Analysis für Physiker

Prof. Dr. Rainer Weissauer

Ruprecht-Karls-Universität Heidelberg Fakultät für Mathematik und Informatik Mathematisches Institut

Vorlesungsskriptum SS/WS 2011/12

Bearbeitungsstand: 5. Juli 2012

Adresse des Dozenten:

Ruprecht-Karls-Universität Heidelberg Mathematisches Institut Im Neuenheimer Feld 288 D-69120 Heidelberg, Deutschland Raum 205

weissaue@mathi.uni-heidelberg.de
http://www.mathi.uni-heidelberg.de/~weissaue/

Vorwort

Dieses Skript richtet sich als Begleitmaterial der Vorlesung *Höhere Mathematik für Physiker II+III* vorrangig an die Studenten der Fachrichtung Physik. In dem zwei-semestrigen Zyklus wird versucht, die für Physikstudenten relevanten Methoden der Analysis darzustellen.

Die Vorlesung deckt dabei in zwei Semestern mathematische Inhalte ab, die normalerweise in den drei Vorlesungen *Analysis I–III* dargestellt werden. Dabei wurden notgedrungen einige wichtige Dinge ausgelassen, da auf die mathematische Strenge der Darstellung nicht verzichtet werden sollte. Kenntnisse aus der Vorlesung Lineare Algebra werden wesentlich vorausgesetzt. Das heißt, die Vorlesung baut auf der Grundvorlesung *Lineare Algebra I* auf.

Begleitend zu der Vorlesung und dem Übungsbetrieb wurden einmal wöchentlich in einer zusätzlichen Großübung Beispiele behandelt, die in der Vorlesung selbst nicht diskutiert werden konnten.

Das vorliegende Skript folgt in seinem Aufbau keineswegs konsequent der Vorlesung. Auch innerhalb der einzelnen Kapitel wurden in der Vorlesung Teile des Stoffes manchmal geringfügig umgestellt, um vom Timing die Übungsaufgaben so effizient wie möglich mit der Vorlesung abzustimmen.

Kapitel V hat einen sehr speziellen Charakter. Hier wurden an einer Stelle des Skiptes spezifische Anwendungen der Analysis gebündelt, die in der Vorlesung und zum Teil in der Großübung gestreut vorgestellt wurden. Ähnliches gilt für Kapitel X.

Inhaltsverzeichnis

	Vorv	vort	iii						
1	Der	er Konvergenzbegriff							
	1.1	Angeordnete Körper	1						
	1.2	Die Euklidsche Norm	4						
	1.3	Metrische Räume	6						
	1.4	Folgen in metrischen Räumen	7						
	1.5	Die geometrische Folge	9						
	1.6	Vollständige metrische Räume	10						
	1.7	Der Banachsche Fixpunktsatz	11						
	1.8	Quaderschachtelung	13						
	1.9	Reelle Zahlen	16						
	1.10	Infimum und Supremum	17						
		•							
2		ige Abbildungen	21						
	2.1	Stetigkeit	21						
	2.2	Eigenschaften stetiger Funktionen	23						
	2.3	Der Zwischenwertsatz	24						
	2.4	Das ε - δ -Kriterium	25						
	2.5	Gleichmässige Stetigkeit	26						
	2.6	Reellwertige stetige Funktionen	26						
	2.7	Gleichmässige Konvergenz	29						
	2.8	Vollständigkeit von $C(X)$	29						
	2.9	Monotone Funktionenfolgen	31						
	2.10	Stückweise stetige Funktionen	33						
	2.11	Der eindimensionale Fall	34						
_									
3		grale	37						
	3.1	Verbände	37						
	3.2	Monotone Hüllen	38						
	3.3	Integrale	38						
	3.4	Fortsetzung von Integralen	40						
	3.5	Das mehrdimensionale Standardintegral $\int_X f(x)dx$	41						
	3.6	Der Logarithmus	43						

4	Diffe	erentiation	45
	4.1	Das Landausymbol	45
	4.2	Differenzierbarkeit	46
	4.3	Die Jacobi-Matrix	49
	4.4	Extremwerte	50
	4.5	Symmetrie der Hessematrix	52
	4.6	Lokale Maxima	53
	4.7	Der Hauptsatz	54
	4.8	Differentialgleichungen	55
	4.9	Stetig partiell differenzierbare Funktionen	59
	4.10	Der Umkehrsatz	61
	4.11	Substitutionsregel	64
	4.12	Differentialformen	67
	4.13	Beweis des Poincare Lemmas	71
	4.14	Satz von Stokes für Quader	74
	4.15	Analytische Funktionen	75
5	Aus	gewählte Anwendungen I	79
	5.1	Wegintegrale	79
	5.2	Holomorphe Funktionen	81
	5.3	Vektorfelder	82
	5.4	Harmonische Funktionen	84
	5.5	Taylor Koeffizienten	86
	5.6	Harmonische Polynome	87
	5.7	Drehimpuls Operatoren	89
	5.8	Maxwell Gleichungen	90
6	Leb	esgue Integration	93
Ī	6.1	Das Lebesgue Integral	94
	6.2	Der Verband $L(X)$	95
	6.3	Vertauschungssätze	96
	6.4	Anwendungen	98
	6.5	Nullmengen	99
	6.6	Messbare Funktionen	100
7	Hilb	erträume	101
•	7.1	Vorbemerkung	101
	7.1	L^2 -Räume	101
	7.2	Satz von Fischer-Riesz	103
	7.3 7.4	$C_c(X,\mathbb{C})$ liegt dicht	104
	7.4	Der Folgenraum $L^2(\mathbb{Z})$	105
	7.5 7.6	Orthonormalbasen	105
	7.0 7.7	Fourier Reihen	100
	7.7	Stone-Weierstrass	107

	7.9	Reelle Fourier Transformation	110		
8	Integration auf Mannigfaltigkeiten				
	8.1	Partitionen der Eins	115		
	8.2	Untermannigfaltigkeiten mit Rand	116		
	8.3	Randintegrale	117		
	8.4	Der Satz von Stokes	118		
	8.5	Drehinvarianz	119		
	8.6	Standardintegral auf der Kugeloberfläche	120		
	8.7	Die Greensche Formel	121		
9	Harmonische Analysis				
	9.1	Der Hilbertraum $L^2(S)$	123		
	9.2	Poisson Kern			
	9.3	Orthogonalität	126		
	9.4	Harmonische Funktionen sind analytisch	128		
	9.5	Entwicklung auf Kugelschalen	129		
	9.6	Die Potential Gleichung $\Delta \varphi = \rho$	130		
10 Ausgewählte Anwendungen II					
	10.1	Kugelvolumina	133		
		Kugeloberfläche			
		Der Residuensatz			
	10.4	Wärmeleitungskerne	136		

Die Anwendungen in Kapitel V benötigen gewisse Voraussetzungen über die Differentiation. Die Abhängigkeiten sind wie folgt:

Leitfaden für Kapitel V.

- $4.5 \Longrightarrow 5.3$
- $4.9 \Longrightarrow 5.4 \Longrightarrow 5.5 \Longrightarrow 5.6 \Longrightarrow 5.7$
- $4.12 \Longrightarrow 5.8$
- $4.14 \Longrightarrow 5.1 \Longrightarrow 5.2$

Im ersten Semester habe ich Kapitel I-IV behandelt (ausschließlich der Sektionen 4.13 und 4.15, da in diesen beide Abschnitte der Satz von der dominierten Konvergenz benutzt wird, der erst in Kapitel V und damit zu Beginn des zweiten Semesters bewiesen wird) und die Anwendungen 5.3-5.8. Die Behandlung der Abschnitte aus Kapitel V wurde meistens durch Übungsaufgaben vorbereit und in der großen Übung vertieft.

Das Kapitel X bestand nur zum Teil aus Übungsmaterial, Themen der Großübung und der Vorlesung. (Die Abschnitte ab 10.5 sind gedacht als Lesestoff zur Anregung und weiteren Vertiefung).

Leitfaden für Kapitel X.

- $7.9 \Longrightarrow 10.4$
- $8.4 \Longrightarrow 10.1 \Longrightarrow 10.2$
- $9.5 \Longrightarrow 10.3$

1 Der Konvergenzbegriff

1.1 Angeordnete Körper

Wir wiederholen an dieser Stelle den aus der Linearen Algebra bekannten Begriff des *Körpers*. Es handelt sich dabei um einen Rechenbereich mit Multiplikation und Addition.

Genauer gilt: Ein Körper ist ein Tupel $(K,+,\cdot,0,1)$ bestehend aus einer Menge K, zwei Verknüpfungen $+: K \times K \to K$, genannt Addition, und $\cdot: K \times K \to K$, genannt Multiplikation, sowie zwei verschiedenen Elementen 0 (Nullelement) und 1 (Einselement) mit gewissen Eigenschaften. So soll zum einen das Tupel (K,+,0) eine abelsche Gruppe mit neutralem Element 0 sein. D. h. man kann beliebige Elemente $a,b\in K$ addieren, das heißt durch + verknüpfen, so daß gilt $a+b=b+a\in K$ sowie a+0=a. Insbesondere hat dann eine Gleichung

$$x + a = b$$

für gegebene $a, b \in K$ eine eindeutige Lösung x. Wir schreiben diese in der Form x = b - a.

