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Preface

Fundamental in Geometry, analytic groups were introduced to the domain of Number
Theory in the middle of the last century. Their theory has greatly advanced since, and
has produced valuable results and challenging conjectures alike.

The basic idea for a number theoretic account of Lie groups1 however is simple. We
proceed exactly as in the real case and only replace R by Qp, the field of p-adic
numbers. We thus consider a topological space G, locally homeomorphic to Qd

p, with
an additional structure as topological group whose operations are (p-adic) analytic
functions in the local coordinates.

Group-theoretic aspects of Lie theory. It is a distinctive feature of p-adic Lie
groups that they can be characterised in purely algebraic terms (see [2]). Indeed, there
is a close connection to profinite groups, established by the fundamental result that G
is a p-adic Lie group if and only if it contains an open uniform subgroup H. This last
statement’s essence is that H is a pro-p group, with topological basis given by the open
subgroups Hn = Hpn

. For all n, their quotients “uniformly” satisfy Hn/Hn+1 ≃ Fdp ,
where d is the dimension of H (as well as of G).

Let K denote a p-adic number field, ie. a local field of characteristic 0. We give two
typcial examples for the appearance of p-adic analytic groups:

(i) Galois groups of (cyclotomic) Zp-extensions. The p-adic integers H = Zp are
the simplest example of an infinite analytic group, because Zp is itself already
a uniform group. For any K as above, there exists an extension field K∞ with
Gal(K∞/K) ≃ Zp. In fact, K∞ can be chosen as cyclotomic field, ie. as subfield
of K(ζp∞) = ∪nK(ζpn).

(ii) Galois representations on torsion points of Elliptic Curves. Let E denote an
elliptic curve, defined over K. The set E[n] of n-torsion points on E(K) has
an (abstract) group structure E[n] ≃ Z/nZ× Z/nZ. The absolute Galois group
GK = Gal(K/K) has a natural action on E[n], which gives a representation

ρn: GK −→ Aut
(
E[n]

)
≃ GL2(Z/nZ).

1We use the names “analytic group” and “Lie group” interchangeably.
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If we set n = pr and let r grow, the sets E[n] and the representations ρn fit
together and give a p-adic representation

ρ : GK −→ GL2(Zp).

The group GLd(Zp) is not pro-p and in particular not uniform; we will however
see in Section 1.3 that it contains a such one as open subgroup. It follows that
GLd(Zp) is indeed a p-adic Lie group, non-commutative and of dimension d2.

Number-theoretic aspects of Lie groups. A distinctively number-theoretic prop-
erty of the field K is its non-archimedean valuation vK . For any Galois extension
L/K, this valuation gives rise to the ramification filtration G(r)r≥−1 of the group
G = Gal(L/K). This filtration2 forms a topological basis of (not necessarily open) sub-
groups of G, and also reflects certain arithmetic properties of the extension L/K. For
Galois subextensions L/K ′/K, its relation to the ramification filtrations on Gal(L/K ′)
and Gal(K ′/K) can be described by explicit formulae.

We reconsider the first example, and put p > 2 and K = Qp for brevity. The extension
L = Qp(ζp∞)/K is totally ramified and p-adic analytic, because its Galois group

G = Gal(L/K) ≃ Z/(p− 1)Z× Zp

has H = Gal(L/Qp(ζp)) ≃ Zp as open uniform subgroup. In the notation of the first
example, this means L = K ′

∞, ie. L is the cyclotomoic Zp-extension of K ′ = Qp(ζp).

How are the subgroups Hn = Hpn

of H (as p-adic Lie group) related to its subgroups
H(r) occuring as ramification filtration? In Section 5.4, a few results from Number
Theory will suffice to show the simple relation Hn = H(eK′ · n + 1), where eK′ =
vK′(p) = p − 1 is the absolute ramification index of K ′. We may return to G and
stipulate a filtration by setting G0 = G, and Gn = Hn−1 for n ≥ 1. On the other
hand, each ramification group H(r) is equal to G(s), for some s, by means of the
explicit formulae mentioned above. We now have an even simpler relation, namely
Gn = G(eK · n), with eK = vp(p) = 1.

Sen’s Theorem. It was conjectured by Serre [10] and eventually proven by Sen [8]
that the essence of this relation holds for any totally ramified Galois extension L/K of
local number fields such that G = Gal(L/K) is p-adic analytic, and of dimension > 0.
An obvious shortcoming of the above example is the arbitrary choice of a filtration
(Gn), which we will account for by introducing the class of Lie filtrations of G. For
any such Lie filtration (Gn)n∈N, Sen’s Theorem states the inclusions

G(ne+ c) ⊂ Gn ⊂ G(ne− c)

2We understand as filtration of a group G a family of subsets (Gi)i∈I , with Gi ⊃ Gj for i ≤ j and
∩iGi = 1. We will have I = N for all filtrations except for+ the ramification filtration, where we
require I = [−1,∞) ⊂ R.
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where c is a constant, n ≥ 0 any integer and G(r) = G for r < −1.

The rather dense proof of Sen’s Theorem as in [8] however builds upon an analytic
characterisation of p-adic Lie groups as suggested by Lazard [5]. This paper attempts
to give a more detailed and easily accessible proof, using the familiar algebraic language
of [2]. This approach will result in minor terminological differences (spelt out in Section
4.4), but we account for these by introducing the notion of “uniform equivalence of
filtrations in scaling s.” A welcome side-effect of this technical concept is a cleaner
and more intuitive strategy for Sen’s proof.

Structure of this paper. This paper is divided into three principal parts.

(i) Part I introduces the group-theoretic language and objects required for the al-
gebraic characterisation of p-adic analytic groups. The key concepts are those of
uniform groups, their lower p-series and their dimension. In a brief addendum,
we discuss elementary concepts of p-adic analysis, and define two fundamental
p-adic analytic functions, namely the Exponential and the Logarithm. This first
part’s primary reference is [2], containing all details and proofs.

(ii) Part II explains the fundamental concepts of Lie theory. However, we proceed
“backwards” and introduce Lie algebras (as free Zp-modules) first, which gives
a close connection to the first part. We then proceed in the usual way, and
define p-adic manifolds, Lie groups and their associated Lie algebras (as Qp-
vector spaces). We discuss the algebraic characterisation of p-adic Lie groups
as in [2], and conclude with a sketch of the original formulation in [5]. A third
reference for this part is [12].

(iii) Part III is concerned with ramification in Lie groups, and Sen’s Theorem in
particular. We start with a number-theoretic survey on extensions of complete
non-archimedean fields (eg. local ones), and define the ramification filtration of
their Galois groups. Chapter 6 discusses filtrations in a more general context,
and defines the class of Lie filtrations mentioned above. This allows to finally
give a precise statement of Sen’s Theorem. Its subsequent proof is very technical,
but gives a valuable corollary for the study of “deeply ramified” fields. These will
briefly be touched in Chapter 7. References for this last and other applications
of Sen’s Theorem are [1], [10], [13] and [4]. Direct references for the number-
theoretic set-up in Chapter 5 are [11], [3] and [6].

Acknowledgements. This paper was submitted as Diploma Thesis in Mathematics
at the University of Bonn. It was supervised by Professor Otmar Venjakob (now Uni-
versity of Heidelberg), and I wish to sincerely thank him for his continued support and
his helpful suggestions.
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Part I.

Profinite groups and p-adic

analysis
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1. Profinite group theory

This chapter presents elementary notions from profinite group theory. One of the most
important concepts is the lower p-series, a natural filtration on pro-p groups. As a main
result, we have that in finitely generated powerful pro-p groups, this filtration takes a
particularly simple form – the slogan will be that “every commutator is a p-th power”.
A fundamental theorem by Serre gives further insight and implies that the topology of
these groups is already determined by their algebraic structure. Imposing a regularity
condition on certain finite quotients of a powerful group will lead to uniform groups.
These allow to define a dimension theory for pro-p groups of finite rank.

While also of group theoretic interest, we primarily study uniform groups as an easily
manageable tool in the algebraic treatment of p-adic Lie groups and Lie algebras.
These objects were however first described in the more analytic language of filtered
groups (cf. [5]). We summarize this approach in section 4.4.

1.1. Profinite and pro-p groups

Definition 1.1. A profinite group is a compact, Hausdorff topological group G whose
open subgroups form a fundamental system of neighbourhoods of the identity.

Proposition 1.2. ([2], 1.2) Let G be a profinite group.

(i) Every open subgroup of G is closed, has finite index in G, and contains an open
normal subgroup.

(ii) A closed subgroup H ⊂ G is itself a profinite group, and every open subgroup of
H is of the form H ∩K, where K is some open subgroup of G. H is open if and
only if it has finite index in G.

(iii) Let N be a closed normal subgroup. Providing G/N with its quotient topology
makes it a profinite group. The natural projection G → G/N is a closed and
open map.

The family of quotients (G/N) of G by open normal subgroups N is a projective sys-
tem together with the natural projections. Any quotient is finite by the Proposition
above and provided with the discrete topology. The projective limit lim

←−
G/N carries

the subspace topology induced from the product topology on
∏
G/N . The term “profi-

nite groups” comes from their alternative characterisation as projective limits of finite
groups:
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1. Profinite group theory

Proposition 1.3. ([2], 1.3) If G is a profinite group, we have an algebraic and topo-
logical isomorphism

G ≃ lim
←−

G/N,

where N runs through all open normal subgroups. Conversely, the projective limit of
any projective system of finite groups is a profinite group.

Example. (i) Galois groups are profinite groups (finite groups carrying the discrete
and infinite groups the Krull topology). Conversely, it can be shown that every
profinite group appears as Galois group of a suitable field extension.

(ii) The profinite completion of a (topological) group is usually explained as pass-
ing to the space of Cauchy series (which are defined as sequences of elements in
G whose differences eventually end up in arbitrarily small, normal neighbour-
hoods of the neutral element) modulo equivalence. These groups can just as
well be thought of as profinite with regard to the (projective) system of normal
neighbourhoods.

We will mostly deal with topological groups rather than just abstract ones. We thus
need a more suitable notion of finiteness, and agree to call a profinite group G (topo-
logically) finitely generated if there is an (algebraically) finitely generated set whose
closure is G.

Similarly, a profinite group G is a pro-p group if every quotient G/N by an open normal
subgroup is a p-group. Since every open subgroup of a profinite group contains an
open normal subgroup, any subgroup of a pro-p group has p-power index. A closed
subgroup of a pro-p group is pro-p again; and we can set forth what we have seen in
Proposition 1.3:

Proposition 1.4. ([2], 1.12) A topological group is a pro-p group if and only if G is
(topologically and algebraically) isomorphic to a projective limit of (finite) p-groups.

Example. (i) Zp is a pro-p group, generated by 1 and thus a procyclic group.

(ii) Sylow subgroups of profinite groups: A closed subgroup H of a profinite group
G is called a p-Sylow group if it is a maximal pro-p subgroup. Such groups exist
for each prime p.

(iii) Every p-adic Lie group is “locally” a pro-p group: it always contains an open
normal (and even uniform) pro-p subgroup. These notions will become clear
later.

The frequent appearance of the ring Zp in the examples is not coincidental. There is
the general phenomenon of p-adic exponentiation:

Lemma 1.5. ([2], 1.24) Let G be a pro-p group and g an element of G. If we take
two sequences (ai), (bi) of integers that converge to the same limit in Zp, then the
sequences

(
gai
)

and
(
gbi
)

both converge in G, and their limits are equal, too.

9



1. Profinite group theory

We can hence make the following

Definition 1.6. Let G be a pro-p group, g ∈ G and λ ∈ Zp. We define

gλ = lim
n→∞

gan ,

where (an) is a sequence of integers converging p-adically to λ.

Proposition 1.7. With g, h ∈ G and λ, µ ∈ Zp, the operation of “p-adic exponentia-
tion” satisfies:

(i) gλ+µ = gλgµ and gλµ = (gλ)µ.

(ii) If gh = hg, then (gh)λ = gλhλ.

(iii) The map λ 7→ gλ defines a continuous homomorphism of Zp into G. Its image
gZp is the closure of 〈g〉 in G.

1.2. The lower p-series in finitely generated pro-p

groups

For a finite group G, the Frattini subgroup Φ(G) is defined as the intersection of all
(proper) maximal subgroups. Φ(G) is a characteristic subgroup, and if G is a p-
group, we have G/Φ(G) ≃ Fdp, where d is the number of generators of G. We wish to
investigate the properties of the profinite analogue.

Definition 1.8. The Frattini subgroup of a profinite group G is the intersection of all
maximal open subgroups of G.

Results on profinite groups are often proved by taking quotients with open normal
subgroups (which gives access to results from finite group theory) and “lifting” those
results back to apply topological arguments. The following result is a useful example
for this:

Proposition 1.9. ([2], 1.13) Let Gp designate the subgroup of G generated by p-th
powers and [G,G] the subgroup generated by the commutators [g, h] = ghg−1h−1. If G
is a pro-p group, we have Φ(G) = Gp[G,G].

Proof: It is well-known that in finite p-groups, any maximal (proper) subgroup is
normal and has index p. The same is true for general pro-p groups if we restrict
ourselves to open subgroups. So let M be a maximal proper open subgroup. Since the
topology on G can be given by open normal subgroups, we can find an open normal
subgroup N ⊳o G contained in M , and such that M/N is a maximal subgroup of
the finite p-group G/N . By the correspondence of (normal) subgroups under a group
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1. Profinite group theory

homomorphism and the classical result from finite p-groups, we conclude that M ⊳G
and (G : M) = p.

The quotient G/M is thus abelian and annihilated by p. M must thus both contain the
derived group and the p-th powers, i.e. M ⊃ Gp[G,G]. Since this holds for arbitrary
M , we have

Φ(G) =
⋂
M ⊃ Gp[G,G]

Additionally, since Φ(G) is closed, we even have Φ(G) ⊃ Gp[G,G].

For the reverse direction, we need the obvious fact that for a closed normal subgroup
N ⊳c G and N ⊂ Φ(G), we have Φ(G/N) = Φ(G)/N . Now consider the group
Q = G/Gp[G,G]. This is a pro-p group, so its normal subgroups intersect in the
identity. If N ⊳o Q, then Q/N is a finite elementary abelian p-group, which means
Φ(Q/N) = 1. Therefore Φ(Q) ⊂

⋂
N⊳oQ

N = 1, and by the first inclusion

Φ(G)/Gp[G,G] = Φ(Q) = 1

As intersection of infinitely many subsets, there is no elementary reason for Φ(G) to
be open again. The following result provides a useful criterion:

Proposition 1.10. ([2], 1.14, 1.20) A pro-p group G is finitely generated if and only
if Φ(G) is open in G. In this situation, we have Φ(G) = Gp[G,G].

We now introduce a fundamental filtration on any pro-p group:

Definition 1.11. The lower p-series for a pro-p group G is defined as:

G = P0(G) ⊃ P1(G) = Gp[G,G] ⊃ . . . ⊃ Pn(G) ⊃ Pn+1(G) = Pn(G)p[Pn(G), G] ⊃ . . .

We write Gn for Pn(G) when this is not leading to confusion. It is immediate that
Gn+1 ⊃ Φ

(
Gn
)

for every n. If G is finitely generated, then the groups Gn form a basis
of the topology of G (cf. [2], 1.16(iii)). This result is highly useful for a more refined
study of pro-p groups, and we will see later that the succesive quotients Gn/Gn+1 in
the above series of characteristic subgroups carry valuable information.

The following relation between the lower p-series and the commutator is easily verified,
but essential for our later discussion of Sen’s Theorem:

Lemma 1.12. ([2], 1.16, (ii)) In a pro-p group G, we have [Gn, Gm] ⊂ Gn+m+1 for
all n,m.1

1The result in [2] reads as [Gn, Gm] ⊂ Gn+m, which is due to a different numbering of the lower
p-series. Similar (minor) deviations will apply for a few other results.
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1. Profinite group theory

In the light of Proposition 1.10, we focus on finitely generated pro-p groups. The
central result is a conversion to Proposition 1.2:

Theorem 1.13 (Serre). ([2], 1.17) If G is a finitely generated pro-p group, then every
(abstract) subgroup of finite index in G is open.

Let G still denote a finitely generated pro-p group. It can be shown that Gn+1 =
Gpn[Gn, G] (cf. [2], 1.20) for each n; and, by Proposition 1.10, that the lower p-
series consists of open subgroups. For finitely generated pro-p groups, taking the
closure as in Proposition 1.9 is thus superfluous and Definition 1.11 may be simplified
correspondingly. Theorem 1.13 (in combination with the fact that the Gn form a
topological basis) enables us to state a remarkable corollary:

Proposition 1.14. ([2], 1.21) Every algebraic homomorphism from a finitely generated
pro-p group G to a profinite group is continuous. In particular, any automorphism is
also a topological automorphism. The topology of G is thus completely determined by
its algebraic structure.

1.3. Powerful and uniform groups and their

dimension

For a (topologically) finitely generated group G, let d(G) denote the minimal cardi-
nality of a generating set. It is a strong property to have d(H) ≤ d(G) for any closed
subgroup H of G. We will see that finitely generated powerful groups meet this de-
mand, and that their lower p-series eventually consists of uniform groups. The latter
allow to devise a dimension theory; and the following result is preparatory for this:

Proposition 1.15. ([2], 3.11) The rank of a profinite group G is defined as

rk(G) = sup{d(H): H is a closed subgroup of G}

= sup{d(H): H is a closed subgroup of G, and d(H ) <∞}

= sup{d(H): H is an open subgroup of G}

= sup{d(G/N): N is a normal open subgroup of G}

The numbers rk(G) and d(G) will agree for (finitely generated) powerful groups:

Definition 1.16. A pro-p group G (not necessarily finitely generated) is powerful if
p is odd and G/Gp is abelian, or if p = 2 and G/G4 is abelian.

