d(∆(M(ρ∗)))L ∼= d(RΓc(U,W ))−1 corresponds up to the
identification d(M(ρ∗)+B)L ∼= d(W+) to the product of

d(tM(ρ∗))
−1
L

d(gt
dR)

−1

// d(t(W ))−1
·ηλ(W )

// d(RΓf (Qp,W ))

with
∏
B PL,l(W, 1). Thirdly, the contribution from ǫp,L(Ŵ ) is ηp(Ŵ ) · ηp(Ŵ ∗(1))∗ ·

ΓL(Ŵ ) · ǫdR(Ŵ ) up to the canonical local duality isomorphism. Together with β(ρ) we
thus obtain all the factors (1)-(6) above. To finish the proof in the case L use Lemmata
6.1, 6.3 and (7.69). �

6.1. Interlude - Localized K1. The following construction of a localized K1 is one
of the differences to the approach of Huber and Kings [20]19. For a moment let Λ be an
arbitrary ring with unit and let Σ be a full subcategory of Cp(Λ) satisfying (i) if C is
quasi-isomorphic to an object in Σ then it belongs to Σ, too, (ii) Σ contains the trivial
complex, (iii) all translations of objects in Σ belong again to Σ and (iv) any extension
C in Cp(Λ) (by an exact sequence of complexes) of C ′, C ′′ ∈ Σ is again in Σ. Then
Fukaya and Kato construct a group K1(Λ,Σ) whose objects are all of the form [C, a]
with C ∈ Σ and an isomorphism a : 1Λ → dΛ(C) (in particular, [C] = 0 in K0(Λ))
satisfying certain relations, see [19, 1.3]. This group fits into an exact sequence

(6.55) K1(Λ) // K1(Λ,Σ)
∂ // K0(Σ) // K0(Λ),

18In order to compare this formula with (107) in [11] we remark that, with the notation of (loc.

cit.), u = det(φl|V̂ (−1)) = pν = pω−1. Then by [19, rem. 4.2.27] one has ǫ(ρ∗)−dν−fp(ρ) = ǫ(ρ)du−fp(ρ)

(strictly speaking one has to replace the period t by −t in the second epsilon factor). !!!!! But it seems
that one has to interchange ρ and ρ̂ on the right hand side of (107)!!!!!!!!!!!!!!!!!!

19Instead of the localised K1 they work with K1 of the ring lim
←−

n

Qp[G/Gn], which occurs in the

context of distributions, see [13].
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where K0(Σ) is the abelian group generated by [[C]], C ∈ Σ and satisfying certain
relations. Here the first map is given by sending the class of an automorphism Λr → Λr

to [[Λr → Λr], can], where can denotes the trivialization of the complex [Λr → Λr] by
the identity according to Remark 1.2, ∂ maps [C, a] to [[C]] while the last map is given
by [[C]] 7→ [C]. If S is an left denominator set of Λ, ΛS := S−1Λ the corresponding
localization and ΣS the full subcategory of Cp(Λ) consisting of all complexes C such
that ΛS⊗ΛC is acyclic, then K1(Λ,ΣS) and K0(ΣS) can be identified with K1(ΛS) and
K0(S-torpd), respectively. Here S-torpd denotes the category of S-torsion Λ-modules
with finite projective dimension.

6.2. Iwasawa main conjecture I. Let O be the ring of integers of the completion at

any place λ above p of the maximal abelian outside p unramified extension F ab,p∞ of Q

inside F∞. Note that the latter extension is finite because every non-finite abelian p-adic
Lie extension of Q contains the cyclotomic Zp-extension, which is ramified at p. Then

by [19, thm. 4.2.26(2)] ǫp,Λ(T̂) and thus L is already defined over ΛO := O ⊗Zp Λ(G)

instead of Λ̃.

Now let Σ = ΣSC be the smallest full subcategory of Cp(ΛO) containing SC and
satisfying the conditions (i)-(iv) above. Then the evaluation of L factorizes over its
class in K1(ΛO,Σ) which we still denote by L. By the construction of L we have

Theorem 6.6 ([19, thm. 4.2.22]). Assume Conjectures 4.1 for (M,Λ) and 5.9 for

(T̂,Λ). Then the following holds:

(i) ∂(L) = [[SC]]

(ii) L satisfies the interpolation property (Int).