Zum anderen soll die Menge der von Null verschiedenen Elemente $K^* \subseteq K$ eine abelsche Gruppe $(K^{\times},\cdot,1)$ definieren. Insbesondere ist daher für alle $a,b\in K$ mit $a\neq 0,b\neq 0$ die Gleichung

$$x \cdot a = b$$

eindeutig lösbar. Deren Lösung schreiben wir als $x=a/b=b\cdot a^{-1}$. Für gewöhnlich lassen wir den Punkt für die Multiplikation meist weg und schreiben kurz ab statt $a\cdot b$. Ist b=0 und $a\neq 0$, dann ist übrigens x=0 die einzige Lösung der Gleichung $x\cdot a=b$. Dies folgt aus dem Distributivgesetz, das in einem Körper erfüllt sein soll. Im Distributivgesetz wird a(b+c)=ab+ac gefordert für alle $a,b,c\in K$ und es impliziert $a\cdot 0=0$ für alle $a\in K$.

Der Begriff des Körpers ist bereits aus der Linearen Algebra bekannt. Typische Beispiele sind: der Körper $\mathbb Q$ der *rationalen Zahlen*, der Körper $\mathbb R$ der *reellen Zahlen* sowie der Körper $\mathbb C$ der *komplexen Zahlen*. Für die Analysis spielt der Körper $\mathbb R$ der reellen Zahlen eine fundamentale Rolle. Seine Elemente stellen wir uns intuitiv vor als die Punkte auf einer lückenlosen Geraden. Wir sind von der Schule gewohnt in diesem Körper zu rechnen.

Eine sehr wichtige Eigenschaft des Körpers der reellen Zahlen besteht darin, daß dieser Körper eine Anordnung besitzt. Eine Anordnung ist eine Relation x < y: Alle x und y aus einem Körper K lassen sich also in Bezug auf diese Anordnung vergleichen. Man setzt formal $y > x \Leftrightarrow x < y$ und

$$x \le y :\iff x < y \text{ oder } x = y.$$

Die Anordnung auf dem Körper der reellen Zahlen ist in der Physik sehr wesentlich, wenn es um die Parametrisierung der Zeit geht. Das Vorher und Nachher von Ereignissen spielt eine fundamentale Rolle bei der Kausalität und dem physikalischen Begriff der Entropie.

Der Begriff eines angeordneten Körpers lässt sich mathematisch in axiomatischer Weise definieren. Ein angeordneter Körper (K,<) ist ein Körper K zusammen mit einer ausgezeichneten Teilmenge $P\subseteq K^*$. Man nennt dann P den "Kegel der positiven Zahlen" des angeordneten Körpers. Dies ist ein eindimensionales Analogon des in der Physik auftretenden vorderen Lichtkegels im Minkowskiraum. Eine Zahl $x\in K$ nennt man negativ oder man schreibt $x\in -P$, wenn ihr negatives -x in P liegt.

Definition 1.1. Ein Tupel (K, <) bestehend aus einem Körper K und einer Teilmenge P von K^* heißt angeordneter Körper, wenn gilt:

- (1) $K = P \odot \{0\} \odot -P$, d. h. K zerlegt sich disjunkt in P, -P und Null.
- (2) $P + P \subseteq P$, d. h. die Summe zweier Zahlen aus P ist wiederum in P.
- (3) $P \cdot P \subseteq P$, d. h. auch das Produkt zweier Zahlen aus P ist wieder in P.

Die Menge P in einem angeordneten Körper definiert dann die Relation < vermöge der Definition

$$x < y : \iff y - x \in P$$
.

Insbesondere gilt dann per Definition

$$P = \{x \in K \mid x > 0\}$$
.

Aus dem ersten Axiom eines angeordneten Körpers folgt für zwei Zahlen $x,y \in K$ daher entweder x < y oder x = y oder x > y im ausschliesslichen Sinn. Somit folgt unmittelbar $-P = \{x \in K \mid x < 0\}$. Wir bemerken folgende Eigenschaft:

• Jedes Quadrat x^2 einer Zahl x aus K^* ist positiv. Kurz: $x^2 \in P$.

Dies ist klar für $x \in P$ nach dem dritten Axiom. Ist x nicht in P, dann ist $-x \in P$ und damit $(-x)^2 \in P$ nach dem ersten Axiom. Also $x^2 \in P$ wegen $x^2 = (-1)^2 \cdot x^2 = (-x)^2 \in P$. Hier haben wir benutzt $-x = (-1) \cdot x$ und $(-1) \cdot (-1) = 1$. Diese Eigenschaften gelten in jedem Körper [benutze dazu das Distributivgesetz].

Man sieht daher, daß der Körper der komplexen Zahlen keine Anordnung besitzen kann, denn $-1 = i^2$ ist ein Quadrat in \mathbb{C}^* .

Bemerkung 1.2. Sei (K, <) ein angeordneter Körper. Dann gelten nach Definition 1.1 zusätzlich noch folgende Eigenschaften:

- (1) Es gilt entweder x < y oder x = y oder x > y (im ausschließlichen Sinn)
- (2) Ist x < y und y < z, dann ist x < z.
- (3) Ist x < y, dann gilt x + z < y + z für alle $z \in K$.

Beweis. (1) ist klar. Zu (2) beachte: Aus $y - x \in P$ und $z - y \in P$ folgt $z - x = (z - y) + (y - x) \in P + P \subseteq P$. Zu (3) beachte: Aus y - x > 0 folgt (y + z) - (x + z) = y - x > 0. Also folgt x + z < y + z aus x < y.

Natürliche Zahlen. Wir bemerken, daß jeder angeordnete Körper die natürlichen Zahlen enthält in der Form

$$\mathbb{N} = \{0, 1, 2, 3, \dots\} := \{0, 1, 1 + 1, 1 + 1 + 1, \dots\}.$$

Beachte nämlich 0 < 1, und wegen Eigenschaft (1) folgt dann durch Addition 1 = 0 + 1 < 1 + 1 =: 2 und dann analog 2 = 1 + 1 < 3 := 1 + 1 + 1 und so weiter. Insbesondere sind die Zahlen $0, 1, 2, 3, \ldots$ damit paarweise verschieden. Die so definierte Teilmenge $\mathbb{N} \subseteq K$ ist unter Multiplikation und Addition abgeschlossen, wie man sofort mit Hilfe des Distributivgesetzes in K zeigt, und kann mit den natürlichen Zahlen identifiziert werden.

Wegen der Körperaxiome liegen daher die ganzen Zahlen $\mathbb{Z}=\{\dots,-2,-1,0,1,2,\dots\}$ als paarweise verschiedenen Zahlen in jedem angeordneten Körper, und damit auch die Quotienten a/b ganzer Zahlen a und $b \neq 0$. Also ist der Körper der rationalen Zahlen ein Teilkörper jedes angeordneten Körpers: $\mathbb{Q} \subseteq K$.

Insbesondere enthält K notwendigerweise unendlich viele Elemente. Endliche Körper besitzen daher keine Anordnung.

Es stellt sich nun die Frage, ob die Anordnung die charakteristischen Eigenschaften der reellen Zahlen $\mathbb R$ bereits vollständig beschreibt. Das ist nicht der Fall, denn der Körper der rationalen Zahlen $\mathbb Q$ ist auch ein angeordneter Körper, aber verschieden vom Körper der reellen Zahlen. Wir wollen daher weitere Eigenschaften suchen, die charakteristisch für $\mathbb R$ sind:

Definition 1.3. Ein angeordneter Körper (K, <) heißt **archimedisch**, wenn gilt: Jedes $x \in K$ ist kleiner als eine geeignete natürliche Zahl n aus \mathbb{N} .

In einem archimedischen Körper definiert man den Betrag |x| eines Element $x \in K$ wie folgt: |x| = 0 gilt genau dann wenn x = 0; und für $x \neq 0$ sei per Definition |x| = x resp. -x je nachdem ob $x \in P$ oder $x \notin P$. Dann gilt nach Definition $|x| \in P$ für $x \neq 0$, und man sieht sofort

$$|x \cdot y| = |x| \cdot |y|$$
.

Definition 1.4. Ein archimedischer Körper (K, <) heißt **pythagoräisch**, wenn gilt: Jede Zahl aus P ist ein Quadrat in K.

Der Körper $\mathbb Q$ der rationalen Zahlen ist archimedisch, aber nicht pythagoräisch. 2 ist positiv aber kein Quadrat in $\mathbb Q$, weil die Gleichung $n^2=2m^2$ keine ganzzahligen Lösungen m,n besitzt [Benutze die Eindeutigkeit der Primfaktorzerlegung].

Sei K ein archimedischer Körper. Zu jeder Zahl $y \in P$ gibt es dann eine natürliche Zahl $n \in \mathbb{N}$ mit der Eigenschaft $0 < \eta < 1/4$ für $\eta = y/n^2$. Ist die positive Zahl $\eta < 1/4$ ein Quadrat $\eta = \xi^2$, dann auch $y = (n \cdot \xi)^2$. Diese Bemerkung wird uns später in Lemma 1.24 zeigen, daß ein vollständiger archimedischer Körper automatisch ein pythagoräischer Körper ist.