For any group G and any normal subgroup N , the quotient G/N is abelian if and
only if N ⊃ [G,G]. Thus, for p odd, the above definition may be streamlined to
Gp ⊃ [G,G]. In analogy to Proposition 1.4, a topological group is powerful if and only

12



1. Profinite group theory

if it is the projective limit of a surjective system of finite powerful p-groups (cf. [2],
3.3).

One of the most important properties of finitely generated powerful groups is that
every element of Gp is already a p-th power (cf. [2], 3.4):

Gp = {x ∈ G : x = gp for some g ∈ G}

By induction, this carries on to subgroups of higher powers of p. Similar to previous
results, the following theorem is deduced by examining the finite quotients G/Gp

n

:

Theorem 1.17. ([2], 3.6, 3.8) Let G be a finitely generated powerful p-group.

(i) For each n, we have Gn+1 = Gpn = {x ∈ G : x = gp
n+1

for some g ∈ G} =
Φ(Gn).

(ii) For each n, the p-th power map x 7→ xp induces a homomorphism from Gn/Gn+1

onto Gn+1/Gn+2.

(iii) If H is a closed subgroup, we have d(H) ≤ d(G) and rk(G) = d(G) in particular.

We see immediately that the open normal subgroups Gn are again finitely generated
powerful groups. Property (i) is often phrased as: “In a finitely generated power-
ful group, commutators are p-th powers”. Property (iii) in turn can be made more
precise:

Proposition 1.18. ([2], 3.13) Let G be a pro-p group. Then G has finite rank if and
only if G is finitely generated and has a powerful open subgroup.

By Theorem 1.17, the lower central series

G0 = G ⊃ G1 = Gp[G0, G] ⊃ . . . ⊃ Gn ⊃ Gn+1 = Gpn[Gn, G] ⊃ . . .

can be simplified for finitely generated powerful groups to

G0 = G ⊃ G1 = Gp ⊃ . . . ⊃ Gn = Gp
n

⊃ . . .

By definition of the rank in 1.15, even a finite group has positive rank. We will rule out
finite pro-p groups (except for the trivial group) by controlling the size of the quotients
Gn/Gn+1, and arrive at the

Definition 1.19. A pro-p group is uniform if G is powerful, finitely generated and
all successive quotients Gn/Gn+1 have the same size.

By Lemma 1.12, each of these quotients is an abelian p-group, annihiliated by p-th
powers, and thus isomorphic to (Z/pZ)d, for some d (which will turn out to be the
dimension of G). We also have an immediate, yet important refinement of Theorem
1.17: the p-th power map x 7→ xp induces the shift-isomorphism sh: Gn/Gn+1 ≃
Gn+1/Gn+2.

13



1. Profinite group theory

Example. Let Γ = GLd(Zp) denote the group of linear automorphisms of Zdp, provided
with the p-adic subspace topology from Matd(Zp). Γ is a closed and open subgroup,
and thus compact and profinite. With n ≥ 1, a basis of the neighbourhoods of 1 is
given by the congruence subgroups

Γn = {γ ∈ Γ : γ ≡ 1 mod (pn)}

= ker
(
Γ→ GLd(Z/p

nZ)
)

It follows that (Γ : Γ1) = (pd − 1)(pd − p) . . . (pd − pd−1) and (Γ1 : Γn) = pd
2(n−1), so

Γ1 is a pro-p group. We now set G = Γ1 if p is odd, and G = Γ2 if p = 2. By means
of a suitable version of Hensel’s Lemma, G can be shown to be a uniform group, with
Gn = Γn+1 for odd p, and Gn = Γn+2 for p = 2 (cf. [2], 5.1). The quotients have

constant size (Gn : Gn+1) = pd
2

, and d(G) = d2.

We continue with a few easy results that will prove useful for an algebraic characteri-
sation of p-adic Lie groups.

Proposition 1.20. ([2], 4.2) Let G be a finitely generated powerful pro-p group. Then
Gn is uniform for all sufficiently large n.

Proof: We denote each quotient’s size by |Gn : Gn+1| = pdn . Because taking p-th
powers acts as a surjective homomorphism between quotients (see Theorem 1.17 (i)),
we have d1 ≥ d2 ≥ . . .. Hence there exists r such that dn = dr for all n ≥ r. By
Theorem 1.17, we know that all Gn are finitely generated and powerful, and hence
uniform for n ≥ r.

Corollary 1.21. ([2], 4.3) A pro-p group of finite rank has a characteristic uniform
subgroup.

Proposition 1.22. ([2], 4.4) Let G be a powerful finitely generated pro-p group with
d(G) = d. The following are equivalent:

(i) G is uniform.

(ii) d(Gn) = d(G) for all n.

(iii) d(H) = d(G) for every powerful open subgroup H of G.

Proof: The “non-generators” within Gn are given by Φ(G) = Gn+1, so by Theorem
1.17, we have

d(Gn) = d(Gn/Gn+1) ≤ rk(G) = d.

Any open powerful subgroup H contains some Gn (for the Gn are a basis of the
topology), so we have

d(Gn) ≤ d(H) ≤ rk(G) = d.

14



1. Profinite group theory

Now G is uniform if and only if d(Gn/Gn+1) = d(G1/G2) = d for all n.

Corollary 1.23. ([2], 4.6) If H and I are open uniform subgroups of some pro-p group
then d(H) = d(I).

Proof: For n large enough, we have Hn ⊂ (H ∩ I) ⊂ I. By the last Proposition,
d(I) = d(Hn) = d(H).

Combined with Corollar 1.21, this allows to finally define the notion of dimension:

Definition 1.24. Let G be a pro-p group of finite rank. The dimension of G is

dim(G) = d(H),

where H is any open uniform subgroup of G. For a finite group G, we put dim(G) = 0.

There are several deep relations between a uniform group G and the p-adic integers.
The following result exhibits a map whose inverse function is a “chart” of G with
values in Zp. We will refer to these values as (multiplicative) “coordinates of the
second kind”.

Proposition 1.25. Let G be a uniform group and (a1, . . . , ad) a set of topological
generators with d = d(G) = dim(G). There is a homeomorphic mapping

φ: Zdp −→ G, (λ1, . . . , λd) 7→ aλ1
1 . . . aλd

d

We conclude with a collection of deeper results that are of interest in their own right.

Theorem 1.26. ([2], 4.5) A finitely generated powerful pro-p group is uniform if and
only if it is torsion-free.

Theorem 1.27. ([2], 4.8) Let G be a pro-p group of finite rank and N a closed normal
subgroup of G. The concept of dimension behaves additively on short exact sequences:

dim(G) = dim(N) + dim(G/N)

Corollary 1.28. ([2], 4.31) Let G be a uniform group and N ⊂ G a closed, normal
subgroup. If G/N is uniform, then N is uniform, too.

Proof: In the light of Theorem 1.26, we need to show that N is powerful. As G/N
is torsion-free (by Theorem 1.26 again), it follows that xp

n

∈ N implies x ∈ N . This
shows that Gp ∩N = Np and hence that N/Np is abelian. For an odd prime p, this
is just the requirement for N to be powerful. For p = 2, we modify the above in an
obvious fashion to show that N/N4 is abelian.
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2. p-adic analysis

This section explains elementary notions in ultrametric analysis. The concept of p-adic
analytic functions is central, and we have as main result that on a suitable subset of
a complete Qp-algebra, one can define p-adic versions of the analytic Exponential and
Logarithm.

Definition 2.1. A normed ring is a ring A (not necessarily commutative) with a
valuation ‖ · ‖ : A→ R that satisfies

(i) ‖a‖ ≥ 0, and ‖a‖ = 0 if and only if a = 0

(ii) ‖1‖ = 1, and ‖ab‖ ≤ ‖a‖ · ‖b‖

(iii) ‖a+ b‖ ≤ max{‖a‖, ‖b‖}

for all elements a, b ∈ A. A normed ring is complete if it is complete as a metric space
with the induced distance function d(a, b) = ‖a − b‖. The normed ring (A, ‖ · ‖) is a
Qp-algebra (in the analytic sense) if it is an algebra over Qp (in the algebraic sense)
that satisfies ‖λa‖ = |λ|p ‖a‖, where | · |p denotes a p-adic norm of Qp.

Example. (i) (Q, | · |p) is a normed ring with completion Qp. The matrix ring
Mn(Qp) with the maximum norm ‖A‖ = ‖(aij)‖ = max{|aij |p} is a complete
Qp-algebra.

(ii) A generalisation of the p-adic valuation on Z is given as follows. Let A = A0 ⊃
A1 ⊃ . . . be a chain of ideals in A such that ∩n∈NAn = 0 and AnAm ⊂ An+m

for all n,m. Now fix any real number q > 1 and define a norm on A by ‖0‖ = 0,
‖a‖ = q−n if a ∈ An\An+1.

We yet need to define non-commutative power-series, which will serve as “local repre-
sentation” of analytic functions.

Definition 2.2. The ring of formal power series in the (non-commuting) variables
X = (X1, . . . ,Xn) is the set of all formal sums

∑

w∈W

λww,

whereW is the set of all words w inX and λw ∈ Qp. Declaring addition componentwise
and multiplication by concatenation of words, this set is made into a Qp-algebra. We
will denote this ring by Qp〈〈X〉〉.

16



2. p-adic analysis

For the rest of the chapter, let Â denote a complete Qp-algebra. In order to evaluate
power series in a non-commutative normed ring, we will need a modified notion of
convergent series:

Definition 2.3. Let I be an infinite, countable index set, and let a, s ∈ Â.

(i) A family (ai)i∈I converges to a (written as limi∈I ai = a) if for each ε > 0, there
exists a finite subset I ′ ⊂ I such that ‖ai − a‖ < ε for all i /∈ I ′.

(ii) The series
∑
i∈I ai converges with sum s, if for each ε > 0, there exists a finite set

I ′ such that for all finite sets I ′′ with I ′ ⊂ I ′′ ⊂ I, we have ‖s−
∑
i∈I′′ ai‖ < ε.

In fact, condition (ii) turns out to be analogous to absolute convergence in the real
set-up (cf. [2], Prop. 6.9). Concepts from the real case such as double series, Cauchy
multiplication and uniqueness of power series (cf. [2], 6.11, 6.12 and 6.13 resp.) can
now be formulated. We can also evaluate formal power series:

Definition 2.4. The formal power series F (X) =
∑
w∈W aww can be evaluated at

x = (x1, . . . , xn) ∈ Â
n

if the series
∑
w∈W aww(x) obtained by substituting xi for Xi

in each word w converges in Â.

Most importantly, we can now define analytic functions:

Definition 2.5. We provide Â
n

with its product topology and take an open, non-
empty subset D ⊂ Â

n
. A map f : D → Â is called strictly analytic on D if there

exists F (X) =
∑
aww ∈ Qp〈〈X〉〉 such that for all x ∈ D, we have

(i) limw∈W

(
|aw| · w (‖x1‖, . . . , ‖xn‖)

)
= 0, and

(ii) f(x) = F (X)

It is a matter of persistent calculations to see that strictly analytic functions are
continous ([2], Prop. 6.19). The by far most important example for our purposes
are the p-adic Exponential and Logarithm, which are given by power series in one
variable:

Proposition 2.6. ([2], 6.22) Let

Â0 =

{{
x ∈ Â : ‖x‖ ≤ p−1

}
if p 6= 2,{

x ∈ Â : ‖x‖ ≤ 2−2
}

if p = 2.

There are strictly analytic functions

exp: Â0 → 1 + Â0, log: 1 + Â0 → Â0

17



2. p-adic analysis

that are given for all x ∈ A0 by the power series:

E(X) =

∞∑

n=0

1

n!
Xn, L(X) =

∞∑

n=1

(−1)n+1

n
Xn.

These functions have the following properties:

(i) log
(
exp(x)

)
= x

(ii) exp
(
log(1 + x)

)
= 1 + x

(iii) log
(
(1 + x)n

)
= n · log(1 + x) for each n ∈ Z

(iv) exp(n · x) =
(
exp(x)n

)
for each n ∈ Z

The definition of Â0 not only guarantees that E(x) and L(x) converge, but also en-
sures that their evaluation and composition commute. The following is an important
combination of the two series and will later appear as an essential link between a Lie
group and its associated Lie algebra.

Definition 2.7. The Campbell-Hausdorff series is defined as

Φ(X,Y ) = (L ◦ P )(X,Y ),

where P (X,Y ) = E(X)E(Y )− 1 is a formal power series in Qp〈〈X,Y 〉〉.

There is an elementary connection between the Campbell-Hausdorff series Φ(X,Y ) on
the one hand and the p-adic exponentiation and logarithm on the other hand:

Proposition 2.8. ([2], 6.27) Let x, y ∈ Â0. Then both Φ and Ψ can be evaluated at
(x, y), and Φ(x, y) = log(expx · exp y).

We conclude this chapter and throw a glance at the commutative case of power series
in Qp. There is of course a natural epimorphism

· : Qp〈〈X〉〉−։ QpJXK

with kernel generated by the commutators. Replacing the set of words in n vari-
ables with the set of monomials in these, we can repeat the definitions given before.
The morphism · is compatible with (non-)commutative evaluation on elements with
commuting components:

Proposition 2.9. ([2], 6.34) Let F (X) ∈ Qp〈〈X〉〉 and suppose that F (x) exists for
an x = (x1, . . . , xn) ∈ Â

n
with xixj = xjxi. Then F (X) can be evaluated at x and

F (x) = F (x).

Corollary 2.10. ([2], 6.36) Let x, y ∈ Â0 and suppose that xy = yx. Then

exp(x− y) = exp(x)(exp(y))−1

18



Part II.

Lie theory
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3. Lie algebras

A Lie algebra should be thought of as a “linear approximation” to a Lie group that
is easier to understand but preserves valuable information. The precise treatment of
this idea will be prepared in this section. We have as main result that (by means
of the analytic map log) any uniform group G admits an associated powerful Zp-Lie
algebra log(G). Conversely, any such powerful algebra g can be realized as associated
Lie algebra of some uniform group exp(g). An equivalence of these two categories will
be established in Theorem 3.10.

Definition 3.1. Let R be a commutative ring. A Lie algebra is an R-module g with
a bilinear mapping (the Lie bracket)

( , ) : g× g −→ g

that satisfies (a, a) = 0 and the Jacobi identity
(
(a, b), c

)
+
(
(b, c), a

)
+
(
(c, a), b

)
= 0. A

Lie ideal a ⊂ g is an R-submodule that is closed under the Lie bracket, i.e. (a, λ) ∈ a

whenever a ∈ a and λ ∈ g. A morphism ϕ of Lie algebras is a morphism of R-modules
that satisfies ϕ

(
(a, b)

)
=
(
ϕ(a), ϕ(b)

)
.

The category of Lie algebras over R is closed under taking quotients by an ideal, and
the projection onto such a quotient is a morphism of Lie algebras. Any Lie ideal is
thus the kernel of some Lie algebra morphism.

Example. Before diverting into the special case of uniform groups, we have a brief
look at a general method to associate a Lie algebra (as a linear approximation) to a
group G. We will revert to this in greater detail in section 4.4.

A filtered group (G, v) exhibits a valuation v : G→ R ∪ {∞} such that

(i) v(g) > 0 and v(1) =∞

(ii) v(gh−1) ≥ min{v(g), v(h)}

(iii) v
(
[g, h]

)
≥ v(g) + v(h)

For each x > 0, there are normal subgroups Gx = {g ∈ G : v(g) ≥ x} and Gx+ =
{g ∈ G : v(g) > x}. The graded group gr(G) =

⊕
Gx/Gx+ is abelian by (iii). The

maps Gx × Gy → Gx+y, x, y 7→ [x, y] induce maps on the projections Gx/Gx+ and
Gy/Gy+, which can be extended by linearity to the whole of gr(G) to make it a Lie
algebra.
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3. Lie algebras

An example for a filtered group is the first congruence subgroup

Γ1 = {γ ∈ GLd(Zp) : γ ≡ 1 mod (p)}

= ker
(
GLd(Zp)→ GLd(Fp)

)

Any matrix g = (gij) ∈ Γ1 can be written as 1 + x, where x = (xij) has coefficients in
m = pZp. We define v(g) = inf{vp(xij)}, and it can be checked easily (cf. [12], part I,
chp. 2, 4) that v is in fact a valuation.

3.1. The Zp-Lie algebra of a uniform group

In this section, we will focus on Lie algebras of finite rank d > 0 over R = Zp. There are
two ways to give any uniform group G of dimension d such a Lie algebra structure:

The algebraic approach. Extracting pn-th roots defines an abelian group operation
+G on G for n→∞. Keeping the topology, (G,+G) remains a uniform pro-p group.
By a similar method, it inherits a Lie bracket from the original multiplication in G,
and we denote this Lie algebra with (G,+G, ( )G).

The analytic approach. The completed group algebra ZpJGK is (topological) iso-
morphic to the completion of Zp[G] with regard to a certain norm. This norm can
be extended to Qp[G] and makes it an (associative) Qp-Lie algebra. We denote its

completion by Â. G embeds as a set into a certain subset 1 + Â0 ⊂ Â, whereon the
analytic function log is defined. The image log(G) is a Lie subalgebra of Â which we
denote by (Λ,+ind, [ ]ind).

It is a non-trivial result that Λ is closed under the induced Lie algebra operations.
A convenient proof uses the algebraic construction of (G,+G), and establishes an
isomorphism (

G,+G, ( )G
)
≃
(
Λ,+ind, [ ]ind

)

of Lie algebras. We will see that this isomorphism is induced by the Logarithm, and
that it provides G with with an additive system of coordinates, complementing the
multiplicative “coordinates of the second kind” in Proposition 1.25.

