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1 Aim

Let q = pr for a fixed prime p. Let k be a perfect field of characteristic p containing
Fq, let o be a finite totally ramified extension of the ring of Witt vectors W (k), let m
be the maximal ideal of O and let K denote the fraction field of o. One assumes that o
admits an automorphism σK lifting the q-power Frobenius map. We fix once and for all
an embedding ι : K ↪→ C.

By a variety we understand a separated scheme of finite type over Fq. Berthelot
defines a p-adic cohomology theory, rigid cohomology (and a version with compact
support), which seems reasonable (as we shall see) for any variety, and which generalizes
crystalline cohomology in the smooth proper case and Monsky-Washnitzer cohomology in
the smooth affine case. The role of coefficients is played by so-called overconvergent
F -isocrystals, which are sheaves on certain analytic spaces. Here F corresponds to a
Frobenius, so that there exists a theory of weights, with respect to the embedding ι.

The aim of the seminar is to understand the proof of the following p-adic analogue of
Weil II over a point:

Theorem 1.1. Let X be a variety over Fq and E be a ι-realizable overconvergent F -
isocrystal on X.

1. If E is ι-mixed of weight ≤ w then H i
c,rig(X/K, E) is ι-mixed of weight ≤ w + i for

each i.

2. If X is smooth and E is ι-mixed of weight ≥ w, then H i
rig(X/K, E) is ι-mixed of

weight ≥ w + i for each i.

We will closely adhere to Kedlaya’s papers [4] and [5]. We give an outline of the
techniques and the proof.
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2 Dagger algebras and (σ,∇)-modules

Rigid cohomology is effectively computed in the smooth affine case using the theory de-
veloped by Monsky and Washnitzer, which involves modules over certain dagger algebras.
Almost every proof of Kedlaya is reduced to an explicit computation using these modules.

For ρ > 1 one defines the rings

Tn,ρ := {
∑
I

aIx
I | aI ∈ K, lim∑

I→∞
|aI |ρ

∑
I = 0},

where I = (i1, . . . , in) are non-negative integers, xI = xi11 · · ·xinn and
∑
I = i1 + . . . + in.

This is an affinoid algebra and may be considered as power series converging on a disc of
radius strictly greater than 1, i.e., they “overconverge”. Set

K〈x1, . . . , xn〉† := Wn :=
⋃
ρ>1

Tn,ρ,

considered as a subset of the usual Tate-algebra. A dagger algebra A is an algebra
isomorphic to a quotient of Wn for some n. One can endow any such algebra with the
so-called fringe topology and a lift of a Frobenius σ.

Let Ωi
A/K denote the usual (continuous) differential module for i ≥ 1, and let d : A→

Ω1
A/K be the canonical derivation. A (σ,∇)-module is a finite locally free A-module M

that comes equipped with a σ-linear map F : M → M and an integrable connection
∇ : M →M ⊗R Ω1

A/K .

3 Robba-rings

Crew was able to compute cohomology with compact support (at least in the case of a
curve) using the theory of Robba rings, under the assumption of the p-adic local mon-
odromy conjecture. In 2001, different proofs were given of this conjecture, which are
essential in establishing the properties of rigid cohomology.

Here, the Robba ring RK is the ring of bidirectional power series that converge for
t ∈ K with 0 < η < |t| < 1, i.e.

RK := {
∞∑

n=−∞
cnt

n| cn ∈ K, ∃r = r(η) > 0 : lim
n→±∞

(vp(cn) + rn) =∞}.

In a more general vein, Kedlaya defines Robba rings RA over a dagger algebra A, which
are fundamental when dealing with higher dimensional varieties.

Similarly as in the previous section, one may define differential modules and (σ,∇)-
modules over these Robba rings.

4 Rigid cohomology

The construction of rigid cohomology (at least starting from the smooth case) is quite
natural. The method uses formal schemes (which allows lifting from characteristic p to
characteristic 0) and rigid analytic spaces.

Let P be a o-formal scheme. The generic fiber P̃ of P is defined as the set of
closed formal subschemes of P which are integral, finite and flat over o. It comes with a
specialization map sp : P̃ → P . For instance, if P is affine, then P = Spf(R) for some
complete topologically finitely generated o-algebra R, and P̃ = MaxSpec(R⊗oR), so that
P̃ has the structure of a rigid analytic space.
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If Y ↪→ P is any subvariety of the special fiber of P , the tube ]Y [ of Y is defined as
sp−1(Y ), which, as can be shown, also has the structure of an analytic space. If Y ′ ↪→
Y ↪→ P are embeddings of subvarieties, there is also the notion of a strict neighborhood
V of ]Y ′[ in ]Y [, which we won’t explicate here.

We now fix a variety X with compactification X. Suppose that there exists a closed
immersion (as locally ringed spaces) of X into a o-formal scheme P which is smooth in a
neighborhood of X (the general definition is by a glueing construction). Using this, one
defines an overconvergent F -isocrystal E on X to be a finite locally free OV -module
on some strict neighborhood V of ]X[, equipped with a connection ∇ : E → E ⊗ Ω1

V and
an isomorphism F : σ∗E → E that is subject to a certain convergence condition.