In einem pythagoräischen Körper besitzt jede nicht negative Zahl $y \in K$ eine eindeutig bestimmte nicht negative Quadratwurzel $x_1 = \sqrt{y}$, d.h. eine eindeutig bestimmte nicht negative Lösung y_1 der Gleichung $x^2 - y = 0$. [ObdA $y \in P$ und es gibt eine Lösung $x_1 > 0$ nach Annahme. Dann ist auch $x_2 = -x_1$ eine Lösung mit $x_2 \neq x_1$ wegen $x_2 \in -P$. In einem beliebigen

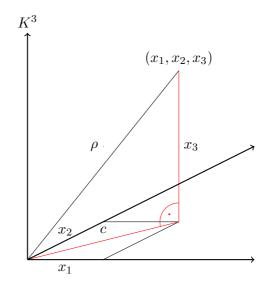
Körper hat aber die Gleichung $x^2-y=(x-x_1)(x-x_2)=0$ höchstens zwei Lösungen.] Der **Absolutbetrag** |x| einer Zahl $x\in K^*$ kann daher in der Form $|x|=\sqrt{x^2}$ geschrieben werden.

1.2 Die Euklidsche Norm

Wir wollen für einen pythagoräischen Körper K die **Norm** (oder auch Länge) eines Vektors im r-dimensionalen Vektorraum K^r definieren. Betrachte den r-dimensionalen Standardvektorraum

$$K^r = \{(x_1, \dots, x_r) \mid x_1, \dots, x_r \in K\}$$

über einem pythagoräischen Körper K. Motivation: Für einen beliebigen Punkt $x=(x_1,x_2,x_3)$ im Anschauungsraum K^3 würde der Satz von Pythagoras den Abstand ρ von x zum Nullpunkt liefern



durch die Formel $\rho^2=c^2+x_3^2=(x_1^2+x_2^2)+x_3^2$. Dadurch motiviert definiert man die **Standardnorm** oder **Euklidsche Norm** auf dem K^r für $x=(x_1,..,x_r)$ aus K^r entsprechend als

$$||x|| = \sqrt{x_1^2 + \dots + x_r^2}.$$

unter Benutzung von Satz 1.5. Offensichtlich gilt $\|\lambda \cdot x\| = |\lambda| \cdot \|x\|$ für alle Skalare λ aus K. Im eindimensionalen Fall r = 1 ist $\|x\| = |x|$.

Satz 1.5. Sei K pythagoräisch und ein Vektor $x=(x_1,\ldots,x_r)\in K^r$ gegeben. Dann gilt: $x_1^2+\cdots+x_r^2\in P$ oder $x_1^2+\cdots+x_r^2=0$. Letzteres gilt genau dann, wenn

$$x_1 = \dots = x_r = 0.$$

Beweis. Den Beweis reduziert man durch Induktion nach r auf den Fall r=2. Dieser Fall sei als Übungsaufgabe gestellt.

Damit ist ||v|| wohldefiniert als Zahl in $P \cup \{0\} \subseteq K$. Man beachte hierbei: Ist (K, <) pythagoräisch und $x^2 = y$, dann gilt $y \in P \cup \{0\}$. Ist umgekehrt $y \in P \cup \{0\}$, dann gilt x = 0, falls y = 0 und x, -x sind die einzigen Lösungen, falls $y \neq 0$. Genau eine davon liegt in P.

Definition 1.6. Sei K pythagoräisch. Für $x, y \in K^r$ nennt man

$$(x,y) = x \cdot y = x_1 y_1 + \dots + x_r y_r$$

das Standard-Skalarprodukt von x und y.

Insbesondere gilt $||x||^2 = x \cdot x$ für $x = (x_1, \dots, x_r) \in K^r$.

Satz 1.7 (Ungleichung von Schwarz). *Seien* $x, y \in K^r$. *Dann ist*

$$|x \cdot y| \le ||x|| \cdot ||y||.$$

Gleichheit gilt genau dann, wenn x und y proportional sind.

Beweis. ObdA sei $x - t \cdot y \neq 0$ für alle $t \in K$ (d. h. x und y seien nicht proportional). Dann gilt

$$0 < \|x - ty\|^2,$$

d.h.

$$0 < (x - ty, x - ty) = \sum_{i=1}^{r} (x_i - ty_i)^2 = ||x||^2 - 2t(x, y) + t^2 ||y||^2,$$

wegen $(x_i - ty_i)^2 = x_i^2 - 2tx_iy_i + t^2y_i^2$. Sei nun o. B. d. A. $y \neq 0$. Dann folgt

$$t^{2} - \frac{2t(x,y)}{\|y\|^{2}} + \frac{\|x\|^{2}}{\|y\|^{2}} > 0$$

$$t^{2} - \frac{2t(x,y)}{\|y\|^{2}} + \left(\frac{(x,y)}{\|y\|^{2}}\right)^{2} > \frac{(x,y)^{2}}{\|y\|^{4}} - \frac{\|x\|^{2}}{\|y\|^{2}}$$

$$\left(t - \frac{(x,y)}{\|y\|^2}\right)^2 > \frac{(x,y)^2 - \|x\|^2 \cdot \|y\|^2}{\|y\|^4}.$$

Setzt man $t \coloneqq \|y\|^{-2}(x,y)$, dann folgt $(x,y)^2 - \|x\|^2 \cdot \|y\|^2 < 0$.

Satz 1.8 (Dreiecksungleichung im K^r **).** Sei K pythagoräisch und seien $x, y \in K^r$ und $\lambda \in K$. Dann gilt $\|\lambda \cdot x\| = |\lambda| \cdot \|x\|$ sowie $\|x\| = 0 \Leftrightarrow x = 0$, und

$$||x + y|| \le ||x|| + ||y||.$$

Beweis. Nach dem Übungsblatt 1 genügt es $||x + y||^2 \le (||x|| + ||y||)^2$ zu zeigen. Die linke Seite ist

$$(x + y, x + y) = ||x||^2 + 2(x, y) + ||y||^2,$$

und die rechte Seite ist $(||x|| + ||y||)^2 = ||x||^2 + 2||x|||y|| + ||y||^2$. Die Behauptung folgt daher aus $2(x,y) \le 2|(x,y)|$ und der Schwarzschen Ungleichung

$$2|(x,y)| \le 2||x||||y||$$
.

Folgerung. Die Funktion $\|.\|:V\to K$ definiert eine **Norm** auf dem K-Vektorraum V, d.h. es gilt: a) $\|x\|\geqslant 0$ und $\|x\|=0\Longleftrightarrow x=0$, b) $\|\lambda x\|=|\lambda|\cdot\|x\|$ für alle $\lambda\in K$ und alle $x\in V$, c) $\|x+y\|\leqslant \|x\|+\|y\|$ für alle $x,y\in V$.

1.3 Metrische Räume

Im Folgenden sei (K, <) ein fest gewählter archimedischer Körper (später dann immer der Körper der reellen Zahlen).

Definition 1.9. Sei X eine ganz beliebige Menge. Ein Tupel (X, d) mit einer Abbildung

$$d: X \times X \to K, (x,y) \mapsto d(x,y),$$

heißt metrischer Raum (bezüglich K), falls für die Abbildung d gilt:

- (1) $d(x,y) \ge 0$ für alle $x,y \in X$ und d(x,y) = 0 gilt genau dann, wenn x = y ist (Positivität).
- (2) Für alle $x, y \in X$ ist d(x, y) = d(y, x) (Symmetrie).
- (3) $d(x,z) \leq d(x,y) + d(y,z)$ gilt für alle $x,y,z \in X$ (Dreiecksungleichung).

Man nennt die Funktion d(x,y) die **Abstandsfunktion** oder **Metrik** des metrischen Raumes (X,d). In einem metrischen Raum gilt automatisch die folgende **untere Dreiecksungleichung**

$$|d(x,z) - d(x',z)| \le d(x,x').$$

Beweis: Aus der Dreiecksungleichung $d(x,z) \leq d(x,x') + d(x',z)$ folgt $d(x,z) - d(x',z) \leq d(x,x')$. Durch Vertauschung von x und x' folgt daraus die Behauptung.

Ist $\|.\|: V \to K$ eine **Norm** auf einem K-Vektorraum V, dann definiert $d(x,y) = \|x-y\|$ eine Metrik auf V. [Beachte $d(y,x) = \|y-x\| = \|-(x-y)\| = |-1| \cdot \|x-y\| = \|x-y\| = d(x,y)$ sowie $d(x,z) = \|x-z\| = \|(x-y) + (y-z)\| \le \|x-y\| + \|y-z\| = d(x,y) + d(y,z)$.]

Das für uns wichtigste Beispiel eines metrischen Raumes ist der archimedische Körper K selbst mit der Metrik d(x,y)=|x-y|. Ist K ein pythagoräischer Körper und ist $\|.\|$ die **Euklidsche Norm** auf dem r-dimensionalen K-Vektorraum K^r , dann definiert

$$d(x,y) = ||x - y||$$

die sogenannte **Standardmetrik** auf $V = K^r$. Den so definierten metrischen Raum nennt man den r-dimensionalen **Euklidschen Raum**.

1.4 Folgen in metrischen Räumen

Fast alle Aussagen der Analysis bauen auf den in diesem Abschnitt erläuterten Konzepten auf. Wir beginnen mit dem Begriff einer Folge:

Definition 1.10. Sei X eine beliebige Menge. Eine **Folge in** X ist eine Abbildung

$$x: \mathbb{N}_0 = \{0, 1, 2, 3, \dots\} \to X.$$

Anschaulich läßt sich eine Folge als eine unendliche "Durchnumerierung" von Elementen interpretieren. Dies wirkt sich auch auf die Notation aus: Statt einer Abbildungsbeziehung, also einer Auflistung der Art

$$\begin{aligned} 0 &\mapsto x(0), \\ 1 &\mapsto x(1), \\ 2 &\mapsto x(2), \\ \vdots \end{aligned}$$

verwenden wir Indizierungen zur Numerierung der betroffenen Elemente von X, um die Folge zu beschreiben:

$$x = (x_0, x_1, x_2, x_3, \dots).$$

Die Elemente x_0, x_1, x_2 , etc. heißen die Folgenglieder, bzw. kurz die Glieder von x.