The algebraic approach

By Proposition 1.17, the lower p-series of a finitely generated uniform group has the
simple shape

G0 = G ⊃ G1 = Gp ⊃ . . . ⊃ Gn = Gp
n

⊃ . . .
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3. Lie algebras

It is then easy to see that each element x ∈ Gn has a unique pnth root in G. In other
words, the map

G −→ Gn, x 7→ xp
n

is a homeomorphism, with inverse map written as pn-th roots. For each n, these define
a new group structure on G:

+n : G×G −→ G, (x, y) 7→ x+n y = (xp
n

yp
n

)p
−n

These operations are compatible with higher powers and invariant under multiplicative
“disturbances” from within Gn. More precisely, for x, y ∈ G, we have x +m y ≡
x+n y (mod Gn+1) for m > n, and xu+n yv ≡ x+n y (mod Gn) for u, v ∈ Gn. We
obtain a group structure on G as a limit of the operations +n:

Proposition 3.2. ([2], section 4.3) G becomes an abelian group under the operation
x+G y = limn→∞ x+n y. For all x, y ∈ G, we have

(i) If xy = yx, then x+G y = xy.

(ii) For each interger m, mx = xm.

(iii) For each n ≥ 0, pnG = Gn.

(iv) If x, y ∈ Gn, then x+G y ≡ xy (mod Gn+1).

There is some interplay between the multiplicative and additive structure on G. For
instance, each Gn is also an additive subgroup, and the identity map Gn/Gn+1 →
Gn/Gn+1 is an “isomorphism of quotients” between the multiplicative and additive
structure. The following result proceeds in this direction, and introduces a mapping
ψ that gives G “coordinates of the first kind”.

Proposition 3.3. ([2], 4.16 and 4.17) With the original topology, (G,+G) is a uniform
pro-p group of dimension d = d(G). G has the structure of free Zp-module on the basis
of the topological generators {a1, . . . , ad}, and there is an isomorphism of Zp-modules

ψ : G −→ Zdp, λ1a1 +G . . .+G λdad = g 7→ (λ1, . . . , λd)

The loss of structural information under ψ is significant. More information can be
transferred from G onto (G,+G) by defining a Lie bracket as follows: By Lemma 1.12,
the commutator [xp

n

, yp
n

] of pnth powers is contained in G2n+1 for each n. This allows

to extract p2nth roots and to set (x, y)n = [xp
n

, yp
n

]p
−2n

(which lies in pG). By similar
arguments as for the abelian operation “+G” (cf. [2], 4.30 for details), the sequence
(x, y)n can be shown to be Cauchy. We thus define (x, y)G as the limit limn→∞(x, y)n,
and this operation makes

(
G,+G, ( )G

)
a Lie algebra over Zp.
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3. Lie algebras

The analytical approach

The group algebra Zp[G] of a pro-p group G gives rise to the projective system
(Zp[G/N ]), where N is an open normal subgroups and each component has the topol-
ogy of a free Zp-module. The limit

ZpJGK = lim
←−

Zp[G/N ]

is the completed group algebra of G (or also Iwasawa algebra of G). We wish to
rephrase its construction in analytic terms. Our first result is a slight reformulation of
a theorem due to Lazard:

Proposition 3.4. ([5], II.2.2.2 and [2], pp138–141) Let G be a finitely generated pro-
p group. There exists a norm ‖ · ‖ on Zp[G] such that the corresponding analytic

completion Ẑp[G] is topologically isomorphic to ZpJGK.

The norm ‖·‖ is constructed by a chain of ideals (see the example after Definition 2.1):
Let I = (G− 1)Zp[G] denote the augmentation ideal of Zp[G] and J = I + pZp[G] the
kernel of the natural reduction Zp[G]→ Fp. The powers of J are cofinal with another
chain of ideals that determines the topology of Zp[G], and hence so does (Jn).

For a uniform group G, it can be shown that every element of Zp[G] is uniquely
represented as a certain power series in the (fixed) topological generators of G (cf. [2],
7.5). This allows to place ourselves in the set-up of Proposition 2.6:

Proposition 3.5. ([2], 7.7) Let G be a uniform pro-p group of finite rank d. Then
(Qp[G], ‖·‖) = A is a normed Qp-algebra. The norm on A induces the original topology
on G and each element g ∈ G satisfies ‖g − 1‖ ≤ p−1.

We keep the above assumption on G, and let Â denote the completion of A with regard
to ‖ · ‖. Â is an associative algebra, and thus carries a natural Lie algebra structure
by means of the commutator bracket. Setting

Â0 =

{{
x ∈ A : ‖x‖ ≤ p−1

}
if p 6= 2{

x ∈ A : ‖x‖ ≤ 2−2
}

if p = 2

and possibly replacing G with G1 for p = 2, we have G− 1 ⊂ Â0 under the canonical
injection of G into Â. Proposition 2.6 guarantees there is a mapping log : 1+Â0 → Â0,
giving

Λ = log(G) ⊂ Â0

We denote the restriction of the Lie algebra operations on Â to the subset Λ as
(Λ,+ind, [ ]ind). It is not clear that Λ is closed under these induced operations, for

log : G→ Â0 is not a group homomorphism. This is however true with G replaced by
(G,+G), as the following result shows:
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3. Lie algebras

Lemma 3.6. ([2], 7.12) For g, h ∈ G and λ ∈ Zp, we have

log g +ind log h = log(g +G h), λ log g = log gλ

[log g, log h]ind = log(g, h)G

The following is now an immediate consequence:

Proposition 3.7. ([2], 7.13, 7.14) (Λ,+ind, [ ]ind) is a Zp-Lie subalgebra of Â. It is
denoted by log(G), since it is isomorphic (as Lie algebra) to (G,+G, ( )G) under the
analytic map log. Both algebras are free Zp-modules of rank d.

3.2. Powerful Lie algebras

By means of the Campbell-Hausdorff series, the process of assigning a Lie algebra to
a uniform group can be reversed. However, we have to restrict ourselves to a certain
kind of Lie algebras:

Definition 3.8. A Lie algebra g over Zp is powerful if there is an isomorphism φ :
g→ Zdp of Zp-modules for some d and

(g, g) ⊂

{
p g if p > 2,

4 g if p = 2.

The isomorphism φ embeds g into the algebra Qpg = Qp ⊗Zp
g, and Proposition 2.8

enables to evaluate the Campbell-Hausdorff series Φ on this set. It can be shown that
Φ maps the image of g in Qpg onto itself,1 and we obtain:

Proposition 3.9. ([2], 9.8) Let g be a powerful Lie algebra. The operation ∗ : g×g→
g, x ∗ y = Φ(x, y) makes g into a uniform pro-p group. If {a1, . . . , ad} is a Zp-basis
for g, then (g, ∗) is a group of dimension d, topologically generated by {a1, . . . , ad}.

Any abstract group homomorphism f : G → H of uniform groups is continuous by
Proposition 1.14. As the Lie operations in LG and LH are defined by certain limits of
the initial group operations, we see that f : LG → LH as a map of the underlying sets
is already a Lie algebra morphism.

On the other hand, any morphism f : g → h of powerful Lie algebras is evidently
continuous. For each n ≥ 1, we have f(un(x, y)) = un(f(x), f(y)), where un is a Lie

1Two aspects are decisive: firstly, in Qp〈〈X,Y 〉〉, the Campbell-Hausdorff series Φ(X,Y ) is expressible
as an infinite sum of Lie elements un(X,Y ). These are defined as certain sums of commutators
(cf. [2], pp15–116 for details). This holds just as well for the Campbell-Hausdorff series in Qp g.
Secondly, g is powerful: this ensures that the Lie elements of Qp g lie within pg and 4g, respectively,
and that their sum converges within g.
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3. Lie algebras

element.2 By continuity again we have f
(
(x) ∗ (y)

)
= f(x) ∗ f(y). Thus f is a group

homomorphism from (g, ∗) to (h, ∗). This section’s main result is:

Theorem 3.10. ([2], 9.10) There is an equivalence of categories between uniform pro-p
groups and powerful Zp-Lie algebras:

{Uniform groups} {Powerful algebras} {Powerful assoc. algebras}

G −→ LG = (G,+G, ( )G) ∼
−→ log(G) = (Λ,+ind, [ ]ind)

(g, ∗) ←− g ∼
−→ (log(g),+ind, [ ]ind)

exp

ii

We conclude this section with a result that clarifies the role of Lie ideals:

Proposition 3.11. ([2], 7.15, 4.31) Let G be a uniform group, and let L = log(G)
denote its Zp-Lie algebra. The following are equivalent:

(i) I ⊂ L is a Lie ideal such that L /I is torsion-free.

(ii) N = exp(I) is uniform, closed and normal in G, and G/N is uniform.

2The statement follows from the definition of a Lie algebra morphism and the fact that p2nun(X,Y )
is a Zp-linear combination of Lie monomials in X and Y . For the definition of Lie elements, see
[2], pp15–116.
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4. p-adic Lie groups

A p-adic Lie group is an ultrametric analogon to real and complex Lie groups. Although
p-adic analytic manifolds share the formal definition of their real and complex coun-
terparts, there is considerable discrepancy between the properties of the Lie groups.
Structural reasons are the different topologies of the respective underlying spaces, and
the prominence of discrete valuation rings in the ultrametric case.

The latter establishes a connection to the group theoretic results in Chapter 1 and
leads to this section’s main result, a general and very powerful characterisation of
p-adic analytical groups due to Lazard:

Theorem 4.1. A topological group G has the structure of a p-adic Lie group if and
only if G has an open subgroup that is a powerful finitely generated pro-p group.

This result allows to define the dimension of a Lie group and its associated Lie algebra
in algebraic terms. We explain the alternative definition as tangent space endowed with
a Lie bracket and conclude with a brief summary of Lazard’s more analytic approach
via p-valuable groups.

4.1. Analytic manifolds and Lie groups over Qp

This first section reviews elementary concepts within the theory of p-adic Lie groups.
The fundamental objects are p-adic manifolds:

Definition 4.2. (i) Let X be a topological space and U a (non-empty) open subset
of X. A triple (U, φ, d) is a chart on X if φ is a homeomorphism from U onto
an open subset of Qd

p. The dimension of the chart is d. The chart (U, φ, d) is a
global chart if U = X.

(ii) Two charts (U1, φ1, d1) and (U2, φ2, d2) on X
are compatible if the maps φ2 ◦φ

−1
1 |φ1(U1∩U2)

and φ1 ◦φ
−1
2 |φ2(U1∩U2) are analytic functions

on φ1(U1 ∩U2) and φ2(U1 ∩U2) respectively.
(It can be shown that this entails d1 = d2.)

φ1(U1 ∩ U2)

φ2◦φ
−1
1

��

U1 ∩ U2

φ1 44iiiiiiii

φ2
**UUUUUUUU

φ2(U1 ∩ U2)

φ1◦φ
−1
2

OO
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4. p-adic Lie groups

(iii) An atlas A =
{
(Ui, ϕi, di)i∈I

}
of X is a set of pairwise compatible charts whose

underlying spaces cover X. Two atlases A1 and A2 of X are compatible if every
chart in A1 is compatible with every chart in A2. Equivalently, A1 and A2 are
compatible if A1 ∪ A2 is an atlas of X.

Compatibility of atlases is an equivalence relation (cf. [2], Prop. 8.7, or [12], section
III.1). We can therefore make the following

Definition 4.3. (i) An analytic manifold structure on a topological space X is an
equivalence class of compatible atlases. X is called a analytic manifold if such a
structure exists.

(ii) A morphism (or analytic function) of manifolds is a continuous map f : X → Y
of the underlying spaces that is “locally given by analytic functions”. This means
that there exist atlases A and B such that for each pair of charts, the composition

φ(U ∩ f−1V )
φ−1

// U
f // V

ψ // ψ(V )

is analytic.

(iii) An open subset O ⊂ X is given the induced manifold structure (or submanifold
for brevity) by restriction of the charts to O. Also, the Cartesian product X×Y
of the underlying spaces of two manifolds X and Y can be provided with the
structure of a product manifold in the obvious way.

Because of the importance of Zp as valuation ring, charts are often defined as maps to
an open subset of Zp rather than Qp. The first of the following examples shows that
this is no restriction.

Example. (i) The space X = Qd
p is covered by the open subsets {Ui = p−iZdp} with

natural numbers i. These sets are homeomorphic to Zdp by the maps φi(x) = pix,

so the atlas A =
{
(Ui, φi, d)i∈N

}
gives Qd

p the structure of a p-adic manifold.

(ii) The group X = GLd(Qp) is an open subgroup of Matd(Qp) = Qd2

p and has a
submanifold structure.
There is another (seemingly better-adapted) choice of atlas. The subgroup U =

1 + pMatd(Zp) is mapped to Zd
2

p by φ(u) = u − 1. This gives a chart (U, φ, d2)
of U , which we extend to the whole of X. For each x ∈ X, there is the open
neighbourhood Ux = xU of x and the map φx : Ux → pMatd(Zp), u 7→ x−1u.
This yields A = {(Ux, φx, d

2), x ∈ X} as atlas on X.

(iii) A uniform group G of dimension d can be given the structure of p-adic mani-
fold in several ways. In Proposition 1.25 we introduced the “coordinates of the
second kind” coming from the global chart φ−1 : G −→ Zdp, g = aλ1

1 . . . aλd

d 7→
(λ1, . . . , λd).
The algebraic construction of a Lie algebra in section 3.1 (see Proposition 3.3)
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4. p-adic Lie groups

exhibited the “coordinates of the first kind”; and the map ψ : G −→ Zdp, λ1a1 +
. . .+ λdad = g 7→ (λ1, . . . , λd) gives another global chart.

The analytic approach featured log : G → Λ ⊂ Â, a homeomorphism from G
into a Zp-Lie algebra of dimension d. Choosing a Zp-basis for Λ, we obtain a
map ϑ : Λ→ Zdp and thus even another global chart (G,ϑ ◦ log, d). It is however
immediate by Proposition 3.7 that the last two charts are compatible. In fact,
we can choose (log a1, . . . , log ad) as Zp-basis for Λ.

The definition of a Lie group is now overdue:

Definition 4.4. A topological group G is a Lie group if G has the structure of an
analytic manifold with the group operations being analytic functions. G is a p-adic
Lie group if the manifold is p-adic analytic.

4.2. Characterisations of p-adic Lie groups

All the examples of p-adic manifolds considered above are in fact p-adic Lie groups.
This is obvious for X = Qd

p, and fairly elementary for GLd(Qp).
1 To show that any

uniform group is a p-adic Lie group is both more general and more difficult. With
regard to the atlas given by Zp-exponentiation, this is carried through in ([2], 8.18):

Proposition 4.5. ([2], 8.18) Let G be topological group containing an open uniform
subgroup. Then G is a p-adic Lie group.

We wish to establish a converse result. While uniform groups have been key to explor-
ing powerful p-groups, we have standard groups as their counterpart for Lie groups.
There is a rigid connection between those two classes which will make our results on
pro-p groups applicable to p-adic Lie groups.

Definition 4.6. Let G be a group of dimension d, and let X,Y denote sets of d
variables (X1, . . . ,Xd) and (Y1, . . . , Yd), respectively. G is a standard group if it is
(topological) isomorphic to the set {(g1, . . . , gd) : gi ∈ pZp} with group operation
given by a formal group law F (X,Y ) ∈ ZpJX,Y K.2

We recall that a formal group law in d variables over a (commutative) ring R is a d-
tuple (Fi) = F of power series in the variables X = (X1, . . . ,Xd) and Y = (Y1, . . . , Yd)

1Choose the atlas A defined as above. It is sufficient to check everything on U alone. Multiplication
(x, y) 7→ xy is analytic since it is given by polynomials in the matrix entries. To show that x 7→ x−1

is analytic is tantamount to demonstrating that det(x)−1 is “expressible as power series” – which
means in turn that it lies within Zp for every x ∈ U . This is clear with Leibniz’ formula for the
determinant since Zp is the discrete valuation ring of Qp.

2Our definition of “standard group” follows [12] and differs for p = 2 from the definition proposed in
[2]. The latter approach enables a neater formulation of results at the prime 2, but would make
the geometric approach to Lie algebras appear quite arbitrary.
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4. p-adic Lie groups

such that

F (X, 0) = X, F (0, Y ) = Y

F
(
U,F (V,W )

)
=F
(
F (U, V ),W

)

These properties ensure that the set above is in fact a group, with inverse x−1 = φ(x)
given by the unique power series φ such that F (X,φ(X)) = 0 = F (φ(X),X) (cf. [12],
part II, ch. IV, 8 for details). On the other hand, by shrinking an analytic group G
and choosing local coordinates, G can be understood as local neighbourhood of the
origin in kn with group structure given by a formal group law over k.

We have already encountered standard groups – in fact, any uniform group G contains
a such one. As seen in Example (iii) above, G can be given the “coordinates of the
fist kind” by means of the chart (G,φ, d). The image of H = P1(G) for p odd (and
H = P2(G) for p = 2) under φ is then a standard group with formal group law the
Campbell-Hausdorff series (cf. Theorem 3.10). This result can be generalised:

Proposition 4.7. ([2], 8.29 and [12], part II, ch. IV, 8) Every p-adic Lie group G has
an open subgroup that is a standard group.

Conversely, any standard group is already a uniform group ([2], 8.31). We combine
this result with Propositions 4.7 and 4.5 and obtain:

Theorem 4.8. ([2], 8.32) Let G be a topological group. Then G is a p-adic Lie group
if and only if G contains an open subgroup which is a uniform pro-p group.

