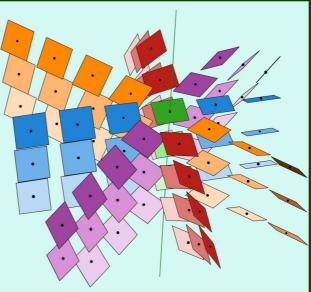
Contact structures induced by line fibrations of \mathbb{R}^3



- Gianna Götzmann advisor: Prof. Peter Albers

Content

- 1. Contact structures
- 2. Line Fibrations
- 3. Main theorems
- 4. Illustrative examples
- 5. Outlook

1. Contact structures

<u>Def.1</u>: (Distributions) A d-dimensional Distribution \mathcal{S} on a manifold \mathcal{M} is a selection of d-dimensional linear subspaces $\mathcal{S}_p \subset \mathcal{T}_p \mathcal{M}$ for all $p \in \mathcal{M}$, so that $p \mapsto \mathcal{S}_p$ is smooth.

<u>Def. 2</u>: (coorientable ; integrable) Let 3 be a hyperplane field. · 3 is called coorientable if there exists a smooth 1-form a on M so that $\xi = \ker \alpha$ (i.e. $\mathcal{Z}_{p} = \ker \alpha_{p} \forall p \in \mathcal{M}$) · f is then called integrable if & satifies the Frobenius integrability condition $\alpha \wedge d\alpha = 0$. Def. 3: (contact structures)

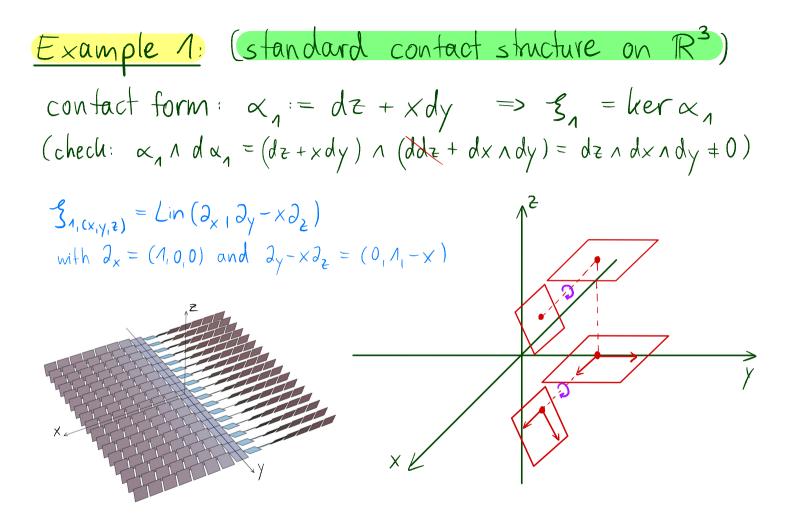
A contact structure on a 3-dim. manifold M is a (maximally) <u>non</u>-integrable, coorientable hyperplane field $S = \ker \propto c TM$. -> That is, & has to satisfy the contact condition: $\alpha \wedge q \propto \pm 0$ (i.e. $\alpha_p \wedge d\alpha_p \neq 0 \forall p \in M$) -> x is called a contact form -> (M, -3) is called a contact manifold

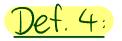
<u>Remark</u>: In this case we have $M = \mathbb{R}^3$

$$\rightarrow$$
 A contact structure then is
a 2-dim. plane field
 $f = her \propto$ with $\propto \wedge d \propto \neq 0$

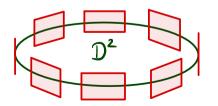
We always identify
$$T_{p}R^{3} = R^{3}$$

so that $\partial_{x} = e_{n} = (1,0,0)_{1}$
 $\partial_{y} = e_{2} = (0,1,0)_{1}$, $\partial_{z} = e_{3} = (0,0,1)$

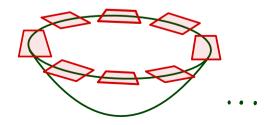




<u>Def. 4</u>: (tight & overthisted) A contact structure ξ on \mathbb{R}^3 is called overtnisted if there exists an embedded disk D^2 in \mathbb{R}^3 so that ∂D^2 is tangent to \mathcal{Z} and D^2 is transverse to \mathcal{Z} along ∂D^2 . Othernise & is called tight.