Bisher haben wir keine näheren Anforderungen an die Menge X gestellt. Wir nehmen jetzt an, daß X ein metrischer Raum ist. Wir wollen uns daher mit den Abständen zwischen Folgegliedern befassen und durch folgende Definition insbesondere ganz bestimmte Folgen behandeln:

Definition 1.11. Sei (X,d) ein metrischer Raum. Eine Folge x_0,x_1,x_2,\ldots in (X,d) heißt Cauchyfolge, wenn zu jedem $\varepsilon>0$ aus K eine natürliche Zahl $N=N(\varepsilon)$ existiert, so daß für alle $n,m\in\mathbb{N}_0$ gilt

$$n, m \ge N \quad \Rightarrow \quad d(x_n, x_m) < \varepsilon.$$

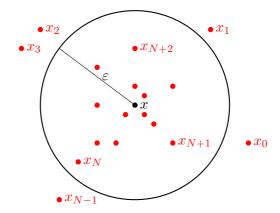
Zur anschaulichen Bedeutung. Zunächst taucht hierbei die Zahl ε auf. Diese steht intuitiv gesprochen für etwas "beliebig Kleines". Man stellt sich dabei vor, dass egal wie klein ε gewählt wird, man trotzdem noch davon abhängende Zahlen $N(\varepsilon)$ wie behauptet finden kann. Man kann, wenn man nur weit genug mit dem Index geht, den Abstand zwischen Folgengliedern unter jede noch so kleine Schranke drücken. Anschaulich besteht das Wesen einer Cauchyfolge also darin, daß die Abstände zwischen den Gliedern immer enger werden. Dies hängt substanziell von der gewählten Abstandsfunktion d ab.

Definition 1.12. Eine Folge x_0, x_1, \ldots in (X, d) heißt konvergent gegen einen Grenzwert $x \in X$, wenn zu jedem $\varepsilon > 0$ ein $N = N(\varepsilon) \in \mathbb{N}_0$ existiert, so daß für alle $n \geq N(\varepsilon)$ gilt $d(x_n, x) < \varepsilon$.

Zur Veranschaulichung. Wir fixieren ein $\varepsilon > 0$ und betrachten die offene Kugel

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \}$$

um x mit dem Radius ε . Für eine gegen x konvergierende Folge x_k liegen alle x_k mit $k \ge N(\varepsilon)$ innerhalb von $B_{\varepsilon}(x)$. Dies sind fast alle (d.h. alle bis auf endlich viele) Folgenglieder der Folge, insbesondere immer unendlich viele. Dass immer nur endlich viele außerhalb einer beliebigen offenen ε -Kugel, also in $X\backslash B_{\varepsilon}(x)$ liegen können, soll die folgende Graphik veranschaulichen:



Die Folgenglieder sammeln sich immer mehr in der Nähe von x. Egal, wie klein ε wird, man findet immer unendlich viele Folgenglieder, deren Abstand zu x kleiner als ε ist.

Nun nennen wir eine Folge $(x_n)_{n\in\mathbb{N}_0}$ beschränkt, wenn es $y\in X$ und ein $C\in K$ gibt, so daß für alle n gilt $d(x_n,y)\leq C$. Diesen Begriff wollen wir im Folgenden mit den bekannten Begriffen der Cauchyfolge und der konvergenten Folge verknüpfen:

Lemma 1.13. Jede konvergente Folge ist eine Cauchyfolge. Jede Cauchyfolge ist beschränkt.

Beweis. Zunächst beweisen wir die erste Aussage. Gegeben sei eine Folge $(x_n)_{n\in\mathbb{N}_0}$ mit ihrem Grenzwert $x\in X$. Dann ist $d(x_n,x)<\frac{1}{2}\varepsilon$ für alle $n\geq N:=N(\frac{1}{2}\varepsilon)$. Aus der Dreiecksungleichung

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m)$$

folgt dann $d(x_n,x_m)<\frac{1}{2}\varepsilon+\frac{1}{2}\varepsilon$, also $d(x_n,x_m)<\varepsilon$, für alle $n,m\geq N$. Somit ist (x_n) eine Cauchyfolge.

Kommen wir nun zum zweiten Teil. Im Falle $\varepsilon = 1$ gilt $d(x_n, x_m) < 1$ für $n, m \ge N$ nach der Cauchyeigenschaft. Setze nun $y := x_N$. Dann ist

$$d(x_n, y) = d(x_n, x_N) < 1$$

für alle $n \ge N$. Also ist $d(x_n, y) \le C$ für $C = \max(d(x_0, y), \dots, d(x_{N-1}, y), 1)$.

Lemma 1.14. Sei x_0, x_1, \ldots eine Folge in (X, d), welche gegen $x \in X$ und $y \in X$ konvergiert. Dann ist x = y.

Beweis. Wir führen einen Widerspruchsbeweis. Wäre d(x,y)>0, dann existiert für $\varepsilon=d(x,y)$ wegen der Konvergenz der Folge x_n ein $N=N(\frac{1}{2}\varepsilon)$ aus \mathbb{N}_0 mit $d(x_n,x)<\frac{1}{2}\varepsilon$ für $n\geq N(\frac{1}{2}\varepsilon)$. Analog existiert ein $M=M(\frac{1}{2}\varepsilon)\in\mathbb{N}$ mit $d(x_n,y)<\frac{1}{2}\varepsilon$ für $n\geqslant M$. Aufgrund der Dreiecksungleichung $d(x,y)\leq d(x,x_n)+d(x_n,y)$ und der Symmetrie $d(x,x_n)=d(x_n,x)$ folgt für alle $n\geq \max(N,M)$

$$d(x,y) < \varepsilon$$
.

Wir erhalten einen Widerspruch zu der Annahme $\varepsilon = d(x, y)$. Es folgt x = y.

Dieses Lemma rechtfertigt es von dem Grenzwert einer Folge zu sprechen. Daß eine Folge $(x_n)_{n\in\mathbb{N}}$ gegen einen Grenzwert $x\in X$ konvergiert, wird häufig durch folgende Schreibweisen

$$\lim_{n \to \infty} x_n = x$$

oder

$$x_n \xrightarrow[n\to\infty]{} x$$

angedeutet. Bei letzterer Schreibweise wird der Ausdruck $n \to \infty$ teilweise auch über den Pfeil geschrieben oder ganz weggelassen.

Eine Teilfolge einer gegebenen Folge $(x_n)_{n\in\mathbb{N}}$ ist eine Auswahl $(x_{n_k})_{k\in\mathbb{N}}$, die ihrerseits auch wiederum eine Folge ist und deren Glieder allesamt auch in dieser Reihenfolge (jedoch mit beliebig großen Lücken dazwischen) Glieder der Folge $(x_n)_{n\in\mathbb{N}}$ sind. Zum Beispiel ist die Folge

$$x_0, x_2, x_4, x_6, \dots$$

eine Teilfolge einer Folge $(x_n)_{n\in\mathbb{N}}$, bei der jedes zweite Glied (immer genau die mit ungeradem Index) herausgenommen wurde. Diesen Begriff wollen wir nun noch mit dem Begriff einer beschränkten Folge verknüpfen. Nicht jede beschränkte Folge ist konvergent. So hat beispielsweise die Folge $x_n = (-1)^n$ keinen Grenzwert, ist aber beschränkt.

1.5 Die geometrische Folge

Lemma 1.15. In einem archimedischen Körper K konvergiert im Fall |q| < 1 jede geometrische Folge $x_n = C \cdot q^n$ gegen Null.

Beweis. Sei $\varepsilon > 0$ gegeben. Nach Annahme gilt |q| < 1 und damit $|q|^{-1} > 1$. Somit hat man $|q|^{-1} = 1 + x$ für ein x > 0. Die Ungleichung $d(C \cdot q^n, 0) < \varepsilon$ ist dann äquivalent zu der Ungleichung

$$C/\varepsilon < (1+x)^n$$
.

Man zeigt aber leicht $(1+x)^n \ge 1+n\cdot x$ mittels Induktion nach n. Im Fall n=0 und n=1 ist dies trivialerweise richtig. Ist $n\ge 1$, dann ist $(1+x)^n$ größer als $1+n\cdot x$ vermöge der Induktionsannahme $(1+x)^{n-1}\ge 1+(n-1)\cdot x$ wegen

$$(1+x)\cdot(1+x)^{n-1} \ge (1+x)\cdot(1+(n-1)\cdot x) = 1+n\cdot x+(n-1)\cdot x^2 \ge 1+n\cdot x$$
.

Das Archimedische Axiom garantiert die Existenz einer natürlichen Zahl N größer als $C/x\varepsilon-1/x$. Für alle $n\geq N$ gilt dann

$$C/\varepsilon < 1 + n \cdot x$$
.

Daraus folgt wegen $1 + n \cdot x \leq (1 + x)^n$ das Lemma.