This also proves Theorem 4.1, for any finitely generated powerful groups eventually has
uniform subgroups via its lower p-series (see Propostion 1.20). We have thus found an
entirely algebraic formulation of the analytic concept of a p-adic Lie group. Applying
our results on profinite groups, we can derive the following

Corollary 4.9. ([2], 8.34) For a topological group G, the following are equivalent:

(i) G is a compact p-adic Lie group.

(ii) G contains an open normal uniform pro-p subgroup of finite index.

(iii) G is a profinite group containing an open subgroup which is a pro-p group of
finite rank.

Finally, we can clarify the notion of “dimension” for a p-adic Lie group and reconcile
the analytic and algebraic characterisations:

Proposition 4.10. ([2], 8.36) Let G be a p-adic Lie group. There exists an integer d
(the dimension of G) such that any open pro-p subgroup of G has finite rank and (al-
gebraic) dimension d. Moreover, every chart in an atlas of G has (analytic) dimension
d.
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4. p-adic Lie groups

Morphisms in the category of p-adic Lie groups of dimension d should properly be
thought of as group homomorphisms that additionally are morphisms of the underlying
manifolds (ie. locally analytic). One of Cartan’s theorems parallels Proposition 1.14
and allows to concentrate on continuous morphisms whenever Lie groups over R or Qp

are dealt with:

Proposition 4.11. ([2], 9.4 and [12], part II, chp. V, 9) Let G1 and G2 be p-adic or
real analytic groups. Then every continuous homomorphism G1 → G2 is analytic.

All these results indicate how restrictive it is for a topological group G to be p-adic
analytic. In fact, there exists at most one structure as p-adic Lie group, and unless G
is discrete, even the prime p is uniquely determined (cf. [2], 9.5). As a corollary, the
various charts introduced in Example (i) and (ii) above are compatible and describe
the same manifold structure on the respective group. We conclude with results on
categorial properties of p-adic Lie groups:

Proposition 4.12. ([2], 9.6) Let G be a p-adic Lie group.

(i) Any closed subgroup H is a p-adic Lie group, and the inclusion H →֒ G is
analytic.

(ii) Any quotient G/N with a normal closed subgroup N is a p-adic Lie group again.
The projection G→ G/N is analytic.

Proposition 4.13. ([2], 9.7) Let G be a Hausdorff topological group, and N a closed
normal subgroup. If both N and G/N are p-adic Lie groups (with the induced and the
quotient topologies respectively), then G is a p-adic Lie group as well.

4.3. The Lie algebra of a Lie group

There are two ways to give precise meaning to the phrase “the Lie algebra of a (p-adic)
Lie group G”. The first approach uses the characterisation of Lie groups by uniform
subgroups, and defines their Lie algebras as suitable Qp-saturations of Zp-algebras as
constructed in section 3.1.

The more traditional second approach demands additional conceptual effort. We intro-
duce a Lie algebra as tangent space of G at the unit, endowed with a Lie bracket that
comes from the quadratic part of a formal group law (which represents multiplication
in G). We are rewarded with a more comprehensive understanding of formal groups
and their place within Lie theory, and with a more precise geometric interpretation of
Lie algebras as linear approximations.
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4. p-adic Lie groups

The algebraic definition

Let G be a p-adic Lie group. We know from Theorem 4.8 that G has an open uniform
subgroup. If H1 and H2 are two such groups, their intersection H = H1∩H2 has finite
index in both H1 and H2. The associated Lie algebra LH thus has the same rank
as LH1

and LH2
. In analogy with the real case, we would like to end up with a Lie

algebra over Qp. By equality of their ranks over Zp, the localized modules Qp ⊗Zp
LH

and Qp⊗Zp
LHi=1,2

respectively are each vector spaces of the same dimension over Qp.
This gives an isomorphism

Qp ⊗Zp
LH1

= Qp ⊗Zp
LH = Qp ⊗Zp

LH2

of Qp-vector spaces, and we can hence give the following

Definition 4.14. Let G be a p-adic Lie group. The Lie algebra of G is

L(G) = Qp ⊗Zp
LH ,

where H is any open uniform subgroup.

It follows that the dimension of a Lie group G coincides with the rank of the Zp-
algebra LH and the dimension of L(G) as Qp-vector space, where H is any open
uniform subgroup of G:

dim(G) = dim(H) = rkZp
(LH) = dimQp

(
L(G)

)

A similar passage to the “local situation” allows to associate a Lie algebra morphism
L(f) = f∗ to a morphism f of Lie groups. With this operation, L becomes a functor
from the category of p-adic Lie groups to the category of finite-dimensional Qp-Lie
algebras (cf. [2], 9.11).

Its properties however might appear unsatisactory. Evidently, L cannot be invertible,
since it only depends on a “small” open subgroup of G. This contrasts to the results
of section 3.2, where we had to “shrink” the category of Zp-Lie algebras to establish
an equivalence to uniform groups. The above process of saturating the Lie algebras
LH overcompensates for this, and a strict equivalence of categories would now require
to consider certain equivalence classes of Lie groups. Details are spelt out in [2],
pp231–234.

The geometric definition

We obtain a more general – and in many aspects more suitable – notion of Lie algebra
by abandoning uniform groups. Their role will be filled by formal groups: Under a
sufficiently small chart around the unit, the group law on a Lie group G turns into a
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4. p-adic Lie groups

formal group law on kd, which then gives rise to a Lie bracket on a suitable space. For
fields of characteristic 0, this is ultimately justified by an equivalence of categories

(k-Lie algebras ) ≃ (Formal groups over k )

(cf. [12], part II, chp. V, 6, Thm. 3). For k = Qp, formal groups additionally appear as
standard subgroups in every p-adic Lie group. This makes some results easier to access
than in the real or complex case. As an example, any finite-dimensional Qp-algebra
can be shown to be the Lie algebra of some p-adic Lie group with little conceptual
effort (cf. [12], part II, chp. V, 4).

Let x be a point of an analytic manifold X, defined over any complete field k. The local
ring OX,x = Ox consists of germs of analytic functions at x, and the set of functions
vanishing at x is its maximal ideal mx. By composition of functions, any chart (U, φ, d)
around x induces an isomorphism φ : Okd,0 → Ox, where Okd,0 is isomorphic to the
(local) ring of convergent power series in d variables, with coefficients in k.

By the natural embedding of constant functions, Ox is a k-algebra and admits a
decomposition Ox = k ⊕ mx. The action on mx thus determines any k-derivation of
Ox, and allows to identify the vector space TxX = (mx/m

2
x)

∗ of k-linear forms on mx

with the space of k-derivations of Ox. We call TxX the tangent space of X at x, and
can think of it as the set of all points on lines tangent to X at x.

For an analytic group X = G, the tangent space T1G at the identity can be given a
natural Lie algebra structure. By choosing a chart (U, φ, d) at the identity, we give
G “local coordinates”, and the group law thus induces a formal group law F (X,Y ) on
kd, convergent on a sufficiently small ball around 0. We recall that any such law F
expands to X + Y +B(X,Y ) +O(3), where B is a bilinear form. F thus gives rise to
a Lie bracket [X,Y ]F = B(X,Y ) − B(Y,X) on kd. (See [12], part II, chp. IV, 7 for
any details.)

The morphism φ however also induces an isomorphism of the tangent spaces φ̃ : T1G→
T0k

d = kd. This allows to define a Lie bracket for x, y ∈ T1G by

φ̃
[
x, y
]

=
[
φ̃x, φ̃y

]
F

This definition does not depend on the choice of chart (see [12], part II, chp. V, 1).
In this more general set-up, T1G = L(G) is the Lie algebra of G. This definition of L
is again functorial, and compatible with Definition 4.14.

In the situation of Theorem 3.10, the mutual passage between a Lie group and its
Lie algebra was carried through with the logarithm and the Campbell-Hausdorff series
(which contained the exponential). There is a corresponding, however quite technical
result in the general set-up. As a preparatory result to deeper results (e.g. Lie’s
Third Theorem), it can be shown that any finite-dimensional k-Lie algebra g is the
Lie algebra of an analytic group chunk G (which is a slight generalisation of a Lie
group). The group chunk in question can be constructed by a formal group law F
whose definition leans heavily on the Campbell-Hausdorff series. In fact, we get the
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4. p-adic Lie groups

Campbell-Hausdorff group chunk CH(g) which is mapped back to G under a formal
isomorphism exp that satisfies L(exp) = id. We refer to [12], part II, chp. V, 4 & 7
for details.

With the definition as tangent space in mind, there is an abundance of results that
underline the nature of L(G) as linear approximation to G. For instance, we have the
following “local-to-global” principle:

Proposition 4.15. ([12], part II, chp. V, 7, Cor. 1) The p-adic Lie groups G and H
have isomorphic open subgroups if their corresponding Lie algebras are isomorphic.

More details on the relation between Lie groups and their Lie algebras can be found in
([12], part II, chp. V, 2). We conclude with a sanity check of the geometric approach.

Example. Generalising the example of GLd(Qp) discussed above, the unit group R∗

of a finite dimensional, associative k-algebra R is an analytic group (cf. [12], part II,
chp. 4, 2). R∗ is an open subgroup, so we have T1R

∗ = R. Multiplication in R∗ has
the form

(1 + x)(1 + y) = 1 + x+ y + xy

which corresponds to the formal group law F (X,Y ) = X + Y + XY . As explained
above, the Lie algebra structure on R = T1R

∗ is thus given by [x, y] = xy − yx.

4.4. Relation to Lazard’s work: p-filtered groups

The original approach to p-adic Lie groups as proposed by Lazard (cf. [5]) is of a more
analytic nature than the one just presented, and introduces objects that are related in
a rather intricate way to powerful and uniform groups. We recall that a filtered group
(G, v) exhibits a valuation v : G→ R ∪ {∞} such that

(i) v(g) > 0 and v(1) =∞

(ii) v(gh−1) ≥ min{v(g), v(h)}

(iii) v
(
[g, h]

)
≥ v(g) + v(h)

For each x > 0, there are normal subgroups Gx = {g ∈ G : v(g) ≥ x} and Gx+ =
{g ∈ G : v(g) > x} respectively. Morphisms of filtered groups (G, v) and (H,w) are
group homomorphisms ϕ : G → H that satisfy ϕ(Gx) ⊂ Hx. The valuation v gives
rise to a fundamental basis of neighbourhoods of the identity element, and thus makes
G a topological group and ϕ as above a continous mapping. The induced topology
is Hausdorff whenever v(g) = ∞ implies g = 1, and can be completed by passing to
lim
←−

G/Gx.
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4. p-adic Lie groups

Example. Let (A,w) be a filtered ring that contains Z such that w restricts to vp
on Z. Any unit g can be written as g = 1 + a with a non-unit a and w(a) > 0. The
unit group A∗ now becomes a filtered group by v(g) = v(1 + a) = w(a). The effect of
taking p-th powers of g can be described by comparing two numbers from a binomial
expansion: gp has valuation ϕ(v(g)) = min{w(a) + 1, pw(a)}.

If A is also an algebra over a complete discrete valuation ring (with residue field of
unequal characteristic), one can define analytic functions exp and log. The conditions
for convergence are w(x) ≥ (p− 1)−1 and w(x− 1) ≥ (p− 1)−1, respectively. This and
the observation from the example above motivates a refined notion of filtered group:

A p-valued group is a filtered group such that

(iv) v(g) <∞ for x 6= 1

(v) v(g) > (p− 1)−1

(vi) v(gp) = v(g) + 1

The graded group gr(G) =
⊕
Gx/Gx+ of a p-valued group is a Lie algebra over Fp[π];

the Lie bracket is induced by the group commutator (see the example after Definition
3.1) and multiplication by π corresponds to taking p-th powers. The conditions above
guarantee that gr(G) is torsion-free and equal to 0 for x ≤ (p− 1)−1.

Conditions (v) and (vi) prohibit that elements of valuation ≤ p/(p − 1) have a pth
root. This leads to define p-saturated groups as complete groups with pth roots for all
elements with valuation above this threshold: whenever v(g) > p/(p − 1), then there
exists h such that hp = g (cf. [5], III.2.1.6). A p-saturated group G with minimal set
of (topological) generators (g1, . . . , gd) such that v(gi) + v(gj) > p/(p − 1) is called
strongly p-saturated. This condition entails that any commutator is a p-th power, and
G is thus powerful. In fact, the analytic and algebraic vocabulary agree at this stage:
a p-valued group G is uniform if and only if it is strongly p-saturated (cf. [7], 4.3).

Lazard’s characterisation of analytic groups has come into reach: If G is p-adic ana-
lytic (of dimension d) over Qp, then there exists an open, p-saturated subgroup S (of
dimension d) with integral valuation v ([5], III.3.1.3).3

This valuation v is such that the topology induced on S coincides with the subspace
topology of S ⊂ G. Furthermore, we have the equalities

Sn := Sp
n

= {sp
n

: s ∈ S} =

{
{s ∈ S : v(s) ≥ n+ 1} if p > 2,

{s ∈ S : v(s) ≥ n+ 2} if p = 2.

We note that each Sn is indeed a subgroup of S. The above equations justify the
terminology in [8] to call the (Sn) “standard filtration” of S.4

3There is a converse for compact groups: G is a compact analytic group if and only if it contains an
open, p-valuable pro-p subgroup H of finite index ([5], II.2.1.3 and III.3.2.2).

4We will not adopt this terminology and use it in this section only.
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4. p-adic Lie groups

This terminology can be extended to the situation where S is an open subgroup of an
analytic pro-p group H. We set Hn = Hpn

as in the first two equations above,5 and
obtain the important relation

Hn+e ⊂ Sn ⊂ Hn,

where pe = (H : S). This shows again that the topology of an analytic pro-p group
is determined by its algebraic structure, and that its topology has the sets of pn-th
powers as basis (cf. [5], III.3.1.4).

Definition 1.11 also provides H with the lower p-series Pn(H). How does this series
relate to Hn as above? Both series form a fundamental basis of the topology of H,
so by the two formulations of Lazard’s Theorem, both of them “run into” an open
uniform subgroup U ⊂ H and an open saturated subgroup S ⊂ H, respectively.
(More precisely, this means that Pc(H) ⊂ U and Hc ⊂ S for some c ∈ N large
enough.) On the uniform subgroup U , the lower p-series is now also given as p-th
powers (cf. Theorem 1.17), and we conclude that

Pn+c(H) ⊂ Hn ⊂ Pn−c(H),

where Pn−c(H) = H whenever n− c < 0. In the terminology of Chapter 6, this means
that the “standard filtration” of an analytic pro-p group H is uniformly equivalent
in scaling 1 to its lower p-series Pn(H). The expression “scaling 1” comes from the
absence of a non-trivial multiplicative factor s · n to compare the two series.

5Note that Hn now only denotes the set of pn-th powers – contrary to the case of powerful groups
however, this is in general not a subgroup.
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Ramification in analytic groups
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5. The ramification filtration of a

Galois group

This chapter’s fundamental object is a field K, complete with regard to a discrete,
non-archimedean valuation. The behaviour of this valuation in extensions L/K may
display “ramification”, and we wish to examine this important aspect.

We will almost exclusively work under the assumption of different characteristics, ie. K
is of characteristic 0, but char(k) = p > 0 for the residue field k. If L/K is Galois with
separable residue field extension l/k, we can describe the phenomenon of ramification
in terms of the Galois group. This leads to the notion of (higher) ramification groups.

These groups will first be defined for finite extensions only. If the extension is abelian,
this chapter’s main result describes how p-th powers interact with the ramification
filtration (this is Theorem 5.14). A neat formulation however requires to define an
alternative numbering of the ramification groups. This is a rather intricate business,
but allows to extend the notion of ramification groups to the infinite case.

The majority of our results is valid for fields more general than local ones, and it may
be worthwhile to also keep the power series fields over Qp in mind. Theorem 5.14 just
mentioned will however be proved for local fields only; and we defer its generalisation
to the case of perfect residue fields to Chapter 7.1. Main references for this chapter
are [11], [6], [3].

5.1. Valuations and their extensions

By combined efforts from analysis and algebra, it is known that any complete valued
field (K, v) admits a unique extension of its valuation to any algebraic extension field
L/K. If v is a non-archimedean (exponential and normalized) valuation, the ring of
integers OK is a valuation ring and equal to the set of elements with non-negative
valuation. Its unique maximal ideal pK is the set of elements with strictly positive
valuation; and the residue field OK/pK of K is denoted by k.

If v is a discrete valuation, then OK is a discrete valuation ring, with ideals given by
prK = (πr) for a prime element π. These ideals form a fundamental basis of the zero
element, and so do the higher unit groups Ur = 1 + prK ⊂ O

∗
K for the unit in K∗. The

quotients in these sequences satisfy prK/p
r+1
K ≃ Ur/Ur+1 ≃ k for r ≥ 1.
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5. The ramification filtration of a Galois group

Let (K, v) be a field as above, with v discrete and non-archimedean. If (L,w) is a
finite extension, we have the degree formula

[L : K] = eL/K · fL/K ,

where eL/K = (w(L∗) : v(K∗)) is the (relative) ramification index and fL/K = [l : k]
the residue degree of the extension L/K. Let (λ1, . . . , λfL/K

) ∈ OL denote represen-
tatives for a basis of l/k, and choose a prime element (πL) = pL in OL. The set

(
λiπ

j
)

with 1 ≤ i ≤ fL/K and 0 ≤ j ≤ eL/K − 1 is an OK-basis of the ring of integers OL
(and thus also a K-basis of L).

The extension L/K is unramified, if l/k is separable and eL/K = 1. The composite of
two unramified extensions is again unramified, and we define the maximal unramified
extension Kur as the composite of all unramified (finite) extensions of K. The exten-
sion Kur/K is Galois, isomorphic to its residue field extension ksep/k. The valuation
of K extends uniquely to Kur, although the latter field is in general of infinite degree
over K and thus not necessarily complete.