The rigid cohomology of E is then defined as

H i
rig(X/K, E) = H i(]X[, j†(E ⊗ Ω·V )),

where j† is the limit over all inclusions j :]X[↪→ V for the strict neighborhood associated
to E . For instance, if X = X is smooth and proper and one takes the trivial isocrystal,
then

H i
rig(X/K) = H i(]X[,Ω·) = H i

crys(X/K).

The important property here is that if X is smooth affine, the limit A = lim−→Γ(V,OV )
over all embeddings j :]X[→ V into a strict neighborhood is a dagger-algebra, which
in turn induces an equivalence of categories between the category of overconvergent F -
isocrystals and the category of (σ,∇)-modules over A. This equivalence extends to coho-
mology, so that H i

rig(X/K, E) may be computed as the cohomology of the complex

. . . −→M ⊗ Ωi
A/K

∇i−→M ⊗ Ωi+1
A/K −→ . . . ,

where M is the A-module corresponding to E , which is nothing but the definition of
(classical) Monsky-Washnitzer cohomology in the smooth affine case.

Similarly, due to Crew (in the case of a curve), there exist certain embeddings A ↪→ Rx
for each closed point x ∈ X, where Rx = RK′ is a copy of the Robba ring over some finite
unramified extension K ′/K, and one defines

ρ : A ↪→ Aloc :=
⊕

x∈X\X

Rx,

Aqu := Aloc/A and Ω1
A,qu := Ω1

A/K ⊗A Aqu. One can show that the complex

. . . −→M ⊗ Ωi
A,qu

∇i−→M ⊗ Ωi+1
A,qu −→ . . .

then computes H i
c,rig(X/K, E), if M again corresponds to E . We note that there is of

course a generalization of this construction (again due to Kedlaya) to higher dimensional
affine varieties.

5 Properties of rigid cohomology

Let E be an overconvergent F -isocrystal on a variety X. After establishing a generaliza-
tion of the monodromy conjecture for Robba rings over dagger algebras (which we will
assume as a black box in the seminar), Kedlaya proves the following results, using explicit
computations in the smooth affine case:

1. The cohomology groups H i
rig(X/K, E) and H i

c,rig(X/K, E) are finite dimensional K-
vector spaces for all i,
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2. One has a natural perfect pairing (the Poincaré duality)

H i
rig(X/K, E)⊗K H i

c,rig(X/K, E∨) −→ K,

where E∨ is the dual F -isocrystal.

He also establishes a Künneth-formula which we won’t use here.

6 Strategy for the proof of Weil II

We now briefly outline the proof of Theorem 1.1. The sections here refer to the sections
in [5].

Section 3 shows a degeneration statement for a morphism f : K〈s〉† → K〈s, x〉†, i.e., a
map that is relative of dimension 1. That is, if M is a (σ,∇)-module over K〈s, x〉†, under
some conditions on the cohomology of M (depending on an integer m), then R1f#M

(∨)

is free of rank m over K〈s〉† (Proposition 3.4.3), where # ∈ {!, ∗} and M (∨) means either
M or the dual M∨.

Section 4 is concerned with the construction of a p-adic Fourier transform. One in-
troduces the the ring D† of overconvergent differential operators on K〈s〉† and shows
that (σ,∇)-modules over K〈s〉† are actually D†-modules. For any such M , the Fourier

transform M̂ of M is defined as M̂ := D† ⊗ρM , where ρ is a certain automorphism of
D†.

In section 4.3 Kedlaya defines the Dwork isocrystal L on K〈s〉†. Further, for f ∈ A,
where A is any dagger algebra, one has a map K〈s〉† → A, x 7→ f , so that one defines
Lf := f∗L. If M is as before and f : K〈s〉† → K〈s, x〉†, g : K〈x〉† → K〈s, x〉† are the
canonical embeddings, one defines

N = g∗M ⊗K〈s,x〉† Lsx.

Denote by∇s the component of the connection on N mapping into the rank one submodule
of Ω1

K〈s,x〉† generated by ds. Hence, one may define the geometric Fourier transform

as M̂geom := coker∇x. One exhibits a canonical isomorphism M̂ → M̂geom of D†-modules

(Proposition 4.3.1), which is used to show that M̂ is absolutely irreducible as a (σ,∇)-
module, if certain conditions on the dimension the the H i’s of M (∨)⊗L? hold (Proposition
4.3.2).

Section 4.4 shows an analogue of the Grothendieck-Ogg-Shafarevich formula (Theorem
4.4.1). It implies a result on the dimension of the H i’s of M (∨) ⊗ L? (Proposition 4.4.5).
The upshot is (using Proposition 4.3.2) that M is absolutely irreducible if and only if its
Fourier transform is absolutely irreducible.