Dies hat die folgende Konsequenz: Die geometrische Reihe $s_n = 1 + q + q^2 + \cdots + q^n$ konvergiert für |q| < 1 und hat in diesem Falle den Grenzwert

$$\lim_{n\to\infty} \sum_{i=0}^n q^i = \frac{1}{1-q}.$$

Dies folgt aus der verallgemeinerten Binomialformel

$$(1-q)\cdot(1+q+\cdots+q^n)=1-q^{n+1}$$
,

die man leicht durch Induktion nach n beweist. Diese Formel zeigt $s_n - \frac{1}{1-q} = \frac{-q^{n+1}}{1-q}$. Also

$$d\left(s_n, \frac{1}{1-q}\right) = C \cdot |q|^n$$

für C=|q/(1-q)|. Aus dem letzten Lemma folgt daher $d(s_n,\frac{1}{1-q})<\varepsilon$ für $n\geq N(\varepsilon)$. Das zeigt die Behauptung. Analog zeigt man

Lemma 1.16. In einem archimedischen Körper K konvergiert im Fall |q| < 1 die geometrische Reihe $s_n = \sum_{i=0}^n c \cdot q^i$ gegen den Grenzwert $\frac{c}{1-q}$.

1.6 Vollständige metrische Räume

Definition 1.17. Ein metrischer Raum (X, d) heißt vollständig, wenn jede Cauchyfolge in (X, d) konvergiert.

Definition 1.18. Ein metrischer Raum (X,d) heißt folgenkompakt, wenn jede Folge aus (X,d) eine konvergente Teilfolge besitzt.

Ein folgenkompakter metrischer Raum ist automatisch vollständig, denn eine Cauchyfolge x_n konvergiert gegen x genau dann wenn eine Teilfolge der Cauchyfolge gegen x konvergiert.

Definition 1.19. Eine Teilmenge A eines metrischen Raumes (X,d) heißt **abgeschlossen**, wenn gilt: Sei $x_n \in A$ eine in (X,d) konvergente Folge mit Grenzwert $x = \lim_{n \to \infty} x_n \in X$, dann gilt $x \in A$.

Beispiel 1.20. Die Intervalle [a,b], oder auch $[a,\infty)=\{x\in K|x\geq a\}$ oder $(-\infty,a]=\{x\in K|x\leq a\}$, sind abgeschlossene Teilmengen in K.

Beweis. Wir zeigen pars pro toto, daß für eine Folge x_0, x_1, \ldots von Zahlen in K mit dem Grenzwert x gilt: Aus $x_n \ge a$ für $n = 0, 1, \ldots$ folgt auch $x \ge a$. Dies sieht man wie folgt: Wäre x < a, dann gilt $d(x_n, x) < \varepsilon$ für fast alle n bei Wahl von $\varepsilon := a - x > 0$. Anderseits gilt dann aber auch

$$d(x_n, x) = x_n - x = \underbrace{x_n - a}_{\geq 0} + \underbrace{a - x}_{=\varepsilon} \geq \varepsilon$$

für alle n, und wir erhalten einen Widerspruch.

Analog sind Quader der Gestalt $A = [a_1, b_1] \times ... \times [a_r, b_r]$ abgeschlossene Teilmengen des Euklidschen Raumes \mathbb{R}^r .

Satz 1.21. Jede abgeschlossene Teilmenge A eines vollständigen metrischen Raumes (X, d_X) versehen mit der eingeschränkten Metrik ist ein vollständiger metrischer Raum (A, d_X) .

Beweis. Sei eine Cauchyfolge x_n in (A,d) gegeben. Dann ist per Definition x_n eine Cauchyfolge in (X,d_X) . Nach Annahme existiert also $x=\lim_{n\to\infty}x_n$ in (X,d_X) . Weil A abgeschlossen ist, gilt $x\in A$. Also ist per definitionem $x\in A$ der Grenzwert von x_n in (A,d_X) .

Satz 1.22. Jede folgenkompakte Teilmenge A eines metrischen Raumes (X, d_X) (aufgefasst als metrischer Raum durch Einschränkung der Metrik) ist beschränkt und abgeschlossen in (X, d_X) .

Beweis. Wäre A nicht beschränkt, gäbe es eine Folge x_n aus A mit $d_X(x_0, x_n) \ge n$. Dies liefert einen Widerspruch, denn für jede Teilfolge \tilde{x}_n einer solchen Folge gilt erst recht $d_X(x_0, \tilde{x}_n) \ge n$. Somit besässe x_n keine konvergente (und damit beschränkte) Teilfolge. Ein Widerspruch zur Folgenkompaktheit von A!

Um zu zeigen, daß A abgeschlossen ist, betrachten wir eine beliebige Folge x_n aus A mit Grenzwert x in (X, d_X) . Dann konvergiert aber auch jede Teilfolge \tilde{x}_n der Folge x_n gegen den Grenzwert x in (X, d_X) . Anderseits ist (A, d_X) folgenkompakt nach Annahme. Somit existiert eine konvergente Teilfolge \tilde{x}_n der Folge x_n mit einem Grenzwert $a \in A$. Aus der Eindeutigkeit des Grenzwertes (Lemma 1.14) folgt daher x = a. Somit ist $x \in A$. Also ist $x \in A$ eine abgeschlossene Teilmenge von (X, d_X) .

1.7 Der Banachsche Fixpunktsatz

Satz 1.23. Sei (X,d) ein vollständiger metrischer Raum und $F: X \to X$ eine kontraktive Abbildung eines metrischen Raumes (X,d) in sich, d. h. es gebe eine reelle Konstante $0 < \kappa < 1$ mit

$$d(F(\xi), F(\eta)) \le \kappa \cdot d(\xi, \eta)$$

für alle $\xi, \eta \in X$. Dann besitzt die Abbildung F einen eindeutig bestimmten Fixpunkt $\xi \in X$, d. h. einen eindeutig bestimmten Punkt ξ mit der Eigenschaft

$$F(\xi) = \xi$$

Beweis. Wir müssen die Existenz und die Eindeutigkeit des Fixpunktes $\xi \in X$ zeigen. Wir wollen mit der Eindeutigkeit beginnen. Seien ξ_1 und ξ_2 Fixpunkte von F. Aus der Kontraktivität $d(F(\xi_1), F(\xi_2)) \leq \kappa \cdot d(\xi_1, \xi_2)$ und der Fixpunkteigenschaft $F(\xi_i) = \xi_i$ folgt

$$d(\xi_1, \xi_2) \leqslant \kappa \cdot d(\xi_1, \xi_2) .$$

Wäre $\xi_1 \neq \xi_2$, könnte man durch $d(\xi_1, \xi_2) > 0$ teilen und erhielte den Widerspruch $1 \leq \kappa$.

Nun zeigen wir die Existenz. Wähle hierzu ein beliebiges $x_0 \in X$ und setze $x_1 = F(x_0)$, $x_2 = F(x_1), \dots, x_n = F^n(x_0)$ als Folge in (X, d). Diese Folge ist beschränkt, denn

$$d(x_0, x_n) \leq d(x_0, x_1) + d(x_1, x_2) + \dots + d(x_{n-1}, x_n)$$

$$= d(x_0, x_1) + d(F(x_0), F(x_1)) + \dots + d(F^{n-1}(x_0), F^{n-1}(x_1))$$

$$\leq d(x_0, x_1) + \kappa d(x_0, x_1) + \dots + \kappa^{n-1} d(x_0, x_1)$$

$$\leq \frac{d(x_0, x_1)}{1 - \kappa} = C.$$

Als nächstes zeigen wir, daß die Folge eine Cauchyfolge ist. Sei hierzu o. B. d. A. $m \ge n$. Dann ist

$$d(x_n, x_m) = d(\underbrace{F^n(x_0)}_{=x_n}, \underbrace{F^n(x_{m-n})}_{=x_m}) \leq \kappa^n \underbrace{d(x_0, x_{m-n})}_{\leq C} \leq \kappa^n C.$$

Da $\kappa^n \xrightarrow[n \to \infty]{} 0$, folgt daraus $d(x_n, x_m) < \varepsilon$ falls $m \ge n \ge N(\varepsilon)$. D. h. x_n ist eine Cauchyfolge in (X, d). Also konvergiert die Folge gegen einen Grenzwert $\xi \in X$, denn nach Annahme ist (X, d) vollständig.

Es bleibt die Fixpunkteigenschaft von ξ zu zeigen. Hierzu stellen wir fest

$$d(\xi, F(\xi)) \le d(\xi, x_n) + d(x_n, F(\xi)) \le d(\xi, x_n) + \kappa d(x_{n-1}, \xi)$$

$$\le d(\xi, x_n) + d(\xi, x_{n-1}) < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon < \varepsilon$$

für $n \ge N(\frac{1}{2}\varepsilon)$, resp. $n-1 \ge N(\frac{1}{2}\varepsilon)$. Ein solches $n \in \mathbb{N}$ existiert natürlich. Also gilt $d(\xi, F(\xi)) < \varepsilon$ für alle $\varepsilon > 0$. Mit anderen Worten: $d(\xi, F(\xi)) = 0$ oder $F(\xi) = \xi$.

Eine Anwendung. Sei $0 \le \mu \le 1/4$ gegeben in einem archimedischer Körper K. Wähle ein ε in K mit $0 < \varepsilon \le \mu$. Dann ist

$$X = \left[-\frac{1}{2} + \varepsilon, \ \frac{1}{2} - \varepsilon \right]$$

ein abgeschlossener Unterraum des metrischen Raumes (K, d) versehen mit der Metrik d(x, y) = |x - y|. Ist (K, d) vollständig, dann auch der abgeschlossene Teilraum (X, d).