For any extension L/K, the field Kur ∩ L is the maximal unramified subextension of
L/K, with residue field l ∩ ksep. If there is no such non-trivial extension, then L/K is
called totally ramified. In this case, the corresponding residue field extension is trivial,

and for L/K finite, the prime pK “ramifies totally” into p
[L:K]
L .

It is often desirable to split an extension L/K into
an unramified and a completely ramified part. In
general, it is only possible to first move to a maxi-
mal unramified intermediate field, which then admits
L as totally ramified extension. The reverse proce-
dure fails, for the composite of two totally ramified
extensions is in general not totally ramified again.

L

? Kur ∩ L

tot.ram.

DDDDDDDD

K

unram.

zzzzzzzz
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L′Kur = L′ur
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With some amendments, the reverse decom-
position becomes feasible for a certain class of
extensions: If K has perfect residue field, then
any finite extension L/Kur of degree n splits
into a totally ramified part of degree n and
an unramified part, relative to some finite ex-
tension K ′/K (cf. [11], chp. V, §4, Lemma
7).

5.2. Ramification groups: The lower numbering

We turn to the special situation of a finite Galois extension L/K whose residue ex-
tension l/k is separable and has characteristic p > 0. We write vL = w · eL/K for the
normalized valuation on L and vK = v · eL/K for its restriction to K. The separability
of l/k yields

Lemma 5.1. ([6], II, 10.4) The valuation ring OL is generated as OK-algebra by a
single element x ∈ OL, ie.

OL = OK [x].

This enables us to give the following

Definition 5.2. For r ∈ [−1,∞), the set

G(L/K)[r] = {σ ∈ Gal(L/K) : vL(σx− x) ≥ r + 1}

is called the r-th ramification group of G = Gal(L/K) in the lower numbering (or
simply r-th lower ramification group for brevity). If it is clear from the context we
may omit the extension and simply write G[r] for G(L/K)[r].1

The condition above can easily be seen to be equivalent to vL(σa− a) ≥ r + 1 for all
a ∈ OL and is thus independent of the choice of x. We collect a few observations on
these ramification groups:

(i) Filtration. The G[r] form a decreasing chain of normal subgroups. It is clear
that G[−1] = G and G[n] = 1 for some n large enough. The G[r] thus form a

1As the name suggests, lower ramification groups are usually written Gr. We reserve this notation
for the more frequently appearing lower p-series of a Lie group.
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fundamental basis of open neighbourhoods of the unit in G (provided with the
discrete topology).

(ii) The group G[0]. We recover that G[0] = I(L/K), where

I(L/K) = {σ ∈ Gal(L/K) : σa ≡ a mod pL, for all a ∈ OL}

= ker
(
G→ Autκ(λ), σ 7→ (a mod pL 7→ σa mod pL)

)

is the inertia group of Gal(L/K). It is a subgroup of order eL/K and thus
a measure for the ramification in L/K. Furthermore, it “marks the border”
between the unramified and totally ramified part in L/K: let L′ = Kur ∩ K
be the largest unramified subextension of L, and let H = Gal(L/L′) denote its
Galois group. The extension L/L′ is totally ramified, with H[r] = G[r] for r ≥ 0.
In this way, the study of ramification by means of the groups G[r] is reduced to
the case of totally ramified extensions L/K.

(iii) The group G[1]. The group G[1] = R(L/K) is simply called ramification group
of G and equal to

R(L/K) = {σ ∈ Gal(L/K) :
σa

a
≡ 1 mod pL, for all a ∈ L∗}

It is the kernel of the canonical homomorphism I(L/K) −→ χ(L/K), where
χ(L/K) = Hom

(
vL(L∗)/vK(K∗), λ∗

)
, and is the only p-Sylow subgroup of

I(L/K) (cf. [6], II.9 for details).

(iv) The quotients. The last statement is a consequence of the structure of the quo-
tients G[r]/G[r+1]: for non-negative r, they can be embedded into the quotients
UrL/U

r+1
L of the higher unit groups of L. For r ≥ 1, the groups G[r]/G[r+1] are

thus abelian, and annihilated by p.

One of the most useful properties of the lower numbering is its smooth interaction
with the process of replacing G by a subgroup (ie. changing the base field K):

Proposition 5.3. ([6], II, 10.3) Let K ′ be an intermediate field of L/K. We have for
all r ≥ −1:

G(L/K ′)[r] = G(L/K)[r] ∩G(L/K ′)

Any (integral) number n such that G[n] 6= G[n + ε] for all ε > 0 is called a jump in
the chain (G[r])r. The last jump in the lower numbering is denoted by lG, so that
G[lG] 6= 1, but G[lG + ε] = 1 for all ε > 0. This section’s main result is an upper
bound for lG.

Proposition 5.4. Let L/K be an extension as above, ie. finite and Galois, but of
characteristic 0. In this situation, the absolute ramification index of the field L is
defined as eL = vL(p). Let G = Gal(L/K) denote the Galois group of the extension.
The last jump lG in its ramification filtration is bounded by eL/(p−1), that is G[r] = 1
for r > eL/(p− 1).
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5. The ramification filtration of a Galois group

Proof: We will not need to mention the residue field l of L any more, so we free
up the notation and put l = lG for brevity. We claim that we can assume G to be
totally ramified, and cyclic of degree p. Firstly, because of eL/(p − 1) > 0, we work
inside of G[1], which is the Galois group of a totally ramified subextension. Secondly,
the last non-trivial ramification group G[l] is an abelian p-group, and thus has a
subgroup H ≃ Z/pZ. This group is the Galois group of some intermediate field, and
by Proposition 5.3 above, the lower numbering of H is induced by the numbering on
G. This means H[r] = G[r] ∩H, and we conclude that lH = l.

We thus think of L/K as totally ramified and cyclic of order p. This means eL = p ·eK ,
and allows to choose a generator σ of G = Gal(L/K). We postpone the proofs of two
supplementary results:

Lemma 5.5. For any a ∈ L, we have vL
(
(σ − 1)a

)
≥ vL(a) + l, and equality if and

only if vL(a) is prime to p.

Let P ∈ Z[T ] denote the polynomial determined by

1 + T + T 2 + . . .+ T p−1 = (T − 1)p−1 + pP (T )

If we substitute T = σ, this gives the useful relation

trL/K(a) = (σ − 1)p−1(a) + pP (σ)(a).

The second result examines the valuation of the last term on the right hand side:

Lemma 5.6. The polynomial P (σ) does not change the valuation of a, that is
vL
(
P (σ)(a)

)
= vL(a). In particular, we have vL

(
pP (σ)

)
(a) = eL + vL(a).

With these two lemmas, we can derive the Proposition as follows: Assume l to be
divisible by p, and choose a ∈ L such that vL(a) = 1. By Lemma 5.5 above, we have
vL
(
(σ−1)p−1(a)

)
= (p−1)l+1, which is not divisible by p. Neither is vL

(
pP (σ)(a)

)
=

eL+1, for p already divides eL = eK ·[L/K] = eK ·p. However, we have vL
(
trL/K(a)

)
=

p vK
(
trL/K(a)

)
, which entails eL+1 = (p−1)l+1 by the sharpened triangle inequality.

Now assume l to be prime to p, and choose a ∈ L with vL(a) = l. By the Lemma
again, we have vL

(
(σ − 1)p−1(a)

)
= (p − 1)l + l = pl, while vL

(
pP (σ)(a)

)
= eL + l

is prime to p. Since the number vL
(
trL/K(a)

)
is still divisible by p, we must have

pl < eL + l.

Proof of Lemma 5.5: Let π = πL be a uniformizing element of L. Since L/K is
totally ramified, L admits a K-basis (π0, π1, . . . , πp−1) (cf. [6], II.6.8), and we can
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5. The ramification filtration of a Galois group

choose π as generating element of OL = OK [π]. The map (σ− 1) : L→ L is K-linear,
and its action on π satisfies

vL
(
(σ − 1)πi

)
=

{
i+ l if 1 ≤ i ≤ p− 1,

∞ if i = 0.

This is clear for i = 1, for which we write the action on π as σπ = π + uπl+1 with
some unit u ∈ O∗

L. It follows that

σ(πi) = (σπ)i = (π + uπl+1)i ≡ πi + (iu)πl+i mod (πl+i+1)

The factor (iu) is again a unit, for 1 ≤ i ≤ p− 1. This gives the above statement for
all i.

Let a =
∑p−1
i=0 λiπ

i be an element of L, with λi ∈ K. We have

vL(a) ≥ min i≥0

(
vL(λi) + i

)

vL((σ − 1)a) ≥ min i≥1

(
vL(λi) + i+ l

)

for the valuations of a and (σ − 1)a respectively. However, each vL(λi) is divisible by
p, so the vL(λi) + i are pairwise distinct. Thus there exist n and m such that

vL(a) = vL(λn) + n, vL
(
(σ − 1)a

)
=

{
vL(λn) + n+ l = vL(a) + l if n 6= 0,

vL(λm) +m+ l > vL(a) + l if n = 0.

It follows that vL((σ − 1)a) ≥ vL(a) + l. We have equality if and only if n 6= 0, which
happens precisely when p is prime to vL(a).

Proof of Lemma 5.6: We note that P (1) = 1, and thus write P (T ) =
∑p−1
i=1 ciT

i,

with
∑p−1
i=1 ci = 1. Moreover, we have

P (σ)(a)

a
=
c1σ(a) + . . . cp−1σ

p−1(a)

a
= c1

σ(a)

a
+ . . .+ cp−1

σp−1(a)

a

Since we are working within G[1], we know that σi(a)/a ≡ 1 mod (π) for all powers
of σ (see item (iii) in the list at this section’s beginning). With the equation above,
this implies

P (σ)(a)

a
≡ c1 + . . .+ cp−1 = 1 mod (π).

This means that P (σ)(a)/a is a unit, ie. vL
(
P (σ)(a)

)
= vL(a).

We conclude this section with a widely used result in the study of higher ramifica-
tion groups, namely the reduction to algebraically closed residue fields. Its proof is
instructive, and centers around the concept of “ramification isomorphism”.
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Let L/K and L′/K ′ be finite Galois extensions as in Proposition 5.4, with residue
field of characteristic p. We say that there is a ramification isomorphism, if there are
isomorphisms

Gal(L/K)[r] ≃ Gal(L′/K ′)[r]

for each r ≥ 0. The result mentioned now reads as:

Lemma 5.7. Let L/K be as above, and assume additionally that the extension is
totally ramified, with perfect residue field k. There exists an extension L′/K ′ as above,
with algebraically closed residue field k, such that there is a ramification isomorphism
between L/K and L′/K ′.

Proof: The field Kur has the desired residue field k. Let L′ = LKur denote the
compositum of L and Kur. One sees easily that L′ = Lur. The fields Lur, Kur are
however not complete, so we move on to L′ = L̂ur and K ′ = K̂ur, respectively. We
claim that L′/K ′ has in fact the desired properties.

The first step is to compare the maximal unramified extensions to their completions.
There is a ramification isomorphism between them, ie.

Gal
(
Lur/Kur

)
[r] ≃ Gal

(
L′/K ′

)
[r]

for r ≥ 0. Note that the left hand side is not covered by our definition of ramification
groups, for we required complete fields in 5.2. This can however be relaxed to only
demanding that the valuation of the base field has a unique continuation to the exten-
sion field (cf. [6], chp. II, §10). This is the case for Kur, for it is a Henselian field (cf.
[3], chp. II, 2).

K ′ does not contain any algebraic extension of Kur: any such field would have the
same residue field k as Kur, and also be unramified – hence equal to Kur. This
shows the claimed isomorphism for r = 0. For r ≥ 1, we observe that Lur embeds as
dense subset into L′, and that all Galois automorphisms are continuous maps. Any
σ ∈ Gal(Lur/Kur)[r] thus extends uniquely to a continuous automorphism of L′/K ′,
and lies in Gal(L′/K ′)[r].

The second step is to justify the isomorphisms

Gal
(
L/K

)
[r] ≃ Gal

(
Lur/Kur

)
[r]

These follow “by definition” of the ramification groups, for the generator of OLur over
OKur can be chosen from OL. This is a consequence of Lur = LKur as above, and the
remark on any OK-basis of OL in 5.1. We derive the assertion, for the valuations vL
and vLur agree on L.
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5. The ramification filtration of a Galois group

5.3. Ramification groups: The upper numbering

The lower numbering displays a less desirable behaviour under taking quotients by a
Galois subextension L′/K. Let G = Gal(L/K) as above, and H = Gal(L/L′). Under
the projection G −→ G/H, each G[r] is mapped to some ramification group (G/H)[s],
but in general, we will have r 6= s. The change of numbering is intricate to describe.
A central role is occupied by the function

ϕL/L′ : [−1,∞) −→ [−1,∞)

u 7→

∫ u

0

dt

(H[0] : H[t])

where (H[0] : H[t]) is to be understood as 1/(H[t] : H[0]) for −1 ≤ t ≤ 0. We will also
write ϕH for ϕL/L′ , which is a continuous, piecewise linear and increasing function:

-

6

-1

0

ϕ(1)

ϕ(2)

ϕ(3)

-1 0 1 2 3

It enters the subject of ramification groups by Herbrand’s Theorem:

Theorem 5.8 (Herbrand). ([6], II, 10.7) For all r, we have

G[r]H/H = (G/H)[ϕH(r)]

Let us return to the extension L/K and consider the function ϕG = ϕL/K . Let

ψG = ψL/K = ϕ−1
L/K denote its inverse function.

Definition 5.9. The r-th ramification group in the upper numbering is defined as

Gal(L/K)(r) = G(r) = G[ψG(r)]

Just as in the case of the upper numbering, we may write G(r) for Gal(L/K)(r) if
this relation is clear from the context.2 By means of the G(r), the function ψG is

2We deviate again from the standard notation as Gr.
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5. The ramification filtration of a Galois group

expressible as

ψG(u) =

∫ u

0

(
G : G(t)

)
dt,

which can be shown (by left-continuity of the lower filtration) on differences of the
form ψ(u+ ε)− ψ(u). Both ϕG and ψG are transitive with regard to an intermediate
extension (cf. [6], II, 10.8):

ϕG = ϕG/H ◦ ϕH and ψG = ψH ◦ ψG/H

This helps to discover the true merit of upper ramification groups: their numbering is
invariant with regard to subextensions.

Proposition 5.10. ([6], II, 10.9) As above, let L′/K be an intermediate Galois ex-
tension with H = Gal(L/L′). We have

G(r)H/H = (G/H)(r)

Another valuable property of the upper numbering is the possibility to generalize the
concept of higer ramification groups to the case of an infinite Galois extension:

Definition 5.11. Let L/K be a (possibly infinite) Galois extension. We define the
higher ramification groups

G(r) = lim
←−

(G/H)(r),

where H runs through the set of open subgroups of G. The family of subgroups(
G(r)r≥−1

)
is called ramification filtration of G.

It is immediate that G(0) = G[0] in the case of a finite extension L/K; and it can be
checked on finite intermediate extensions that the Galois theoretic properties of G[0]
carry over to G(0) for an infinite extension. G(0) is thus called “inertia group of G”,
and sometimes denoted by I(L/K).

Each G(r) is a closed normal subgroup in G, but it is by no means clear whether they
are open. This is actually a direct corollary of Sen’s Theorem – and thus a correct
statement for an analytic Galois group of a totally ramified extension, with open pro-p
subgroup of dimension ≥ 1.

5.4. Jumps in finite abelian extensions of local fields

For the rest of the section we assume that L/K is a finite Galois extension of p-adic
number fields, ie. of local fields of characteristic 0. This entails 0 < v(p) = eK = e <∞
for the absolute ramification index of K.

Jumps in the chain (G(r))r in the upper numbering are defined exactly as for lower
ramification groups, with the last jump in the upper filtration denoted by uG. Contrary
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to the lower numbering, jumps do not need to be integers anymore (cf. [11], IV, §3,
Exc. 2). It is remarkable that this conclusion yet holds for abelian extensions:

Proposition 5.12 (Hasse-Arf). ([6], V, 6.3) Let G = Gal(L/K) denote the Galois
group of a finite abelian extension of local fields. Then all the jumps in the filtration
G(r)r≥−1 are integers.

This result is a consequence of a deep connection between the higher unit groups
Ur = 1 + prK of a local field K and the higher ramification groups of its Galois group.
It is known from Local Class Field theory that the universal local Artin map

( ,K) : K∗ −→ Gal(Kab)

induces the relative local Artin map

( , L/K) : K∗ −→ G = Gal(L/K)

for every finite, abelian extension L/K. In this situation, we have the fundamental

Theorem 5.13. ([6], V, 6.2) For any r ≥ 0, the relative Artin map ( , L/K) maps
the unit groups UrK onto G(L/K)(r).

Our next result might be read with the notion of “p-filtered” group in mind. Up to
the factor e, G(1) will turn out to “almost” be such a group. All our further results
rely on how p-th powers affect the ramification groups:

Theorem 5.14. Recall that e = eK denotes the absolute ramification index of the base
field K. For a finite abelian p-group G = Gal(L/K), the effect of p-th powers on its
higher ramification groups is as follows:

G(r)p ⊂ G(p · r) if r ≤
e

p− 1

G(r)p = G(r + e) if r >
e

p− 1

By Theorem 5.13, this follows immediately from

Proposition 5.15. ([3], chp. I, 5.7) The higher unit groups satisfy:

Upr ⊂ Upr if r ≤
e

p− 1

Upr = Ue+r if r >
e

p− 1

Proof: Let 1 + x be an element of Ur, and assume v(x) = r. For p > 2, we get:

(1 + x)p = 1 + p · x︸︷︷︸
e+r

+
(
p(p− 1)/2

)
· x2

︸ ︷︷ ︸
e+2r

+ . . .+ p · xp−1

︸ ︷︷ ︸
e+(p−1)r

+ xp︸ ︷︷ ︸
p·r
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with the respective valuations given underneath. Subtracting 1, we conclude

v
(
(1 + x)p − 1

)
{

= v(xp + px) = min{p · r, e+ r} if v(xp) 6= v(p · x),

≥ v(xp + px) otherwise.