Question: If one knows the existence of L ∈ K1(ΛO,Σ) with the above properties,
what is missing to obtain the zeta-isomorphism?

6.3. Canonical Ore set. Now assume that the cyclotomic Zp-extension Qcyc is con-
tained in F∞ and set H := G(F∞/Qcyc). In this situation there exist a canonical left
and right denominator set of ΛO

S∗ =
⋃

i≥0

piS

with

S = {λ ∈ ΛO|ΛO/ΛOλ is a finitely generated ΛO(H)-module}
as was shown in [11].

In this case we write MH(G) for the category of S∗-torsion modules and identify
K0(MH(G)) with K0(ΣS∗) recalling that ΛO is regular.

We write

X = Sel(A/F∞)∨

for the Pontryagin dual of the classical Selmer group of A over F∞, see [11].

Conjecture 6.7 ([11, conj. 5.1]). X ∈MH(G).



BSD, ETNC AND MC 31

It is shown in [19, prop. 4.3.7] that the conjecture is equivalent to SC belonging to ΣS∗.
We assume the conjecture. Observe that then Σ ⊆ ΣS∗, which induces a commutative
diagram

K1(ΛO) // K1(ΛO,Σ)

��

∂ // K0(Σ)

��

// K0(ΛO)

K1(ΛO) // K1((ΛO)S∗)
∂ // K0(MH(G)) // K0(ΛO)

Question: Determine the (co)kernel of the middle vertical maps.

In [11, §3] it is explained how to evaluate elements of K1((ΛO)S∗) at representations.
By [19, lem. 4.3.10] this is compatible with the evaluation of elements in K1(ΛO,Σ).
The following version of a Main Conjecture was formulated in (loc. cit.).

Conjecture 6.8 (Noncommutative Iwasawa Main Conjecture). There exist a (unique)
element L in K1((ΛO)S∗) such that

(i) ∂L = [XO] in K0(MH(G)) and

(ii) L satisfies the interpolation property (Int).

The connection with the previous version is given by the following

Proposition 6.9. Let F∞ be e.g. Q(A(p)) or Q(µ(p), p∞
√
α) for some α ∈ Q×\µ (false

Tate curve)20. Then
[[X]] = [[SC]]

in K0(ΣS∗). In particular, Conjecture 6.8 is a consequence of Conjecture 4.1 for (M,Λ)

and Conjecture 5.9 for (T̂,Λ).

The advantage of the localisation (ΛO)S∗ relies on the fact that one has an explicit
description of its first K-group since the natural map (ΛO)×S∗ → K1((ΛO)S∗) induces

quite often an isomorphism of the maximal abelian quotient of (ΛO)×S∗ ontoK1((ΛO)S∗),
see [11, thm. 4.4]. On the other hand, the localized K1(ΛO,Σ) exists without the
assumption that G maps surjectively onto Zp, e.g. if G = SLn(Zp). Also, if G has p-
torsion elements, i.e. if ΛO(G) is not regular, one can still formulate the Main Conjecture
using the complex SC instead of the classical Selmer group X (which could have infinite
projective dimension).

Question: To which extend does a p-adic L-function L together with Conjecture
6.8 determine the ζ-isomorphism in Conjecture 4.1? In other words, does the Main
conjecture imply the ETNC?

7. Appendix: Galois cohomology

The main reference for this appendix is [19, §1.6], but see also [7, 6]. For simplicity we
assume p 6= 2 throughout this section. Let U = spec(Z[ 1

S ]) be a dense open subset of
spec(Z) where S contains Sp := {p} and S := {∞} (by abuse of notation). We write
GS for the Galois group of the maximal outside S unramified extension of Q. Let X be

20See [19, prop. 4.3.15-17] for a more general statement.
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a topological abelian group with a continuous action of GS . Examples we have in mind
are X = Tp,Mp,T, etc. Using continuous cochains one defines a complex RΓ(U,X)21

whose cohomology is Hn(GS ,X). Then RΓc(U,X) is defined by the exact triangle

(7.56) RΓc(U,X) // RΓ(U,X) //
⊕

v∈S RΓ(Qv,X) //

where the RΓ(Ql,X) and RΓ(R,X) denote the continuous cochain complexes calculat-
ing the local Galois groups Hn(Ql,X) and Hn(R,X). Its cohomology is concentrated
in degrees 0, 1, 2, 3.