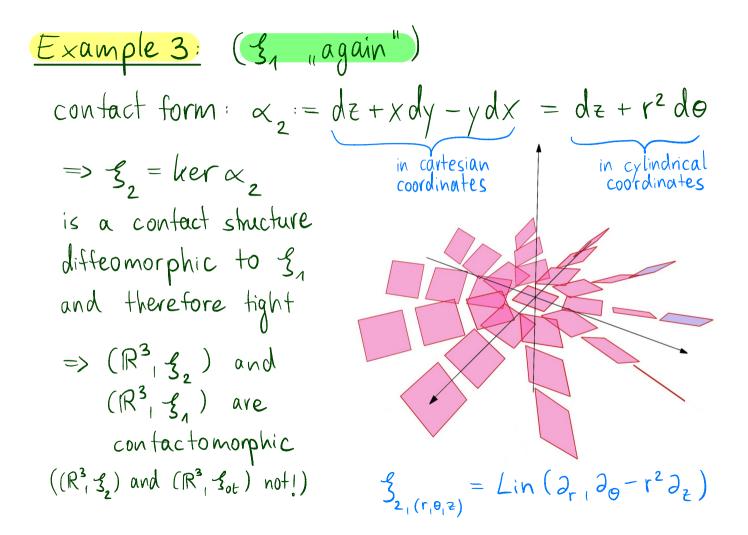
or



Example 2: (standard overtwisted contact structure) contact form: $\alpha_{ot} = \cos(r) dz + r \sin(r) d\Theta$ (cylindrical coordinates) => fot = her xot is an overthisted contact structure: $\mathcal{Z}_{ot_1(r,\theta,2)} = Lin(\partial_{r_1} cos(r) \partial_{\theta} - rsin(r) \partial_{z})$

<u>Def. 5</u>: Let $\xi_1 = hera_1$, $\xi_2 = hera_2$, be two contact structures on the manifold M 3, is diffeomorphic to 32 if there exists a diffeomorphism $\phi: M \longrightarrow M$ so that α_{1} and \$\$ a determine the same hyperplane field.

q is then called a contactomorphism.



We start with a smooth vector field on \mathbb{R}^3 of unit length. $V: \mathbb{R}^3 \longrightarrow S^2 \subset \mathbb{R}^3$ whose integral curves are straight, oriented lines => V induces a well-defined line fibration of R³ called EV3. The fibers are the oriented lines $l_p = \{p \neq t : V(p) : t \in \mathbb{R}\} \in \{V\}$.

$$\frac{\text{Def. 6: (skew)}}{\text{EV3 is called skew if no}}$$

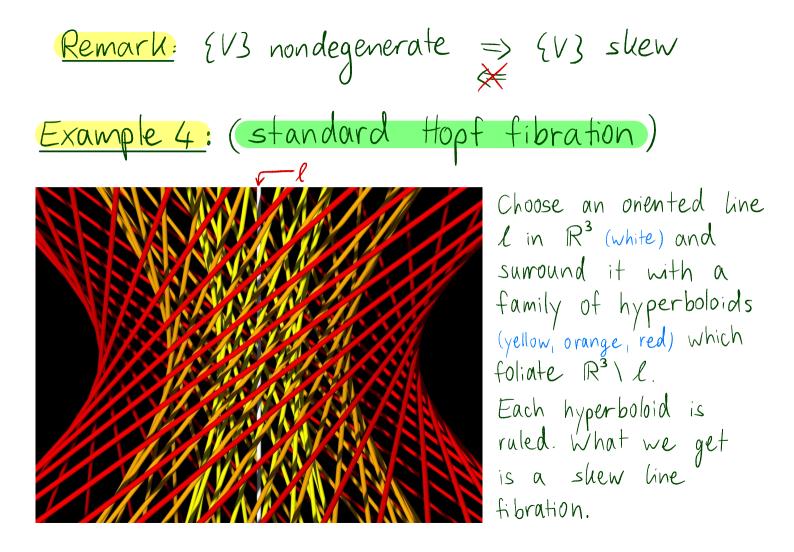
$$\frac{\text{F}^{2}}{\text{two fibers are parallel,}}$$

$$i.e. \quad V(p_{1}) = V(p_{2}) \implies l(p_{1}) = l(p_{2})$$

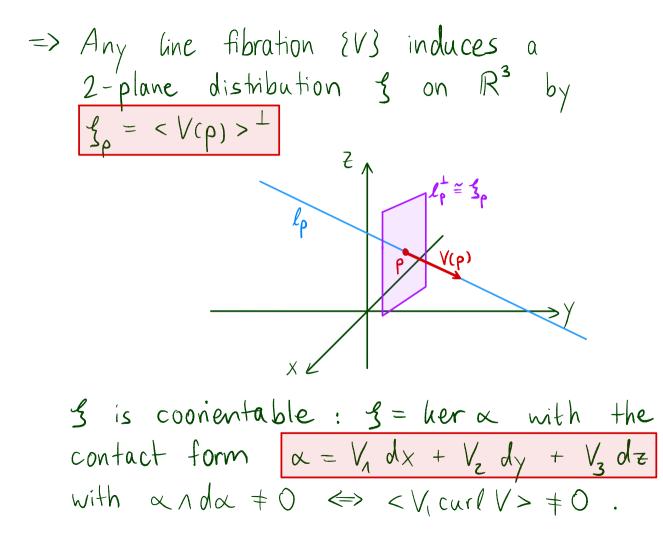
$$\frac{\text{Def. 7:}}{\text{(nondegenerate)}}$$

$$\frac{\text{(V3 is called nondegenerate)}}{\text{if the Differential DV vanishes}}$$

$$\frac{\text{Only in the direction of V}}{\text{VpeR}^3} \iff \frac{\text{VpeR}^3 : rk(DpV) = 2}{\text{VpeR}^3 : rk(DpV) = 2}$$