This distinction holds as well for p = 2, so we remove the above restriction on p.

We now note that r ≤ e/(p− 1) if and only if v(xp) ≤ v(p · x), so we derive Upr ⊂ Upr
in the first case. If conversely r > e/(p− 1), this means of course Upr ⊂ Ue+r.

It remains to show the inclusion Ue+r ⊂ Upr for the latter case. The number p splits
as p = γπe, so the element x can uniquely be written as x = αγ−1πr with a unit α.
The calculation above gives

(1 + x)p = (1 + αγ−1πr)p ≡ 1 + p · αγ−1πr

≡ 1 + απr+e mod πr+e+1

The induced isomorphism Ur+e/Ur+e+1 ≃ U
p
r /Ur+e+1 is applied repeatedly to give

Ur+e = Upr · Ur+e+1 = (Upr U
p
r+e+1) · Ur+e+2 = . . .

Any b ∈ Ur+e thus expands as b = u1b1 = (u1u2)b2 = . . . with ui ∈ Upr and bi ∈
Ui. The sequence

(∏n
i=1 ui

)
is Cauchy, since the Ui form a fundamental basis of

neighbourhoods of the unit. The limit b lies within Upr , for this is a closed and thus
complete set.

Example: Ramification groups of cyclotomic local fields

We conclude this chapter and provide some illustration for the theory developed. Let
ζ = ζpn denote a primitive pn-th root of unity, and set K = Qp, L = Qp(ζ). The
extension L/K is totally ramified of degree (p − 1)pn−1, and we wish to determine
explicitly its ramification groups.

It is clear that G[−1] = G[0] = G = Gal(L/K), for G[1] is the unique p-Sylow subgroup
in G. There exist n different p-subgroups Gm ⊂ G, with G1 = G[1] and Gn = 1. If one
of the Gm did not appear as ramification group, this would give a quotient G[r]/G[r+1]
of order ≥ p2, for some r. This contradicts Property (iv) after Definition 5.2, which
implies that G[r]/G[r + 1] is either trivial or of order p.

Thus, each one of the n subgroups Gm occurs as G[r], for some r. In other words, there
are precisely n jumps jm in the filtration G[r], with 1 ≤ m ≤ n as above. Moreover,
we know that j1 = 0, ie. G[j1] = G[0] = G = G0, and that

G[jm] = Gm−1
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for all m, with #Gm = pn−m. Our remaining objective is to determine the jumps jm.
There are several methods:

(i) Elementary algebra. Any σ ∈ G acts as σζ = ζs for some integer s. By σ 7→ s,
this action gives an isomorphism G = Gal(L/K) ≃ (Z/pnZ)∗, independent of
the choice of ζ. We thus write σ = σs, and wish to know when σs “drops out” of
the ramification groups. Obviously, this happens for some jump jm with

σs ∈ G[jm]−G[jm + 1]⇐⇒ σs ∈ Gm−1 −Gm

Consider the right hand side first. Clearly σs ∈ Gm−1 if and only if pm−1|(s−1),
and thus

σs ∈ Gm−1 −Gm ⇐⇒ vp(s− 1) = m− 1

Now consider the condition on the left. By definition of the ramification groups,
we have that σs ∈ G[jm] if and only if vL(ζs − ζ) = vL(ζs−1 − 1) ≥ jm + 1. The
valuation depends only on the multiplicity of p in (s − 1). We also note that
(ζ − 1) is a prime in L, ie. has valuation 1. This means that σs ∈ G[jm] if and
only if pvp(s−1) ≥ jm + 1, or equivalently

σs ∈ G[jm]−G[jm + 1]⇐⇒ pvp(s−1) = jm + 1

This gives jm = pm−1 − 1, with 1 ≤ m ≤ n.

(ii) Use Hasse-Arf and Theorem 5.14. Hasse-Arf shows that the sequence (jm) of
jumps in the upper numbering must be integral, and we know that its starts
with j1 = 0.

We consider the intermediate field K ′ = Qp(ζp), with eK′ = p − 1 and Galois
group H = Gal

(
L/Qp(ζp)

)
. For r ≥ 1, a simple calculation shows

ϕG(r) =
ϕH(r)− 1

p− 1
+ 1,

which gives
G(r) = H

(
(r − 1)(p− 1) + 1

)
.

Now H is a p-group, so Theorem 5.14 is applicable. It implies that the steps
between jumps in H have uniform distance eK′ = p−1. The equation above gives
G(1) = H(1) = H, and Hasse-Arf shows that 1 and p are the only candidates
for the first jump in H. Proposition 5.4 excludes the latter, so the jumps in H
occur at m(p− 1) + 1 with 1 ≤ m ≤ n− 1.3 For G this translates to

jm = m− 1.

The integration formula for ψ becomes a simple telescopic sum and immediately
gives ψ(jm) = ψ(m− 1) = pm−1 − 1.

3This also shows the relation Hn = H
(
(n(p− 1) + 1

)
we referred to in the Preface.
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m jm jm Ramification groups

1 0 0 G0 = G(1) = G[1]
= Gal(L/K)

2 1 p−1 G1 = Gal(L/L1)

. . . . . . . . . . . . . . .

m m−1 pm−1−1 Gm−1 = G(jm) = G[jm]
= Gal(L/Lm−1)

. . . . . . . . . . . . . . .

n n−1 pn−1−1 Gn−1 = Gal(L/Ln−1)

– – – Gn = 1
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groups

6.1. Statement of Sen’s theorem and outline of its

proof

We recall that a filtration of a group G is a family of subsets (Gn)n∈I , with Gn ⊃ Gm
for n ≤ m and ∩nGn = 1. All filtrations now require I = N, unless otherwise stated.
A filtration (Gn) is uniformly equivalent in scaling s to another filtration (Gm) if
n · s+O(1) = m, that is: Gns+c ⊂ Gn ⊂ G

ns−c for some constant c.

The expression “equivalent” comes from the fact that both filtrations are topologi-
cally equivalent. We emphasize that “uniform equivalence” is an equivalence relation
between filtrations if and only if we deal with scaling 1.

A filtration on a p-adic analytic group G is called Lie filtration if it agrees with the
lower p-series on some open uniform subgroup H ⊂ G. This means there exists r ∈ N
such that Pn(H) = Gr+n for all n ≥ 0.

The aim of this chapter is to prove

Theorem 6.1 (Sen). Let L/K be a totally ramified extension of local fields in char-
acteristic 0, and let e = eK = vK(p) denote the absolute ramification index of K.
Assume that the Galois group G = Gal(L/K) is p-adic analytic, with dim(G) > 0.
Let (Gn) be a filtration on G that is uniformly equivalent in scaling 1 to some Lie
filtration. (Gn) is then uniformly equivalent in scaling e to the ramification filtration(
G(n)

)
. In other words, there exists a constant c > 0 such that

G(ne+ c) ⊂ Gn ⊂ G(ne− c)

for all n, with G(r) = G for r < 0.

The definition of “Lie filtration” in [8] differs from the one given here, in that “uniform”
is replaced by “p-saturated”. The observations in Section 4.4 have shown that two
filtrations of these kinds are uniformly equivalent in scaling 1 for an analytic pro-p
group. The same holds for an analytic Galois group G as above, because G contains
an open normal pro-p subgroup of finite index (cf. Corollary 4.9).
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Outline of the proof

Section 6.2 Our first step is to reduce the problem to a uniform group G of dimen-
sion d > 0, with filtration Gn = Pn(G) the lower p-series. This opens up the results
developed in previous chapters.

Section 6.3 The essential idea to prove Sen’s theorem is to study the sequence of
quotients (G/Gn) together with their ultimate jumps (un) in upper numbering. As
first approximation, we focus on the groups A = Gn/Gn+m with m ≤ n + 1. These
are abelian p-groups by Lemma 1.12, and Theorem 5.14 allows to describe the impact
of p-th powers in terms of the ramification filtration.
Dependent on the size of uA, this description takes two different forms. This leads to
the distinction between small and non-small groups, and we derive a lower bound for
uA in the case of a small group.

Section 6.4 Non-small quotients are however of greater interest to us, for they allow
to transfer knowledge of the uA back to the un. Indeed, we will see that the ultimate
jumps eventually increase uniformly by e, ie. there exists n1 such that un+1 = un + e
for all n ≥ n1. (This is Proposition 6.8.)
This gives the first inclusion in Sen’s Theorem, ie. an inclusion of the form G(ne+c) ⊂
Gn for some constant c. An obvious requirement is that there must be “enough” non-
small quotients to have knowledge of the entire sequence un. (This is Proposition 6.13
& 6.8.)

Section 6.5 We use our results on Lie theory to establish the converse result. We
will compare groups of the form G2n+1 and G(ne + c), and discover they give rise to
a projective system of certain quotients with limit M ⊂ L = log(G). Sen’s Theorem
is immediate once we know that pn0L ⊂M for some n0.
For this latter statement, we need to replace M with its saturation within L(G) =
QpL . This saturation is a Lie ideal I, and corresponds to a uniform, closed and
normal subgroup N = exp(I) of G. (This is Proposition 3.11.) A dimension argument
now finishes the proof.

6.2. Reduction to uniform groups

Let L/K be a field extension with Galois group as described in Theorem 6.1. The
theorem is trivial for any (finite) group G of dimension 0, so we assume dim(G) > 0.

We recall that “uniform equivalence” is an equivalence relation between filtrations if
and only if we deal with scaling 1. A filtration (Gn) is thus uniformly equivalent in
scaling s to some fixed filtration if and only if this holds for all other filtrations that
are uniformly equivalent in scaling 1 to (Gn). We conclude that it is sufficient to show
Sen’s Theorem for some Lie filtration. Let (Gn) be such a filtration, and denote by H
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the uniform subgroup that the filtration eventually ends up in. It is immediate that
we can skip finitely many groups to only consider the filtration

(
G0 = G, G1 = H, Gn = Pn−1(H) for n ≥ 2

)

The open subgroup H corresponds to an intermediate
extension L/L1 such that L1/K is finite with absolute
ramification index e1 = eL1

= vL1
(p) = [L1 : K]. Sup-

pose Sen’s Theorem valid for H, that is: assume that
the filtration (Pn(H)) is uniformly equivalent in scaling
e1 to (H(n)). To deduce the Theorem for G, we need to

Gn
e //

1

��

G(n)

e1/e

���
�

�

Pn(H)
e1

//_____ H(n)

show that the ramification filtration on G is uniformly equivalent in scaling e1/e to
the ramification filtration on H.

Lemma 6.2. Recall the definition of ψ1 = ψL1/K in Section 5.3.1 For r ≥ 1, we have

G(r) ∩H = H
(
ψ1(r)

)
.

Proof: The groups G(r) andH are closed in the profinite group G, and hence profinite
as well. By definition of the (infinite) ramification groups as projective limits over their
finite counterparts, we can check the assertion “componentwise”.

L

LHn = Ln

LH = L1

(ψLn/L1
, H/Hn)

K

(ψn, G/Hn)

(ψ1, G/H)

It is sufficient to consider a (cofinal) sys-

tem of open normal subgroups (Hn)n≥2

that lie within H = H1. The fixed

field LHn = Ln thus contains LH =

L1 and is equipped with the function

ψLn/K = ψn. The assertion now fol-

lows with Theorem 5.8 and the transi-

tivity relation ψn = ψLn/L1
◦ψ1 (cf. [6],

II, 10.8):

(
G(r)Hn ∩H

)
/Hn =

(
G/Hn

)
(r) ∩H/Hn =

(
G/Hn

)[
ψn(r)

]
∩H/Hn

=
(
H/Hn

)[
ψn(r)

]
=
(
H/Hn

)[
ψLn/L1

◦ ψ1(r)
]

=
(
H/Hn

)(
ψ1(r)

)

= H
(
ψ1(r)

)
Hn/Hn

1The notation “e1”, “ψ1” etc. comes from H = G1 and will become clear when we consider a sequence
of open subgroups.
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Proposition 6.3. The ramification filtration on G is uniformly equivalent in scaling
e1/e to the ramification filtration on H. More precisely, for r > u1 we have

G(r) = H
(
r · e1/e+ (l1 − u1 · e1/e)

)
,

where u1 = uG/H is the ultimate jump in the upper numbering, and l1 = ψ1(u1) in the
lower numbering of G/H.

Proof: By Proposition 5.10, we know that upper ramification groups are compatible
with their quotients. This means (G/H)(r) = G(r)H/H for all r, and hence G(r) ⊂ H
if and only if r > u1. By the Lemma above, we conclude with the calculation of ψ1(r):

ψ1(r) =

∫ r

0

(
G

H
:
G

H
(t)

)
dt =

∫ u1

0

(. . .)dt+

∫ r

u1

(. . .)dt

= l1 + (r − u1) · (G : H)

= l1 + (r − u1) · (e1/e).

6.3. A lower bound for jumps in small finite abelian

groups

We place ourselves in the set-up of Theorem 5.14: let A denote the Galois group of
a finite abelian extension of local fields, with order a power of p, and eA the absolute
ramification index of the base field. We wish to describe the ultimate jumps in such
groups only in terms of the (abstract) group structure of A and the invariant eA.

We call the group A small if the ultimate jump in the upper numbering is bounded
above by

uA ≤
p

p− 1
· eA

One of this section’s main results is a lower bound for small groups in terms of their
p-torsion subgroups. We start by making ourselves familiar with the concept “small”:

Lemma 6.4. The group A is small if and only if A(r)p ⊂ A(pr) for all r ≥ 0.

Proof: Assume A as small. Due to Theorem 5.14 we have A(r)p ⊂ A(pr) for r ≤
1
p−1 · eA. For r = 1

p−1 · eA + ε we have

A(r)p = A(r + eA) = A

(
eA
p− 1

+ ε+ eA

)
= A

(
p

p− 1
· eA + ε

)

⊂ A
(
uA + ε

)
= 1.
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by first applying Theorem 5.14 and then that A is small.
Let conversely A(r)p ⊂ A(pr) be satisfied for all r ≥ 0, and choose ε > 0. We have to

show A
(

p
p−1 · eA + ε

)
= 1. By assumption and Theorem 5.14 again, we have

A

(
p · eA
p− 1

+ p · ε

)
⊃ A

(
eA
p− 1

+ ε

)p
= A

(
p · eA
p− 1

+ ε

)
⊃ A

(
p · eA
p− 1

+ p · ε

)

The implied equality A
(
p·eA

p−1 + p · ε
)

= A
(
p·eA

p−1 + ε
)

now shows A
(
p·eA

p−1 + ε
)

= 1.

Any quotient of a small group is itself small, for the ramification index eA stays the
same. Conversely, the quotient of a non-small group stands a chance of becoming
small. Indeed, the passage to a quotient admits a crucially easy description in this
latter case:

Lemma 6.5. Let A(n) denote the subgroup of elements a ∈ A such that an = 1. We
have:

(i) uA ≥ p
m · uA/A(pm)

for m ≥ 1, if A is small,

(ii) uA = uA/A(p)
+ eA, if A not small.

Proof: We have seen in section 5.3 that passing to a quotient is well-behaved under
the upper numbering and satisfies A(r)H/H = (A/H)(r). For H = A(pm), this implies
the relation

A(r) ⊂ A(pm) ⇐⇒ r > uA/A(pm)

We can now prove the above statements:

(i) Because of
(
A(uA/p

m+ε)
)pm

⊂ A(uA+εpm) = 1, we have uA/p
m+ε > uA/A(pm)

.

(ii) If A is not small, we know by definition that uA > p
p−1 · eA, and thus have

uA − eA >
1
p−1 · eA. By Theorem 5.14, this means

(
A(uA − eA)

)p
= A(uA) 6= 1.

We thus have
uA/A(p)

≥ uA − eA

Any ε > 0 gives uA − eA + ε > 1
p−1 · eA. It follows that

(
A(uA − eA + ε)

)p
=

A(uA + ε) = 1, which altogether implies

uA − eA + ε > uA/A(p)
≥ uA − eA

We will state the lower bound for the last jump in A in terms of the lower numbering.
There is an obvious relation between lA and uA:
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Lemma 6.6. Regardless of whether A is small, we have

lA/A(pm)
≤ uA/A(pm)

(
A : A(pm)

)

Proof: Recall the integral representation of ψG = φ−1
G from the remarks after Defini-

tion 5.9. For any finite group G, we have

lG = ψG(uG) =

∫ uG

0

(
G(0) : G(t)

)
dt ≤ uG · |G|

Setting G = A/A(pm), this translates into our proposition.

We can now prove the desired estimate:

Proposition 6.7. Suppose A is small. For m ≥ 1, the last jump in the lower filtration
satisfies:

lA ≥ p
m−1(p− 1) ·

(
A(pm) : A(p)

)
· lA/A(pm)

Proof: This is a matter of persistent calculations:

lA = ψ(uA) =

∫ uA

0

(A : A(t))dt ≥

∫ uA

uA/p+ε

(
A : A(t)

)
dt

≥ (uA − uA/p− ε) ·
(
A : A(uA/p+ ε)

)

≥
(
p−1 (p− 1) · uA − ε

)
·
(
A : A(p)

)
.

The last inequality follows from A(uA/p+ε) ⊂ A(p), which in turn follows from Lemma
6.4 by A(uA/p+ ε)p ⊂ A(uA + p · ε) = 1.