Die Abbildung

$$F(x) = x^2 + \frac{1}{4} - \mu$$

ist kontraktiv auf X wegen $d\big(F(x),F(y)\big)=|x^2-y^2|=|x+y|\cdot d(x,y) \le \kappa \cdot d(x,y)$. Beachte $|x+y| \le \kappa \coloneqq 2(\frac{1}{2}-\varepsilon) < 1$. Folglich ist

$$F \colon X \to X$$

wohldefiniert wegen $F(X)=F([0,\frac{1}{2}-\varepsilon])\subseteq X$. Die Funktion F ist auf $[0,\frac{1}{2}-\varepsilon]$ monoton mit $F(0)=\frac{1}{4}-\mu\geqslant 0$ und $F(\frac{1}{2}-\varepsilon)=\frac{1}{2}-\varepsilon-(\mu-\varepsilon^2)\leqslant \frac{1}{2}-\varepsilon$. Auf Grund unserer Annahmen ist nämlich $0<\varepsilon<1$ und damit $\varepsilon^2\leqslant\varepsilon\leqslant\mu$. Dies zeigt

Lemma 1.24. Ein vollständiger archimedischer Körper ist pythagoräisch.

Beweis. Für x>0 existiert ein $n\in\mathbb{N}$ mit x/n<1/4 (folgt aus dem Archimedischen Axiom) und damit $\mu:=x/n^2\le x/n<1/4$. Aus dem Banachschen Fixpunktsatz folgt $\mu=(\xi-\frac{1}{2})^2$ für den Fixpunkt ξ . Für $y=n\cdot(\xi-\frac{1}{2})\in K$ gilt daher $x=y^2$.

1.8 Quaderschachtelung

Sei K ein pythagoräischer Körper. Im Euklidischen Standardraum K^r von der Dimension r gelten die (Schachtelungs-)Ungleichungen

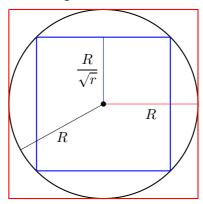
$$\max_{i=1,\dots,r} |x_i| \le ||x|| \le \sqrt{r} \cdot \max_{i=1,\dots,r} |x_i|$$

für einen Vektor $x = (x_1, \dots, x_r) \in K^r$. Beachte: $\max_{i=1,\dots,r} |x_i|$ definiert auch eine Norm auf K^r , die sogenannte **Quadernorm**. Die Formel läßt sich durch Quadrieren beweisen. Es genügt

$$\max_{i=1,\dots,r} |x_i|^2 \le |x_1|^2 + \dots + |x_r|^2 \le r \cdot \max_{i=1,\dots,r} |x_i|^2$$

und dies gilt aus offensichtlichen Gründen.

Was bedeutet dies anschaulich? Die Norm $\|\cdot\|$ gibt den Abstand eines Punktes von Null an. Wir betrachten die "Kugel" aller Punkte mit Abstand kleinergleich R vom Ursprung. Diese Kugel B liegt in einem Quader mit der Seitenlänge 2R eingrenzen. Umgekehrt liegt der Quader mit der Seitenlänge $\sqrt{r}^{-1} \cdot 2R$ in der Kugel B



Sei nun

$$Q = [c, d]^r = \underbrace{[c, d] \times \cdots \times [c, d]}_{r \text{ mal}}.$$

ein beliebiger Quader im K^r .

Lemma 1.25. Für beliebige Punkte ξ, η aus einem Quader Q mit der Seitenlänge l(Q) = |d-c| gilt

$$d(\xi, \eta) \leq l(Q)^r \sqrt{r}$$
.

Beweis. Durch Verschieben des Quaders kann man o. B. d. A. annehmen $\eta=0$. Dann gilt $d(\xi,\eta)=\|\xi\|\leq \sqrt{r}\cdot\max_{i=1,\dots,r}|\xi_i|$ und es genügt zu zeigen $|\xi_i|\leq |d-c|$. Wegen $c\leq \xi_i\leq d$ und $c\leq 0\leq d$ folgt dies dann aus $|\xi_i|\leq \max(d,-c)\leq d-c=|d-c|$.

Satz 1.26 (**Bolzano-Weierstraß**). *Jede beschränkte Folge im Euklidschen Raum* $(K^r, \|\cdot\|)$ *besitzt eine Teilfolge, die eine Cauchyfolge ist.*

Beweis. Ist die Folge x_0, x_1, \ldots beschränkt in K^r , so liegt sie in einer Kugel und damit auf Grund der Schachtelungsungleichungen in einem geeigneten Quader

$$Q = [a, b]^r = \underbrace{[a, b] \times \cdots \times [a, b]}_{r \text{ mal}}.$$

Hierbei ist $[a,b] = \{x \in K \mid a \le x \le b\}$ ein geeignetes Intervall in K. Man teilt nun den Quader in 2^r Teilquader, indem man jedes der Intervalle [a,b] in zwei gleich lange Teile unterteilt. In mindestens einem der Teilquader müssen unendlich viele Folgenglieder sein. Dies liefert eine Teilfolge $x_{1,0}, x_{1,1}, x_{1,2}, \ldots$, die vollständig in einem der Teilquader liegt. Dieses Verfahren setzt man iterativ fort und erhält eine absteigende Folge von Quadern:

$$Q_0 \supseteq Q_1 \supseteq Q_2 \supseteq \cdots$$
.

Hierbei ist $Q = Q_0$.

In jedem Quader Q_k liegt jeweils vollständig die Folge $x_{k,0}, x_{k,1}, x_{k,2}, \ldots$ (wobei $x_{0,k} = x_k$). Diese ordnet man nun in einer Tabelle an:

$$x_{0,0}$$
 $x_{0,1}$ $x_{0,2}$ \cdots $x_{1,0}$ $x_{1,1}$ $x_{1,2}$ \cdots $x_{2,0}$ $x_{2,1}$ $x_{2,2}$ \cdots \vdots \vdots \vdots \vdots

Diagonalfolgentrick. Man bildet jetzt die Diagonalfolge, d.h. man setzt $\xi_k \coloneqq x_{k,k}$ für alle $k \in \mathbb{N}$ und betrachtet die dadurch neu entstandene Folge $\xi_0, \xi_1, \xi_2, \ldots$ Dies ist eine Teilfolge der ursprünglichen Folge x_0, x_1, \ldots , und es gilt $\xi_i \in Q_n$ für alle $i \ge n$. Aus $i, j \ge n$ folgt daher $\xi_i, \xi_j \in Q_n$.

Die Seitenlänge der Quader Q_n halbiert sich mit jeder Unterteilung. Wir zeigen dies obdA im Fall n = 0. Es gilt $l(Q_0) = |b - a|$.

$$\begin{array}{c|c}
Q_0 \\
\hline
a & \frac{1}{2}(a+b) & b
\end{array}$$

Wie in der Zeichnung angedeutet sei Q_1 eine der beiden Teilhälften von Q_0 . Wegen

$$l(Q_0) = \begin{cases} \left|b - \frac{a+b}{2}\right| = |b-a|/2, & \text{falls } Q_1 = \left[\frac{a+b}{2}, b\right] \\ \left|\frac{a+b}{2} - a\right| = |b-a|/2, & \text{falls } Q_1 = \left[a, \frac{a+b}{2}\right] \end{cases}$$

ist die Länge von Q_1 in beiden möglichen Fällen $l(Q_1) = l(Q_0)/2$, halbiert sich also bei der Teilung. Durch Induktion folgt daher $l(Q_n) = 2^{-n} \cdot l(Q_0) = 2^{-n} \cdot |b-a|$.

Aus Lemma 1.25 folgt für beliebige Punkte $\xi_i, \xi_j \in Q_n$ die Ungleichung

$$d(\xi_i, \xi_j) \le \frac{C}{2^n}.$$

für die Konstante $C = |b - a|^r \sqrt{r}$.

Wir erstellen ein vorläufiges Resumee: Wir haben eine Teilfolge ξ_0, ξ_1, \ldots der gegebenen Folge x_0, x_1, \ldots konstruiert, so daß für eine feste positive Konstante C in K gilt

$$d(\xi_i, \xi_j) \le \frac{C}{2^n},$$

für alle $i, j \ge n$. Wir wollen daraus ableiten, daß ξ_i eine Cauchyfolge ist. Für beliebiges $\varepsilon > 0$ müssen wir zeigen, daß ein $N = N(\varepsilon)$ existiert mit

$$d(\xi_i, \xi_j) < \varepsilon$$

für $i,j \geq N(\varepsilon)$. Dazu genügt es $N \in \mathbb{N}$ wählen zu können mit der Eigenschaft

$$\frac{C}{2^n} < \varepsilon$$

für $n \ge N$. Damit folgt der Satz aus dem Lemma 1.15 in dem man q = 1/2 setzt.

Satz 1.27. In einem pythagoräischen Körper ist jede monoton wachsende, nach oben beschränkte Folge eine Cauchyfolge. Ebenso gilt dies für monoton fallende, nach unten beschränkte Folgen.