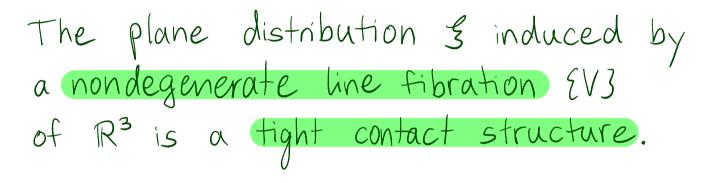
Remark: The space of all great circle
fibrations of
$$S^3 \, c \, \mathbb{R}^4$$
 sits
naturally inside the space
of skew line fibrations of \mathbb{R}^3
by a central projection from
 S^3 to any tangent \mathbb{R}^3 .
This is the reason we can
consider the Hopf fibration
of S^3 as a line fibration
as well.



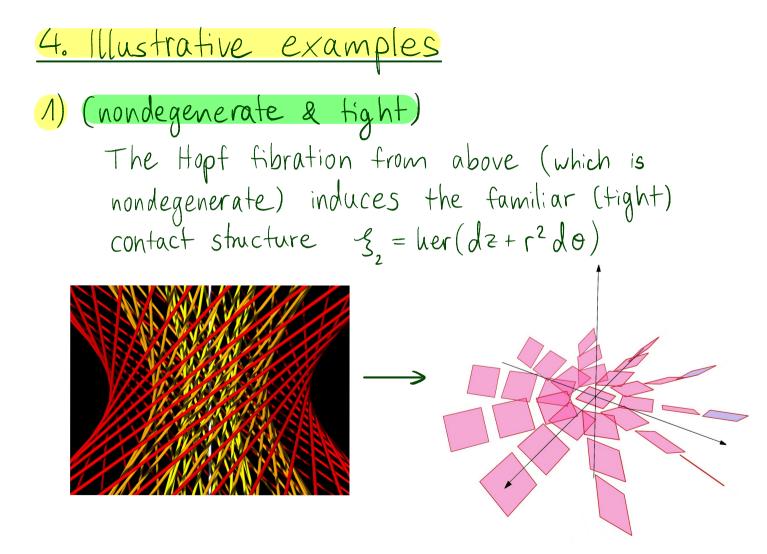
What conditions on EV3 do we need, so that the induced plane distribution g is a contact structure ?

3. Main theorems

Theorem 1: (Becher & Geiges, 2020) If a line fibration EV3 of R³ induces a contact structure ξ_1 then ξ is diffeomorphic to ξ_1 . (and therefore fight) Theorem 2: (Harrison, 2019)



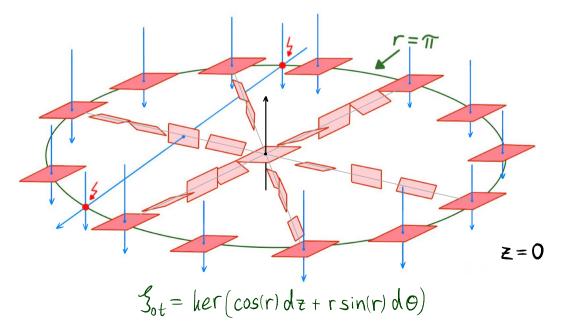
<u>Remark</u> Because of Theorem 1, it only remains to show that f is a contact structure.



2) (degenerate & tight) We construct a line fibration EV3 as follows: 1. Foliate \mathbb{R}^3 by planes P_x parallel to the yz-plane. 2. Fiber each plane by parallel lines with direction $(O_1 \times 1)$ for P_X => EV3 induces the standard (tight) contact structure 3, = her (dz + × dy) although EV3 is not shew ₹ţ

3) (overtwisted & not a line fibration)

Vice versa: The straight lines that are orthogonal to the planes of the contact structure g_{ot} do not form a line fibration as the lines must not intersect each other.



5. Outlook

- There are examples of skew, degenerate line fibrations that do not induce contact structures, and other interesting examples (more tools needed).

- One could also look at higher dimensions and ask: Does a nondegenerate line fibration of an odd-dimensional Euclidean space always induce a contact structure?

Thank you for your attention!

<u>References:</u>

 M. Hamison. Contact structures induced by skew fibrations of R³, 2019.
 T. Becher & H. Geiges. The contact structure induced by a line fibration of R³ is standard, 2020.
 H. Geiges. An introduction to contact topology, 2008.
 Y. Eliashberg. Contact 3-manifolds twenty years since J. Martinet's work, 1992.

Images by David Eppstein (Hopf line fibration) and Matias Dahl (standard contact structure)