We now apply Lemma 6.5 by replacing uA with its lower estimate:

lA ≥
(
p−1 (p− 1) · uA/A(pm)

· pm
)
·
(
A : A(p)

)

= pm−1 (p− 1) · uA/A(pm)
·
(
A : A(p)

)

= pm−1 (p− 1) ·

(
uA/A(pm)

·
|A|

|A(pm)|

)

︸ ︷︷ ︸
≥ lA/A(pm)

by 6.6

·
|A(pm)|

|A(p)|

≥ pm−1 (p− 1) · lA/A(pm)
·
(
A(pm) : A(p)

)
.
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6.4. Sen’s Theorem: The first inclusion

We return to the situation described in Sen’s Theorem 6.1 and additionally assume G
uniform and of dimension d > 0, as explained in section 6.2. We recall that G has a
filtration of open normal subgroups

G0 = G ⊃ G1 = {xp : x ∈ G} ⊃ G2 = {xp : x ∈ G1} ⊃ . . .

Each quotient Gn/Gn+m has size pmd. For m ≤ n+ 1, it is abelian and isomorphic to
(Z/pmZ)d. The most important objects are the quotients G/Gn, for which we agree
upon the following notation:

• With n ≥ 1, let un = uG/Gn
denote the last jump in G/Gn in the upper number-

ing. Correspondingly, ln = lG/Gn
denotes the last jump in the lower numbering.

(un) is a strictly ascending sequence: (G/Gn)(s) = 1⇔ G(s) ⊂ Gn tells us that
it is ascending. We also have the inequalities (G/Gn+1)(un) * Gn/Gn+1 6= 1.
Thus, the group (G/Gn+1)(un) cannot be annihilated by p, ie. cannot be the last
non-trivial group in the ramification filtration of G/Gn+1. This gives un+1 > un.

• Being a Galois group in its own right, G/Gn comes with functions ϕn = ϕG/Gn

and ψn = ϕ−1
n . Of course, we have ψn(un) = ln.

• We denote the absolute ramification index of Gn by en = eGn
. The condition

that G belongs to a totally ramified extension translates into en = e · (G : Gn).

Let us assume there are “enough” non-small quotients: Proposition 6.13 will show that
for any m ≥ dim(G) + 3, there always exists a non-small quotient Gn/Gn+m. We will
see that this property is “hereditary”, and also derive a result on the sequence (un) of
ultimate jumps:

Proposition 6.8. Suppose there are integers n0 and m ≥ 2 such that Gn0
/Gn0+m is

non-small and abelian. Let n ≥ n0 + m. If each quotient Gn/Gn+2 is abelian, then
none of them is small, and un+1 = un + e for every n.

This “uniform rise” by e is the crucial ingredient to show the first inclusion in Sen’s
Theorem:

Corollary 6.9. There exists an integer n1 such that un = un1
+(n−n1)e for n > n1.

It follows that there is a constant c such that for every n, we have

G(ne+ c) ⊂ Gn.

Proof: We need to show that the requirements of Proposition 6.8 are fulfilled. By
Lemma 1.12, the quotients Gn/Gn+m are abelian for m ≤ n+ 1 and arbitrary n. Set
m = d + 3. Since there are “enough” non-small quotients, there exists an abelian,
non-small group Gn0

/Gn0+m with n0 ≥ d+ 2.
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Set n1 = n0 +m for brevity. We recall that (un) is a strictly ascending sequence, and
that G(r) ⊂ Gn if and only if r > un. Proposition 6.8 implies that

un

{
≤ un1

if n ≤ n1,

= un1
+ (n− n1)e if n > n1.

This means un < ne+ un1
for all n > 0, and we conclude by setting c = un1

.

The verification of the assumptions made above will be of a somewhat technical nature.
We start with a general observation:

Lemma 6.10. Let H be a finite p-group, but not necessarily abelian. Assume H is
provided with the lower numbering from some Galois extension, and let H(p) denote
the set of elements annihilated by p. Any subgroup A that contains H(p) has the same
last jump as H, that is: lA = lH .

Proof: The ramification groups of A are induced by H, ie. A[r] = H[r] ∩ A. If we
had A[lH ] = 1, this would mean 1 = H[lH ] ∩ A ⊃ H[lH ] ∩ H(p). This contradicts
H[lH ] ⊂ H(p), which must hold since the higher quotients are annihilated by p.

We now compare the numbers en and ln for ascending quotients:

Lemma 6.11. Let A = Gn/Gn+m with m ≥ 1. We have:

(i) ln+m = lA

(ii) ln+1 = lGn/Gn+1
= lA/A(pm−1)

Proof: We have to apply Lemma 6.10 above: set H = G/Gn+m and note that H(p) =
Gn+m−1/Gn+m. This immediately gives (i) and the first equality in (ii). The rest
follows from

A/A(pm−1) =
Gn/Gn+m

(Gn/Gn+m)(pm−1)
≃

Gn
Gn+1

.

Lemma 6.12. Assume that A = Gn/Gn+m is abelian and small. For m ≥ 2, we
have:

ln+m

en+m
≥ (p− 1)pm−(d+2) ·

ln+1

en+1

Proof: We have ln+m = lA by the Lemma above, and en+m = en+1 · (Gn+1 : Gn+m)
since we are dealing with a totally ramified extension. This gives:

ln+m

en+m
= p−(m−1)d · lA ·

1

en+1
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Lemma 6.7 concludes the proof with the estimate

lA ≥ (p− 1)pm−2 ·
(
A(pm−1) : A(p)

)
· l
(
A/A(pm−1)

)

= (p− 1)pm−2 · p(m−2)d · ln+1

where ln+1 = l
(
A(pm−1) : A(p)

)
is case (ii) in the above Lemma.

We can now derive the first assumption: the property “small” does not always coincide
with the property “abelian”, and there are “enough” non-small quotients.

Proposition 6.13. Assume there is m ≥ dim(G) + 3 = d+ 3 such that Gn/Gn+m is
abelian for n sufficiently large. Then not all of these latter quotients are small.

Proof: We deduce from Lemma 6.12 that for small quotients, we would have

ln+m

en+m
≥ (p− 1)p ·

ln+1

en+1

This contradicts Proposition 5.4, which says that ln/en is bounded by 1
p−1 for all

n.

For the second assumption, we firstly state a relation between the values of un and ln.
This allows to derive an estimate for the growth of the numbers un.

Lemma 6.14. For n,m ≥ 1, we have uGn/Gn+m
= ln + (un+m − un)(G : Gn).

Proof: u = uGn/Gn+m
has the property that Gn(u) * Gn+m, but Gn(u+ ε) ⊂ Gn+m

for all ε > 0. Analogously, the number un+m has the property that G(un+m) * Gn+m,
but G(un+m+ ε) ⊂ Gn+m. Recall that un+m > un, so Proposition 6.3 (with H = Gn)
is applicable and gives

G(un+m) = Gn(ln + (un+m − un) · (G : Gn)),

which is what we had to show.

Corollary 6.15. Suppose there are n,m ≥ 1 such that A = Gn/Gn+m is abelian.
Then

(i) un+1 − un <
e

pm−2(p−1) , if Gn/Gn+m is small,

(ii) un+m − un+m−1 = e, if Gn/Gn+m is not small.
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Proof: This is a direct consequence of Lemma 6.5. Note that

A/Apm−1 =
Gn/Gn+m

(Gn/Gn+m)(pm−1)
=

Gn/Gn+m

Gn+1/Gn+m
≃

Gn
Gn+1

A/Ap =
Gn/Gn+m

(Gn/Gn+m)(p)
=

Gn/Gn+m

Gn+m−1/Gn+m
≃

Gn
Gn+m−1

For the case (i), since A is small by assumption, we have u = uGn/Gn+m
≤ p

p−1 · en.

From Lemma 6.5 we derive u ≥ pm−1 · uGn/Gn+1
. Now we apply Lemma 6.14 above

to substitute the expression uGn/Gn+1
. This yields the inequalities

p

p− 1
· en ≥ u ≥ p

m−1
(
ln + (un+1 − un)(G : Gn)

)

The result follows by ln > 0 and en = e · (G : Gn).

For (ii), Lemma 6.5 yields u = uGn/Gn+m−1
+ en. This time, we have to plug in the

expression from Lemma 6.14 for u and uGn/Gn+m−1
on both sides. Subtract ln to get

(un+m − un) · (G : Gn) = (un+m−1 − un) · (G : Gn) + en

We simplify to (un+m − un+m−1) · (G : Gn) = en, and observe en = e · (G : Gn).

We can now prove the second assumption made in this section’s beginning:

Proposition 6.8: Suppose there are integers n0 and m ≥ 2 such that Gn0
/Gn0+m is

non-small and abelian. Let n ≥ n0 + m. If each quotient Gn/Gn+2 is abelian, then
none of them is small, and un+1 = un + e for every n.

Proof: Since Gn0
/Gn0+m is non-small, case (ii) in the above Corollary implies

un0+m = un0+m−1 + e. If the quotient Gn0+m−1/Gn0+m+1 were small, we would have
the contradiction un0+m−un0+m−1 < e by case (i). The quotient Gn0+m−1/Gn0+m+1

is thus non-small, and we deduce from case (ii) that un0+m+1 − un0+m = e. We
reiterate this procedure to get the assertion.

6.5. Sen’s Theorem: The second inclusion

For the reverse inclusion, we will study the relation between the groups G(ne + c)
and G2n+1 for n ≥ n1 as in Corollary 6.9. This choice of indices is due to Lemma
1.12 and the previous result G(ne + c) ⊂ Gn, because they imply that the quotient
G(ne+ c)G2n+1/G2n+1 is abelian.

Rather than in the non-abelian group G, we wish to work within its associated Zp-
Lie algebra L = log(LG). By Proposition 3.3, L is a free Zp-module and carries a
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profinite group structure. We aim to relate the sequence G(ne+ c) to some projective
system within L = lim

←−
L /pnL .

We recall there is an equivalence of categories between powerful Lie algebras and uni-
form groups (cf. Theorem 3.10). Under this equivalence, p-th powers in G correspond
to multiplication with p in L , giving Gn = exp(pnL ) and log(Gn) = pnL . We point
out again that the analytic map log is not a group homomorphism, but only maps Gn
onto pnL as sets.

Theorem 3.10 (together with Lemma 1.12 and Proposition 3.2) now gives an isomor-
phism of abelian groups

Gn/Gn+m ≃ (Z/pmZ)d ≃ pnL /pn+m
L

for any m ≤ n + 1. Any subgroup A ⊂ Gn/Gn+m thus corresponds to exactly one
subgroup B ⊂ pnL /p2n+1L , which we denote by B = log(A) and A = exp(B).

The shift-isomorphism sh: Gn/Gm ≃ Gn+1/Gm+1 induced by p-th powers (see the re-
mark after Definition 1.19) corresponds to an isomorphism pnL /pmL ≃
pn+1L /pm+1L . It is induced by multiplication with p and as well denoted by sh.
With this notation, we have a commutative diagram

L /pn+1L
π //

exp·shn+1

��

L /pnL

exp·shn

��
Gn+1/G2n+2

π // Gn+1/G2n+1
sh−1

// Gn/G2n

where π denotes the canonical projection onto a smaller quotient. We can now con-
struct the desired projective system:

Proposition 6.16. For each n ≥ n1, let Mn denote the quotient

Mn = sh−n

(
log

G(ne+ c)G2n

G2n

)
⊂

L

pnL
.

The quotients (Mn) form a projective system with surjective transition maps, and limit
denoted by M = lim

←−n≥n1
Mn ⊂ L .

Proof: Recall from Corollary 6.9 that n1 ≥ 6 and G(ne + c) ⊂ Gn, so the defini-
tion makes sense. Using the above diagram, we need to check that Mn+1 is mapped
onto Mn. The interesting point is the shift-isomorphism sh−1, for which we need the
following result.

Lemma 6.17. Let n ≥ n1 and c be as above. We have:

G(ne+ c)pG2n+1 = G
(
(n+ 1)e+ c

)
G2n+1
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Proof of the Lemma: The definition of c in Proposition 6.9 means that c = un −
(n− n1)e for n ≥ n1. Proposition 6.3 with H = Gn gives:

G(ne+ c) = G
(
ne+ un − (n− n1)e

)
= G(un + n1e)

= Gn
(
(un + n1e)en/e+ (ln − unen/e)

)

= Gn(n1en + ln)

We set γ = n1en + ln > en/(p − 1) for brevity. The quotient G(ne + c)G2n+1/G2n+1

is abelian by Lemma 1.12, so Theorem 5.14 is applicable:

(
Gn(γ)

pG2n+1

G2n+1

)
=

(
Gn

G2n+1
(γ)

)p
=

Gn
G2n+1

(γ + en) =
Gn(γ + en)G2n+1

G2n+1

Replacing n by (n+ 1), the same calculation as above for G(ne+ c) now gives

Gn(γ + en) = G
(
(n1 + 1)en + ln

)
= G

(
(n+ 1)e+ c

)
.

Proposition 6.16 is now immediate:

Mn+1 = sh−n−1

(
log

G
(
(n+ 1)e+ c

)
G2n+2

G2n+2

)
exp ·shn+1

−−−−−−−−→
G
(
(n+ 1)e+ c

)
G2n+2

G2n+2

π
−−−−→

G
(
(n+ 1)e+ c

)
G2n+1

G2n+1
=

(6.17)

G(ne+ c)pG2n+1

G2n+1

sh−1

−−−−−→
G(ne+ c)G2n

G2n

sh−n·log
−−−−−−−→Mn

Let us assume that M is large enough to contain L up to multiplication by some
power of p. This is sufficient to finish the proof of Sen’s Theorem:

Proposition 6.18. Assume that pn2L ⊂ M for some n2, and let n > n2. We then
have

Gn+n2
⊂ G(ne+ c).

Proof: With n > n2, the assumption implies

pn2L

pnL
⊂
M + pnL

pnL
= Mn.
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We apply exp ·shn to translate this into Gn+n2
/G2n ⊂ G(ne+ c)G2n/G2n, which gives

Gn+n2
⊂ G(ne+ c)G2n.

Any g ∈ Gn+n2
can thus be written as g = g0b0, with g0 ∈ G(ne+c) and b0 ∈ G2n. By

the same argument (e.g. with n′ = 2n− n2 in place of n), we see that this last factor
admits a representation as b0 = g1b1 with g1 ∈ G(ne + c) and b1 ∈ G2n+1. We thus
have g = (g0g1)b1. Repeated performance gives a sequence (hm) with components

hm =

m∏

i=0

gi

that lie within G(ne+ c), and a sequence (bm) with bm ∈ G2n+m. The (hm) converge
towards g, for

hm · g
−1 = hm · (hmbm)−1 = hmb

−1
m h−1

m

is an element of G2n+m due to the normality of the Gn (which in turn form a basis of
neighbourhoods for the unit). The group G(ne+ c) is complete as closed subset of G
and thus contains the limit g.

It is an immediate corollary that the ramification groups are open in G, and that we
obtain the inclusion

Gn ⊂ G(ne+ c)

for all n by suitably redefining the constant c. This proves Sen’s Theorem. An imme-
diate consequence is the following version of Theorem 5.14 for infinite Lie groups:

Proposition 6.19. Let G be p-adic analytic as in Sen’s Theorem 6.1 (ie. we drop the
assumption that G is uniform for the moment). For any r ∈ R large enough, we have

G(r)p = G(r + e)

Proof: Proposition 6.3 shows that we can return immediately to our assumption of
a uniform group G. The proof of Lemma 6.17 shows that there was nothing special
about the constant c, and we can add any constant a ≥ 0 to get

G(ne+ c+ a)p G2n+1 = G
(
(n+ 1)e+ c+ a

)
G2n+1

Choose any a from the interval [0, e] and set c1 = c + a for brevity. For n > n1

sufficiently large, we have

G(ne+ c1) ⊃ G
(
2ne− c

)
⊃ G2n

G
(
(n+ 1)e+ c1

)
⊃ G

(
(2n+ 1)e− c

)
⊃ G2n+1

The first inclusions are due to the magnitude of n, the second inclusions follow from
Sen’s Theorem. The first line immediately implies G(ne+c1)

p ⊃ G2n+1, and the above
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version of Lemma 6.17 then gives

G(ne+ c1)
p = G(ne+ c1)

p G2n+1 = G
(
(n+ 1)e+ c1

)
G2n+1

= G
(
(n+ 1)e+ c1

)

We conclude this chapter to prove the assumption pn2M ⊂ L in the above result.
Since M is in general no subalgebra of L , we first need to move on to a more suitable
object.

Lemma 6.20. Recall that QpM ⊂ QpL = L(G) is the Qp-subspace spanned by M ,
and let I = QpM ∩L denote the subset that lies within L . Then I is a Lie ideal in
L , and the quotient module L /I is torsion-free.

Proof: Any inner automorphism of G

(·)τ : G −→ G, g 7→ (τ−1gτ)

is also a Zp-Lie algebra automorphism of L (see the definition of the abelian group
operation +G in Section 3.1). Since each subgroup G(ne + c) is normal in G, each
Mn and hence M is invariant under every τ . Hence, QpM is an invariant subspace
of L(G) = QpL (which is an associative algebra and thus has the commutator as Lie
bracket). This is enough for the first assertion: for m ∈M and λ ∈ L(G), we have

(m,λ) = mλ− λm = λ(λ−1mλ︸ ︷︷ ︸
∈QpM

−m) ∈ QpM

Intersecting with L preserves these properties and gives the first assertion. For the
second, let a ∈ L and λ 6= 0 ∈ Zp such that λa ∈ I = QpM ∩L . Then a = λ−1(λa) ∈
QpM , and hence a ∈ QpM ∩L = I.