Section 5 shows the Lefschetz trace formula∏
x∈X

det(1− Fxtdeg(x), Ex)−1 =
∏
i

det(1− Ft,H i
c,rig(X/K, E)(−1)

i+1
,

using the Dwork operator ψ on M (we will assume this result).
Section 6.1 recalls the theory of weights for an endomorphism of a finite dimensional

vector space over K, with respect to ι. For instance, an operator T is called ι-pure
of weight w if for each eigenvalue α of T one has |ι(α)| = q(w/2). Then, if E is an
overconvergent F -isocrystal, one says that E is ι-real if the coefficients of the characteristic
polynomial of the linear transformation Fx on Ex for x ∈ X(Fq) map into R. Further, E
is called ι-realizable if it is a direct summand of an ι-real overconvergent F -isocrystal.

Section 6.2 recalls the monodromy formalism developed by Deligne which gives the
absolute value of the eigenvalues for certain central elements.
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As a consequence, section 6.3 shows that any irreducible ι-realizable overconvergent
F -isocrystal on a curve X is ι-pure of some weight (Theorem 6.3.4).

Section 6.5 then proves, if E is an F -isocrystal on A1 that is ι-pure of weight w, that
H1(M) and H1

c (M) are ι-pure of weight w+ 1, using Proposition 3.4.3, the results on the
Fourier transform (Proposition 4.3.2) and the purity result of Theorem 6.3.4.

By degenerating this result, one obtains (using Katz’ so-called “weight drop lemma”,
Lemma 6.4.3), if E is ι-mixed of weight ≥ w, that H1

rig(A
1/K, E) is ι-mixed of weight

≥ w + 1 (Theorem 6.5.3).
Finally, the proof of Theorem 6.6.2 in section 6.6 shows the statement of Theorem 1.1.

By Poincaré duality and excision, one is reduced to the case X = An and the proof of b)
in loc.cit., which in turn is reduced via a projection f : An → An−1 to the case of A1,
where one may finally invoke Theorem 6.5.3.
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7 List of talks

The first three talks introduce the basic notions of the seminar. Some aspects of these
talks are intended to be of an expository nature, since unfortunately we do not have the
time to study rigid cohomology thoroughly (see however [6] for a complete reference).
Talks four to six gather the main results of [4] in the smooth affine case, which is (due to
a reduction argument) mostly what we need. The last five talks stick closely to [5] and
try to fit in most of the proofs there.

We note that we reference the arXiv versions of Kedlaya’s papers since they appear to
be more “verbose”.

1. Formal and rigid geometry, dagger algebras: rigid analytic spaces ([4] 2.1; also
[7] and [2]) and the connection with formal schemes (e.g. [7]), strict neighborhoods
([1] section 2 and [4] Definition 4.2.2), dagger algebras, fringe algebras & fringe
topology ([4] 2.2 and 2.3).

2. Robba rings and (σ,∇)-modules: Robba rings over K and A, module of differ-
entials, algebras of MW-type, Frobenius lifts, (σ,∇)-modules ([4] 2.5 - 3.3).

3. Rigid cohomology: F -isocrystals ([1] section 4 and [4] Definition 4.2.3), rigid
cohomology ([1] section 2 and 4.2.4 and [4] Definition 4.3.1), comparison with MW-
cohomology ([1] 2.1), cohomology with compact support ([4] Definition 4.3.4), com-
parison with Kedlaya’s construction for affine n-space ([4] Proposition 8.1.8; compare
also [5] 2.6 and [3] 8.1.3).

4. Finite dimensionality of H i
rig: near isomorphisms ([4] 6.1), Crews’ construction

of the map ρ ([3] 7.2-7.3 and [4] 6.2), [4] Proposition 6.2.10, only cite [4] 6.3, finite
dimensionality in the absolute case ([4] Theorem 6.4.2; with necessary references
from [4] section 5; we assume Theorem 5.1.3).

5. Push-forwards and base-change: definition of push-forwards, base change ([4]
7.2, 7.3), [4] Theorem 7.3.3 about higher direct images, flat base change ([4] Propo-
sition 7.5.2).

6. Poincaré duality: Poincaré pairing ([4] 8.2), duality for affine n-space ([4] Propo-
sition 8.5.3), relative Poincaré ([4] Proposition 8.6.1).

7. Degeneration in families: rank statements for R1f#M
(∨), where f : K〈s〉† →

K〈s, x〉† ([5] p.21-24).

8. p-adic Fourier transform: the ring D†, D†-modules, the Fourier transform M̂ ,
the geometric Fourier transform M̂geom ([5] p.24-29).

9. M̂ ∼= M̂geom and Euler characteristic: [5] Proposition 4.3.1, Euler characteristic
formula [5], Proposition 4.4.5 ([5] p.30-p.35 middle).

10. Weights and global monodromy: pure and mixed weights, ι-realizability ([5]
6.1), purity result for rank 1 isocrystals ([5] 6.1.2 - 6.1.4), global monodromy for-
malism ([5] 6.2.1, 6.2.2, 6.2.3, sketch only).

11. Proof of the main theorem: properties of determinantal weights, local mon-
odromy, Weil II on the affine line, Rigid Weil II ([5] p.44-49).
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