Let L be a finite extension of Qp with ring of integers O. Now we define the local and
global ”finite parts” for a finite dimensional L-vector space V with continuous GQv -
and GQ-action, respectively. For Qv = R we set

RΓf (R, V ) := RΓ(R, V )

while for a finite place RΓf (Ql, V ) is defined as a certain subcomplex of RΓ(Ql, V ),
concentrated in degree 0 and 1, whose image in the derived category is isomorphic to

RΓf (Ql, V ) ∼=





[ V Il
1−ϕl // V Il ] if l 6= p,

[ Dcris(V )
(1−ϕp,1)

// Dcris(V )⊕DdR(V )/D0
dR(V ) ] if l = p.

(7.57)

Here ϕl denotes the geometric Frobenius (inverse of the arithmetic) and the induced
map DdR(V )/D0

dR(V ) → H1
f (Qp, V ) is called exponential map expBK(V ) of Bloch-

Kato, where we write Hn
f (Ql, V ) for the cohomology of RΓf (Ql, V ).

Defining RΓ/f (Ql, V ) as mapping cone

(7.58) RΓf (Ql, V ) // RΓ(Ql, V ) // RΓ/f (Ql, V ) //

we finally define RΓf (Q, V ), whose cohomology is concentrated in degrees 0, 1, 2, 3, as
mapping fibre

(7.59) RΓf (Q, V ) // RΓ(U, V ) //
⊕

S\S∞
RΓ/f (Ql, V ) // .

This is independent of the choice of U. The octahedral axiom induces an exact triangle

(7.60) RΓc(U, V ) // RΓf (Q, V ) //
⊕

S RΓf (Qv, V ) // .

7.1. Duality. Let G, Λ = Λ(G), T as in section 4. By abuse of notation we write −∗ for
both (derived) functors RHomΛ(−,Λ) and RHomΛ◦(−,Λ◦). Then Artin-Verdier/Poitou-
Tate duality induces the existence of the following distinguished triangle in the derived
category of Λ-modules

(7.61) RΓc(U,T) // RΓ(U,T∗(1))∗[−3] // T+ //

21For ease of notation we do not distinguish between complexes and their image in the derived
category, though this is sometimes necessary in view of the correct use of the determinant functor and
exact sequences of complexes.
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and similarly for T (a Galois stable O-lattice of V ) and V as coefficients (with Λ
replaced by O and L, respectively).22

For the finite parts one obtains from Artin-Verdier/Poitou-Tate and local Tate-duality
the following isomorphisms

(7.62) RΓf (Ql, V ) ∼= (RΓ(Ql, V
∗(1))/RΓf (Ql, V

∗(1)))∗[−2],

(7.63) RΓf (Q, V ) ∼= RΓf (Q, V
∗(1))∗[−3].

Set t(V ) := DdR(V )/D0
dR(V ) if l = p and t(V ) = 0 otherwise. Trivializing V Il and

Dcris(V ), respectively, in (7.57) by the identity induces, for each l, an isomorphism

ηl(V ) : 1L → dL(RΓf (Ql, V ))dL(t(V )).(7.64)

Then, setting D(V ) = DdR(V ) if l = p and D(V ) = 0 otherwise, the isomorphism

(7.65) Θl(V ) : 1L → dL(RΓ(Ql, V )) · dL(D(V ))

is by definition induced from ηl(V ) · (ηl(V ∗(1))∗) followed by an isomorphism induced
by local duality (7.62) and using the analogue D0

dR(V ) = t(V ∗(1))∗ of (5.36) if l = p.23

7.2. Selmer complexes. For l 6= p we define RΓf (Ql,T) as in (7.57) and RΓ/f (Ql,T)
as in (7.58) with V replaced by T, see also (6.50). We do not define RΓf (Qp,T) since
there is in general no integral version of Dcris(V ).