Lemma 6.21. Let N = exp(I) ⊂ G denote the (closed) subgroup of G that corresponds
to the Lie ideal I. The group N contains generators of G(ne + c) modulo some open
subgroup of G, and we have G(ne+ c) ⊂ G2nN .

Proof: We have Mn = (M + pnL )/pnL ⊂ (I + pnL )/pnL by definition. This
yields:

G(ne+ c)G2n

G2n
= exp

(
shn ·Mn

)
⊂ exp

(
shn ·

I + pnL

pnL

)

= exp

(
pnI + p2nL

p2nL

)
=
Npn

G2n

G2n
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6. Filtrations of analytic ramification groups

The quotient G = G/N is the Galois group of some intermediate extension L′/K,
uniform by Proposition 3.11 and p-adic analytic under the projection G → G/N
(Proposition 4.12). Its lower p-series is given by Pn(G) = Gn = GnN/N .

If dim(N) = rkZp
(I) < rkZp

(L ) = dim(G), then G has dimension > 0 by Theorem
1.27, and satisfies the observations made in Corollary 6.9. The sequence un = uG/Gn

thus “ascends by e eventually”. The passage to the quotient group G however keeps
the base field, which means e = e. We thus have

un = ne+ c

for some constant c and n larger than some n1. This is the decisive ingredient in
proving our fundamental assumption:

Proposition 6.22. There is a fixed number n2 such that pn2L ⊂M .

Proof: The assertion is immediate if I = L : we would have QpM ⊃ L , and M is
a (free and finitely generated) submodule of the free Zp-module L . Let us assume
I 6= L for a contradiction, that is dim(N) = rkZp

(I) < rkZp
(L ) = dim(G).

For typographic reasons, let u(A) denote uA. The sequence un = u(G/Gn) denotes
the last jumps in G/GnN , and we have

u2n = u
(
G/G2n

)
= u

(
G/N

G2nN/N

)
= u

(
G

G2nN

)

The result G(ne+ c) ⊂ G2nN in Lemma 6.21 thus translates to

u2n < ne+ c

Combining this result with un = ne+ c for n ≥ n1 as discussed above, we obtain

2ne+ c = u2n < ne+ c

for all n ≥ n1, which is a contradiction.

64



7. Extensions and applications of

Sen’s Theorem

This chapter provides two supplements to the results obtained in Chapter 6. Firstly,
we show that Sen’s Theorem does not depend on finite residue fields but also holds
in the case of perfect residue fields. Secondly, we give a brief summary of the relation
between p-adic Lie groups and “deeply ramified” fields.

7.1. Extension to perfect residue fields

We place ourselves in the situation of Chapter 6. The proof of Sen’s Theorem 6.1 does
not crucially rely on the residue field k of K to be finite. In this section, we will show
that it is already sufficient to assume k perfect.

Theorem 7.1. Let L/K be a totally ramified Galois extension of fields in character-
istic 0, complete with regard to discrete, non-archimedean valuations, and with perfect
residue field k of characteristic p > 0. With the remaining assumptions as in 6.1,
Sen’s Theorem holds in this situation as well.

We keep the above assumptions on K and k for the entire section. We need to collect
a few (somewhat loose) facts before we can prove the above result. The first one is
concerned with the construction of a finite extension L/K as above:

(i) Let K ′ and k′ denote fields with the above properties. Any extension k/k′ of the
residue fields gives rise to an unramified extension K/K ′, with residue field of K
equal to k (cf. [3], chp. II, 5.5). If k/k′ is algebraic, this requires lifting roots of
certain polynomials. In the transcendent case k′ = k(X), one defines a suitable
valuation on K = K ′(X) that sends X to zero.

(ii) Now assume the base field K already given. An extension L/K is totally ramified
of degree n if and only if L is the splitting field of an Eisenstein polynomial
f(X) = Xn + a1X

n−1 + . . .+ an with coefficients ai ∈ mK ⊂ OK , but an /∈ m2
K .

The primitive root α of f is a prime element of L, and generates the ring of
integers, ie. OL = OK [α]. We refer to ([3], chp. II, 3.6) and ([11], chp. I, §6) for
details.

65



7. Extensions and applications of Sen’s Theorem

Setting K ′ = Qp in (i) shows that there exists a complete discrete valuation field of
characteristic 0 with any given residue field of characteristic p and absolute ramification
index 1.

This last result admits a more precise formulation, for any field k (perfect, of charac-
teristic p) gives rise to the Witt ring W (k). This ring is complete with regard to a
discrete valuation, has k as its residue field, and is absolutely unramified in that p has
valuation 1. We refer to ([11], chp. II, §5) and ([3], chp. I, 7 & 8, and chp. II, 5) for
a full discussion, and only include the following results:

(i) Uniqueness. Let O be another complete discrete valuation ring with k as residue
field, and let e denote the absolute ramification index of O. Then there exists an
injection W (k)→ O, which makes O a free W (k)-module of rank e. This shows
in particular that W (k) is unique up to isomorphism (cf. [11], chp. II, §5, Thm.
3 & 4).

(ii) Ring of integers. The p-adic integers Zp are contained in W (k) for any k. In-
deed, the Witt ring can be thought of as generalisation of Zp to non-algebraic
extensions. This is justfied by W (Fp) = Zp, and the fact that W (k) is always
the ring of integers in its quotient field.

(iii) Functorial properties. Even if k is just a perfect ring, Witt rings can still be con-
structed. In this case, W (−) is a functor with Hom(k, k′) = Hom

(
W (k),W (k′)

)
.

One of the many implications for fields is as follows: Let K1 and K2 be as above,
with absolute ramification index 1. If there is an isomorphism ι : k1 → k2 of their
residue fields, then there exists a field embedding ι : K1 → K2 with ι(a) = ι(a)
for all a ∈ OK1

, and the image of K1 in K2 is uniquely determined (cf. [3], chp.
II, 5.6).

We now return to the set-up of Theorem 7.1. The original finiteness condition for
Sen’s Theorem was only relevant in the context of Theorem 5.14, which described the
effect of p-th powers with regard to the ramification filtration. Once this result is also
available for extensions with perfect residue fields, the extension of Sen’s Theorem as
in 7.1 is immediate.

The essential ingredient for the proof of Theorem 5.14 was a result from Local Class
Field Theory (namely 5.13). The desired generalisation of 5.14 (and of Sen’s Theorem)
is thus directly related to a suitable generalisation of Local Class Field Theory. Indeed,
it is known that the results of Local Class Field Theory can be extended to fields K as
in the above Theorem 7.1, once their residue field k is quasi-finite.1 This means that
k is perfect with algebraic closure k, and that there is an isomorphism Ẑ −→ Gal(k/k)

given by the Ẑ-exponentiation of a fixed element σ ∈ Gal(k/k).

Example. An obvious example for quasi-finite fields are the finite fields k = Fq, with σ
the Frobenius map x 7→ xq. A non-trivial example is the power series field k = C((T ))
of an algebraically closed field C. The algebraic closure of k can be described as

1Details on “Quasi-local Class Field Theory” can be found in [14] and [9].
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7. Extensions and applications of Sen’s Theorem

the union of the cyclic extensions kn = C((T 1/n)), with Galois groups generated by
σn : T 1/n 7→ ζnT

1/n. The factors ζn are n-th roots of unity, and can be chosen such
that they fit together and thus define an element σ for Gal(k/k). If C = C, one can
choose σn = exp(2πi/n). Further details can be found in [11], chp. XIII, §2.

The following result shows that the above list of examples is by no means exhaustive:

Proposition 7.2. Every algebraically closed field Ω occurs as closure of a quasi-finite
subfield. This means there exists a quasi-finite subfield M ⊂ Ω with Gal(Ω/M) ≃ Ẑ.

Proof: Let k0 denote the prime field of Ω. Dependent on its characteristic, k0 admits
a Ẑ-extension k1 by Fsep

p or a subfield of Qab = ∪n≥1 Q(ζn) (cf. [3], chp. 5, 1.2).

Ω

M = Ω(ϕ)

(ϕ)≃ Ẑ

n
n

n
n

n
n

n

L = K insep
0

�
�
�

K1 = k1(X)

K0 = k0(X)

(ϕ)≃ Ẑ
nnnnnnnnnnn

k1

k0

Ẑ

nnnnnnnnnnnnnnn

Let X be a k0-basis of transcendental elements in
Ω. The field K0 = k0(X) then has K1 = k1(X)

as Ẑ-extension. Its Galois group Gal(K1/K0) ≃

Ẑ is topologically generated by an element ϕ (an
“abstract Frobenius”).

Ω is algebraic over K0, and is its algebraic closure.
However, the extension does not need to be Galois,
so we move on to the maximal inseparable exten-
sion L = K insep = ΩAut(Ω/K0). By restriction to
K1, we have a continuous surjection

res: Gal(Ω/L) ։ Gal(K1/K0) = (ϕ) ≃ Ẑ

Choose a pre-image ϕ. The closed subgroup H =
(ϕ) of Gal(Ω/L) generated by this element is pro-
cyclic, and thus has precisely Hn = (ϕn) as open
subgroups (cf. [6], IV, §2). The projection

pr: H = (ϕ) ։ (ϕ)/(ϕn) ≃ Z/nZ

has an open subgroup as kernel, which then must
be Hn by cardinality. By passage to the projective
limit, this amounts to H ≃ Ẑ. We now set M =
ΩH , and conclude by infinite Galois theory.

We can now prove the generalisation of Theorem 5.14 to the case of a perfect residue
field k. The strategy is as follows: By Lemma 5.7, k can be assumed algebraically
closed, so the above proposition gives a quasi-finite extension on the level of the residue
fields. By means of the Witt ring, we can then construct a quasi-finite field extension
L′/K ′ in characteristic 0, with the same ramification groups as L/K. Generalized
Local Class Field Theory is then available and finishes the proof. As discussed above,
the extension of Sen’s Theorem as in 7.1 is a direct consequence.
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7. Extensions and applications of Sen’s Theorem

Proposition 7.3. The conclusion of Theorem 5.14 (where L/K is a finite extension)
holds as well in the case of a perfect residue field k of characteristic p > 0, with all
other requirements unchanged.

Proof: By Lemma 5.7, we can assume that k is algebraically closed.

Proposition 7.2 then ensures the existence of a quasi-
finite field k0 ⊂ k = k. The quotient field Q of
the Witt ring W (k0) is a complete, discretely valued
field of absolute ramification index 1. Its maximal
unramified extensionQur has residue field isomorphic
to k. By the functorial properties of the Witt ring
(see (iii) above), there exists a unique embedding
Qur → K.

k K

k Qur

unique

x
x

x
x

x

k0 Q

W (k0)

On the other hand, by the uniqueness property of the Witt ring, K/Q̂ur is a totally
ramified extension of degree e. It is generated by the root of some Eisenstein polyno-
mial f ∈ O

Q̂ur
[X]. We observe that this polynomial ring satisfies

O
Q̂ur

/m̂[X] ≃ k[X] ≃ OQur/m[X]

with m = mQur ⊂ OQur for brevity. We can thus choose an Eisenstein polynomial
g ∈ OQur [X] with same reduction as f , and g then defines a totally ramified extension

E/Qur of degree e such that Ê = K. In fact, E ⊂ K is the maximal subextension that
is algebraic over Qur, for it has the same absolute ramification index e as K, and the
same algebraically closed residue field.

E ___ Ê = K

Qur

tot.ram.
g Eisenst.

�

�

�

Q̂ur

tot.ram.
f Eisenst.

We want to move “one level lower” for an algebraic extension of Q. By ramification
decomposition again, there exists an unramified finite extension K1/Q and a totally
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7. Extensions and applications of Sen’s Theorem

ramified extension K ′/K1 of degree e, such that K ′ur = E:

k1 K ′ ___ K ′ur = E

k1

�
�
�

�
�
�

K1
___

tot.ram.
deg e

�

�

�

Kur
1 = Qur

k0

finite

�

�

�

Q

finite

�
�
�

tttttttttt

It follows that K1/Q has a finite residue field extension k1/k0; and k1 is thus quasi-
finite as well, which makes K ′/K1 a totally ramified extension of quasi-local fields,
with eK′ = eK .

We now repeat the entire procedure with K ′ in place of Q, and derive from the given
extension L/K the existence of a totally ramified extension L′/K ′, with quasi-finite
residue field k1. With the same argument as at the beginning, the ramification groups
of this extension coincide with those of L/K. This finishes the proof.

We conclude this section with a (rather large) diagram to illustrate the entire construc-
tion above. The residue fields of the occuring fields are denoted in the first column
(an “ordinate” in this sense). All vertical extensions are Galois, and finite except for
k/k1. For fields in characteristic 0, the different columns indicate a different “algebraic
type”: base field over the Witt ring, maximal unramified extension, and completion.
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7. Extensions and applications of Sen’s Theorem

k L′ur L̂′ur = L

k K ′ur

Eisenst.

K̂ ′ur = K

given

k = k1 Qur = Kur
1

Eisenst.

unique
embedding

Q̂ur

Eisenst.

k1

quasi-
finite

L′

k1 K ′

tot.ram. from
Decomposition

k1 K1

as above

k0

finite

Q = Quot
(
W (k0)

)
unram. from
Decomposition

7.2. Deeply ramified fields

This section gives an outline of how Sen’s theorem is applied in [1] to an arithmo-
geometric problem. A certain class of fields plays an important part therein, namely
the “deeply ramified” ones. We show that a field L (algebraic over Qp) is deeply
ramified if there is a local field K such that L/K is a p-adic analytic Galois extension,
with infinite inertia group.

Geometric background. Suppose A is an abelian variety, defined over Qp, and let
A[p∞] denote the p-primary subgroup of A(Qp). The absolute Galois group G = GQp

has a natural action on this group. Now let L be any algebraic extension of Qp. In
this situation, the Kummer homomorphism

κA,L : A(L)⊗Qp/Zp → H1(L,A[p∞])

is defined as follows: for a given point P ∈ A(L) and representative (p−n mod Zp),
choose Q ∈ A(Qp) such that pnQ = P . Then P ⊗ (p−n mod Zp) is mapped to the
class of the 1-cocycle ϕ, defined by ϕ(σ) = σ(Q)−Q for all σ ∈ GL.
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7. Extensions and applications of Sen’s Theorem

An important question is whether the image of κA,L admits a description solely in terms
of the GQp

-module A[p∞]. A satisfactory answer is known for all finite extensions,
whereas in the infinite case, “deeply ramified” fields L have emerged as suitable objects
to study (cf. [1], Prop. 4.3).

Relation to Lie groups. We recall from Chapter 5 that for any Galois group, its
zero-th ramification group is equal to the inertia group I. This subgroup “contains all
ramification”, and the field fixed by it can be taken as base field for the examination of
any higher ramification. The geometric situation above suggests to consider the abso-
lute Galois group G = GQp

of the p-adic numbers. We then have G(0) = Gal
(
Qp/Qur

p

)
,

and each r ≥ 0 defines a totally ramified extension Kr/K0, where Kr is the field fixed
by G(r).

As above, let L be any algebraic extension of Qp. The field L is called deeply ramified if
L * Kr for all r. Intuitively, the upper numbering does not capture the “full amount”
of ramification in L on any finite level, and the absolute ramification groups do not
“shrink fast enough” to be ever contained in GL = AutL(Qp).

This vague intuition can be made more precise by alternative definitions for deeply
ramified fields. One method is to approximate L by means of finite extensions Fn/Qp,
such that L = ∪nFn and Fn ⊂ Fn+1. In this situation, L is deeply ramified if and
only if vp

(
δ(Fn/Qp)

)
→ ∞ for n → ∞, ie. if the different δ grows beyond all p-adic

bounds.

This has an important consequence: in our definition of “deeply ramified”, Qp can
always be replaced by any finite extension K/Qp, with the fields Kr altered accord-
ingly. We then have K−1 = K, which was the motivation for the above notation. A
similar remark applies for our sketch of the geometric background, where Qp should
be replaced by some local number field K. We refer to [1] for the general set-up, and
in particular to Prop. 2.4, p. 143 and Lemma 2.12.

The classical example of a deeply ramified field is a field L which is a totally ramified
Zp-extension of some field K, finite over Qp (cf. [13]). We conclude this section to
explain how Sen’s Theorem provides a vast generalisation of this example:

Proposition 7.4. Let K be a finite extension of Qp. Assume that L/K is a Galois
extension with J = Gal(L/K) a p-adic analytic group. If the inertia group I(L/K) =
J(0) is infinite, then L is deeply ramified.

Proof: We aim to show L * Kr, as explained in the definition above. Consider LJ(0),
the field fixed by the (closed) inertia group. We pass on to its completion K ′, and let
L′ = LK ′ denote the compositum within an algebraic closure of K ′. The extension
L′/K ′ is totally ramified, and exhibits a ramification isomorphism

J ′(r) = Gal(L′/K ′)(r) ≃ Gal(L/LJ(0))(r) = J(r)

by the infinite analogue of Lemma 5.7. Since J(0) is closed in J , it is itself p-adic
analytic, and so is J ′.
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7. Extensions and applications of Sen’s Theorem

However, J ′ has the additional virtue of being a group as required by Sen’s Theorem
(note that we need the generalised version of Theorem 7.1). One of the byproducts
of this result was that the higher ramification groups J ′(r) are open and thus have
finite index. By the ramification isomorphism above, the same holds for J . This gives
J(r) 6= 1 for all r, because J(0) is infinite. Combined with Proposition 5.10, this reads
as

GK(r)GL
GL

≃ Gal(L/K)(r) = J(r) 6= 1

We conclude that GK(r) * GL for all r. This means Kr + L for all r, as desired.
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