Beweis. Wir betrachten nur den Fall der monoton wachsenden, nach oben durch eine Konstante C beschränkten Folgen. Der umgekehrte Fall ist völlig analog. Aus der Monotonie

$$x_n \le x_{n+1}$$

der Folge ergibt sich $x_n \in [x_0, C]$ für alle n. Also ist die Folge x_n beschränkt. Nach Satz existiert also eine Teilfolge \tilde{x}_n , welche eine Cauchyfolge ist. Für alle $\varepsilon > 0$ existiert also ein $\tilde{N}(\varepsilon)$ mit

$$d(\tilde{x}_i, \tilde{x}_j) = \tilde{x}_i - \tilde{x}_j < \varepsilon$$

für $i,j \geq \tilde{N}(\varepsilon)$, wobei o. B. d. A. $i \geq j$ angenommen werden kann. Wähle nun $N=N(\varepsilon) \geq \tilde{N}(\varepsilon)$ so groß, daß

$$x_j \geqslant \tilde{x}_{\tilde{N}(\varepsilon)}$$

gilt für alle $j \ge N = N(\varepsilon)$. Die Existenz von N folgt aus der Monotonie der Folge x_j und der Tatsache, daß \tilde{x}_i eine Teilfolge von x_i ist. Dies impliziert ausserdem

$$x_i \leq \tilde{x}_i$$

für alle i. Für $i \ge j \ge N(\varepsilon)$ gilt daher

$$d(x_i, x_j) = x_i - x_j \le \tilde{x}_i - \tilde{x}_{\tilde{N}(\varepsilon)} < \varepsilon$$

nach Wahl von $N(\varepsilon)$ und der Cauchyeigenschaft der Teilfolge \tilde{x}_i .

1.9 Reelle Zahlen

Konvergente Folgen sind immer Cauchyfolgen, wie wir gesehen haben, aber nicht jede Cauchyfolge ist konvergent. So ist \mathbb{Q} ein archimedischer Körper, aber nicht vollständig. Daher ist das nun der Punkt, an dem wir zu den reellen Zahlen übergehen.

Definition 1.28. Wir fixieren einen archimedischen vollständigen Körper und nennen ihn **Körper der reellen Zahlen**. Wir bezeichnen diesen Körper mit \mathbb{R} . Folgen in \mathbb{R} nennen wir **reelle Folgen**.

Als vollständiger archimedischer Körper ist $\mathbb R$ pythagoräisch. Da $\mathbb R$ per Definition vollständig ist, sind in $\mathbb R$ also die Begriffe der Cauchyfolge und der konvergentene Folge äquivalent. Eine solche Folge ist immer beschränkt und hat einen eindeutigen Grenzwert. Liegt die Folge in einem abgeschlossenen Intervall I, so ist auch ihr Grenzwert in I enthalten. Weiterhin enthält jede reelle beschränkte Folge eine konvergente Teilfolge und jede monontone beschränkte Folge konvergiert. Zuletzt besitzt noch jede nach oben beschränkte Teilmenge $X \subseteq \mathbb R$ eine kleinste obere Schranke $\sup(X)$. Für den Beweis der letzten Aussage sei auf den nächsten Abschnitt verwiesen. Aus den Sätzen Satz 1.22, Satz 1.21 und Satz 1.26 folgt schliesslich die fundamentale Aussage

Satz 1.29. Eine Teilmenge A des Euklidischen Raumes \mathbb{R}^r ist folgenkompakt genau dann, wenn sie beschränkt und abgeschlossen ist.

Wir wollen nun die Darstellung reeller Zahlen als Dezimalbrüche betrachten. Nach dem Archimedischen Axiom ist jede nicht negative reelle Zahl y kleiner als eine geeignete natürliche Zahl n. Da nur endlich viele natürliche Zahlen vor n liegen, kann man obdA $n-1 \le y < n$ annehmen. Dann liegt x=y-(n-1) im Intervall $I_0=[0,1)$. Teilt man I in 10 Teilintervalle, folgt analog

$$x \in I_1 = \left[\frac{a_0}{10}, \frac{a_0 + 1}{10}\right]$$

für ein $a_0 \in \{0, 1, \dots, 9\}$. Unterteilt man I_1 wieder in 10 Teilintervalle und fährt so fort, erhält man eine Approximation von x durch Zahlen

$$x_n \coloneqq \frac{a_0}{10} + \frac{a_1}{100} + \dots + \frac{a_{n-1}}{10^n}$$

mit $a_0, a_1, \dots a_{n-1} \in \{0, 1, \dots, 9\}$ und

$$x_n \leqslant x \leqslant x_n + \frac{1}{10^n} .$$

Es folgt $d(x, x_n) \leq \frac{1}{10^n}$. Die Folge der x_n konvergiert also gegen die gegebene Zahl x. Man nennt dies die **Dezimalbruchentwicklung** von x und schreibt bekanntlich

$$x,="0,a_0a_1a_2...$$

Umgekehrt definiert jede solche Dezimalbruchentwicklung eine reelle Zahl im Intervall I = [0, 1], denn die dadurch definierte Folge reeller Zahlen

$$x_n \coloneqq \frac{a_0}{10} + \frac{a_1}{100} + \dots + \frac{a_{n-1}}{10^n}$$

definiert eine monoton wachsende Folge rationaler Zahlen

$$x_n \leqslant x_{n+1}$$

des Intervalls I: Beachte nämlich $x_n \leqslant \frac{9}{10} + \frac{9}{100} + \cdots + \frac{9}{10^n} = \frac{9}{10} \cdot \frac{1-10^{-n}}{1-10^{-1}} = 1-10^{-n} \leqslant 1$. Da die Folge x_n monoton wachsend und nach oben beschränkt ist (hier durch 1), konvergiert sie nach Satz 1.27 und ihr Grenzwert liegt im Intervall I = [0, 1].

1.10 Infimum und Supremum

Definition 1.30. Sei $X \subseteq \mathbb{R}$ eine nach oben beschränkte, nichtleere Teilmenge und

$$Y := \{y \in \mathbb{R} \mid x \le y \text{ für alle } x \in X\} \neq \emptyset$$

die Menge der **oberen Schranken** von X. Analog ist im Falle einer nach unten beschränkten Menge der Begriff der **unteren Schranken** definiert.

Es bezeichne $Y^c := \mathbb{R} \backslash Y$ das Komplement von der Teilmenge Y in \mathbb{R} .

Bemerkung 1.31. Für die Menge Y der oberen Schranken einer nach oben beschränkten nicht leeren Menge $X \subseteq \mathbb{R}$ gelten folgende Eigenschaften:

- (1) $Y \neq \emptyset$
- (2) Y ist abgeschlossen in \mathbb{R} .
- (3) Für $\xi \in Y^c$ gilt $\xi \leq y$ für alle $y \in Y$. Insbesondere gilt daher für konvergente Folgen $a_n \in Y^c$ mit Limes a dann $a \leq y$ für alle $y \in Y$ (denn $(-\infty, y]$ ist abgeschlossen).

Beweis. (1) gilt nach Annahme. Zum Beweis von (2) sei eine Folge $y_n \in Y$ gegeben mit $\lim_{n \to \infty} y_n = y$. Für $x \in X$ gilt $x \ge y_n \in [x, \infty)$ für alle $n \in \mathbb{N}$. Folglich ist $y \in [x, \infty)$ und damit $y \in Y$ (da dies für alle $x \in X$ gilt).

(3) Zunächst beweisen wir die eigentliche Folgerung. $\xi \in Y^c$ bedeutet $\xi \notin Y$. Daraus folgt nach der Definition von Y, daß es ein $x \in X$ gibt mit $\xi < x$. Ebenfalls nach Definition von Y gilt aber $x \leq y$ für alle $x \in X$ und $y \in Y$, insbesondere also $\xi < y$ und damit $\xi \leq y$.

Betrachte nun ein $a_0 \notin Y$ und ein $b_0 \in Y$. Ein solches b_0 existiert nach (1) und a_0 existiert wegen $X \neq \emptyset$ (wähle z. B. $a_0 = x - 1$ für ein $x \in X$):

$$\begin{array}{ccc}
& & & \\
& & \\
Y^c \ni a_0 & & b_0 \in Y
\end{array}$$

Setze nun durch Halbieren des Intervalls

$$\xi \coloneqq \frac{a_0 + b_0}{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

und führe eine Fallunterscheidung durch: Im Falle $\xi \in Y$ setze $b_1 := \xi$ und $a_1 := a_0$, sonst $a_1 := \xi$ und $b_1 := a_0$. Iteriert man dies, so erhält man

$$Y^c \ni a_n \le b_n \in Y$$

für alle $n \in \mathbb{N}$ und nach Konstruktion gilt

$$a_0 \le a_1 \le a_2 \le \cdots \le a_n \le b_n \le \cdots \le b_2 \le b_1 \le b_0$$
.