The Selmer complex SCU (T̂,T) is by definition the mapping fibre
(7.66)

SCU (T̂,T) // RΓ(U,T) // RΓ(Qp,T/T̂)⊕⊕
S\(Sp∪S∞) RΓ(Ql,T) //

while SC(T̂,T) is the mapping fibre
(7.67)

SC(T̂,T) // RΓ(U,T) // RΓ(Qp,T/T̂)⊕⊕
S\(Sp∪S∞) RΓ/f (Ql,T) // .

22A more precise form to state the duality is the following. Let RΓ(c)(U,T) be defined like RΓc(U,T)

but using Tate cohomology R̂Γ(R,T) instead of the usual group cohomology RΓ(R,T). Then one has
isomorphisms

RΓ(U,T∗(1))∗ ∼= RΓ(c)(U,T)[3] ∼= RΓ(U,T∨(1))∨

where −∨ = Homcont(−Qp/Zp) denotes the Pontryagin dual.
23More explicitly, θp(V ) is obtained from applying the determinant functor to the following exact

sequence

0 // H0(Qp, V ) // Dcris(V ) // Dcris(V )⊕ t(V )
expBK(V )

// H1(Qp, V ) //

expBK (V ∗(1))∗
// Dcris(V

∗(1))∗ ⊕ t(V ∗(1))∗ // Dcris(V
∗(1))∗ // H2(Qp, V ) // 0

which arises from joining the defining sequences of expBK(V ) with the dual sequence for expBK(V ∗(1))
by local duality 7.62.
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Thus by the octahedral axiom one obtains the distinguished triangles (6.47), (6.49)
and, using Artin-Verdier/Poitou-Tate duality,
(7.68)

RΓ(U,T∨(1))∨ // SC(T̂,T) // RΓ(Qp, T̂)⊕⊕
S\(Sp∪S∞) RΓf (Ql,T) // .

With the notation of section 6 the Selmer complexes SCU (Ŵ ,W ) and SC(Ŵ ,W ) are
defined analogously and satisfy analogous properties.

The following properties [19, (4.2),propositions 1.6.5, 2.1.3 and 4.2.15] are necessary
conditions for the existence of the zeta-isomorphism ζΛ(T) in Conjecture 4.1 and the
p-adic L-functions LU (6.52) and L (6.48).

Proposition 7.1. The complexes RΓc(U,T) and SCU (T̂,T) are perfect24 and in K0(Λ)
we have

[RΓc(U,T)] = [SCU (T̂,T)] = 0.

If G does not have p-torsion, also SC(T̂,T) is perfect and we have [SC(T̂,T)] = 0.

7.3. Descent properties. For the evaluation at representations one needs good de-
scent properties of the complexes involved.

Proposition 7.2. [19, prop. 1.6.5] With the notation as in section 6 we have canonical
isomorphisms (for all l)

Ln ⊗Λ,ρ RΓ(U,T) ∼= RΓ(U,W ), Ln ⊗Λ,ρ RΓc(U,T) ∼= RΓc(U,W ),

Ln ⊗Λ,ρ RΓ(c)(U,T) ∼= RΓ(c)(U,W ), Ln ⊗Λ,ρ RΓ(Ql,T) ∼= RΓ(Ql,W ),

Ln ⊗Λ,ρ SCU (T̂,T) ∼= SCU (Ŵ ,W ).

For l 6∈ Υ ∪ Sp we also have: Ln ⊗Λ,ρ RΓf (Ql,T) ∼= RΓf (Ql,W ).

But note that the complex RΓf (Ql, T̂) for l ∈ Υ and thus SC(T̂,T) does not descent
like this in general. Instead, according to [19, prop. 4.2.17] one has a distinguished
triangle

(7.69) Ln ⊗Λ,ρ SC(T̂,T) // SC(Ŵ ,W ) //
⊕

l∈Υ RΓf (Ql,W ) // .
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