Somit ist a_0, a_1, \ldots eine monoton steigende, nach oben beschränkte Folge und analog b_0, b_1, \ldots monoton fallende nach unten beschränkte Folge. Somit sind beide Folgen konvergent nach Satz 1.27. Setze nun $a = \lim_{n \to \infty} a_n$ und $b = \lim_{n \to \infty} b_n$. Dann gilt

$$a_0 \le \dots \le a_n \le \dots \le a \le b \le \dots \le b_n \le \dots \le b_0$$

wegen $a_j < b_k$ für alle $j,k \in \mathbb{N}$. Daraus folgt $a \leq b_k$ für alle k, und im Limes $k \to \infty$ schliesslich $a \leq b$. Wir behaupten nun a = b. Zum Beweis fixieren wir uns ein $\varepsilon > 0$. Es gilt

$$0 \leq b - a \leq \underbrace{\lfloor b - b_n \rfloor}_{<\frac{1}{3}\varepsilon} + \underbrace{\lfloor b_n - a_n \rfloor}_{<\frac{1}{3}\varepsilon} + \underbrace{\lfloor a - a_n \rfloor}_{<\frac{1}{3}\varepsilon} < \varepsilon$$

für $n \geq N(\varepsilon)$. Dies folgt aus den Konvergenzaussagen $a_n \xrightarrow[n \to \infty]{} a$, $b_n \xrightarrow[n \to \infty]{} b$ und $|b_n - a_n| \xrightarrow[n \to \infty]{} 0$. Letzteres folgt aus $|b_n - a_n| = 2^{-n}|b_0 - a_0|$ wie im Beweis von Satz 1.26. Da $\varepsilon > 0$ beliebig gewählt werden kann, folgt daraus a = b.

Auf Grund der obigen Intervall Schachtelung gilt weiterhin

(4) $a \le y$ für alle $y \in Y$,

denn $a_n \in Y^c$ impliziert $a_n \leq y$ für alle $y \in Y$, und somit $a \leq y$ nach (3). Aus (2) folgt wegen $b_n \in Y$ dann

 $(5) \quad b = \lim_{n \to \infty} b_n \in Y.$

Schliesslich gilt

(6) Es gibt keinen Punkt $\eta \in Y$ mit $\eta < b$,

denn anderenfalls wäre $a \le \eta < b$ nach (4). Dies würde implizieren a < b, also einen Widerspruch zu a = b. Dies zeigt (6), und damit ist b die kleinste obere Schranke von X nach (5) und (6). Dies zeigt

Satz 1.32. Jede nach oben beschränkte nichtleere Teilmenge $X \subseteq \mathbb{R}$ besitzt eine kleinste obere Schranke. Diese nennt man das **Supremum** $\sup(X)$ der Menge X.

Für die Punkte a_n gilt nach Konstruktion $a_n < a$, und daher wegen $a = \sup(X)$ also $a_n \notin Y$. Da a_n somit keine obere Schranke von X ist, gibt es ein $x_n \in X$ mit $a_n \leq x_n$. Aus der Ungleichung $a_n \leq x \leq a = \sup(X)$ folgt wegen $a_n \to a$ dann recht einfach $x_n \to a$. Es gibt also einen Folge von Punkten aus X, welche gegen das Supremum $a = \sup(X)$ konvergiert.

Oft wird das Supremum formal auch für den Fall einer nach oben unbeschränkten Menge definiert. In diesem Falle schreibt man

$$\sup(X) = +\infty$$

für den Fall, daß die Menge X nach oben nicht beschränkt ist.

Völlig analog zum Supremum einer nach oben beschränkten Menge, existiert das **Infimum** einer nach unten beschränkten Menge $\inf(X) = -\sup(-X)$.

Satz 1.33. Jede nach unten beschränkte nichtleere Menge $X \subseteq \mathbb{R}$ besitzt ein Infimum $\inf(X)$, eine größte untere Schranke von X.

Sei nun $x_1 \leqslant x_2 \leqslant x_3 \leqslant \dots$ eine beliebige monoton steigende Folge reeller Zahlen. Dann ist entweder $X = \{x_n \mid n \in \mathbb{N}\}$ nach oben beschränkt und die Folge x_n konvergiert monoton gegen $\sup(X) \in \mathbb{R}$. Oder die Menge X ist nicht nach oben beschränkt und $\sup(X) = +\infty$. In diesem Fall konvergiert die Folge gegen $+\infty$ in folgendem Sinn: Für alle C > 0 existiert ein N = N(C) so daß für alle $n \geqslant N$ gilt $x_n > C$.

Diese Betrachtung kann man wie folgt zusammen fassen: Setze $\mathbb{R}^+ = \mathbb{R} \cup \{+\infty\}$. Dann besitzt jede (!) monoton steigende Folge x_n mit Werten in \mathbb{R}^+ einen Grenzwert x in \mathbb{R}^+ im obigen Sinne. Wir schreiben dann auch

$$x_n \nearrow x$$

und benutzen häufig die Schreibweise $x = \sup_n x_n = \sup_n x_n$ für diesen Grenzwert im erweiterten Sinn. Analog existiert immer ein Grenzwert $\inf_n x_n$ in $\mathbb{R}^- = \mathbb{R} \cup \{-\infty\}$ für eine monoton fallende Folge $x_n \in \mathbb{R}^-$.

2 Stetige Abbildungen

2.1 Stetigkeit

Definition 2.1. Seien (X, d_X) und (Y, d_Y) metrische Räume. Eine Abbildung

$$f: (X, d_X) \to (Y, d_Y)$$

heißt **stetig**, wenn für jede Folge x_n in X gilt

$$x_n \to \xi \implies f(x_n) \to f(\xi)$$
.

Anders formuliert, f führt konvergente Folgen in konvergente Folgen über und vertauscht mit Limesbildung:

$$f\left(\lim_{n\to\infty}x_n\right)=\lim_{n\to\infty}f(x_n).$$

Ein Spezialfall. Abbildungen $f:(X,d_X)\to (Y,d_Y)$ mit der Eigenschaft

$$d_Y(f(x), f(\xi)) \leq C \cdot d_X(x, \xi)$$
, $\forall x, \xi \in X$

(für eine feste Konstante C>0) sind stetig: Für genügend großes n gilt $d_X(x_n,\xi)<\varepsilon/C$ wegen $x_n\to \xi$, und damit $d_Y\big(f(x_n),f(\xi)\big)<\varepsilon$. Solche Abbildungen nennt man **Lipschitz-stetig** und C nennt man **Lipschitz-Konstante**. Beispiele sind kontraktive Abbildungen oder die im folgenden aufgeführten Abbildungen:

Beispiel 2.2. (1) Die identische Abbildung $id_X : (X, d_X) \to (X, d_X)$ definiert durch $id_X(x) = x$ ist stetig (C ist hier 1).

- (2) Die konstante Funktion $f:(X,d_X) \to (Y,d_Y)$ definiert durch durch $f(x) = y_0$ für einen festen Punkt $y_0 \in Y$ ist stetig (C ist hier beliebig).
- (3) Sei (X, d_X) ein metrischer Raum und x_0 ein beliebiger Punkt von X. Dann ist die Abstandsfunktion $f(x) = d(x, x_0)$ eine stetige Funktion $f: (X, d_X) \to Y = \mathbb{R}$. In der Tat gilt hier $d_Y \big(f(x), f(\xi) \big) = |d_X(x, x_0) d_X(\xi, x_0)| \le C \cdot d_X(x, \xi)$ mit C = 1 wegen der unteren Dreiecksungleichung des metrischen Raumes (X, d_X) .
 - (4) Jede \mathbb{R} -lineare Abbildung $L \colon \mathbb{R}^r \to \mathbb{R}^s$ zwischen Euklidischen Räumen ist stetig.

(5) Insbesondere sind als Spezialfall von (4) die Koordinatenprojektionen

$$p_i \colon \mathbb{R}^r \to \mathbb{R}, \quad p_i(x_1, \dots, x_r) = x_i$$

stetig für alle $i = 1, \ldots, r$.

Zum Beweis von (4) beachte: Es gilt $d_{\mathbb{R}^s} \left(L(x), L(\xi) \right) = \|L(x) - L(\xi)\|_{\mathbb{R}^s} = \|L(x - \xi)\|_{\mathbb{R}^s}$ für lineare Abbildungen $L(x) = (\sum_{j=1}^r L_{ij}x_j)_{i=1,\dots,s}$. Wir suchen also eine Konstante C mit der Eigenschaft

$$||L(y)||_{\mathbb{R}^s} \le C \cdot ||y||_{\mathbb{R}^r} .$$

Beachte $\|L(y)\|_{\mathbb{R}^s} \leq \sqrt{s} \cdot \max_{i=1,\dots,s} |L(y)_i| \leq r \sqrt{s} \cdot \max_{i=1,\dots,s;j=1,\dots,r} |L_{ij}| \cdot \max_{j=1,\dots,r} |y_j| \leq C \|y\|_{\mathbb{R}^r}$ für $C = r \sqrt{s} \cdot \max_{i,j} |L_{ij}|$. Die Wahl von C ist nicht optimal. Aber offensichtlich gilt

Lemma 2.3. Für \mathbb{R} -lineare Abbildungen $L \colon \mathbb{R}^r \to \mathbb{R}^s$ ist die reelle Zahl

$$||L|| = \sup_{v \neq 0} \left(\frac{||L(v)||_{\mathbb{R}^s}}{||v||_{\mathbb{R}^r}} \right) \leqslant C < \infty$$

wohldefiniert und ≥ 0 . Es gilt

$$\|L(v)\| \le \|L\| \cdot \|v\|$$

und ||L|| = 0 genau dann, wenn L = 0.

Bemerkung 2.4. Eine Funktion $f:(X,d)\to\mathbb{R}^r$ schreibt sich in der Form

$$y = f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_r(x) \end{pmatrix} \in \mathbb{R}^r.$$

Die r reellwertigen Funktionen $f_i=p_i\circ f$ sind wegen (5) als Zusammensetzung stetiger Funktionen stetig (siehe Korollar 2.7). Umgekehrt definieren r stetige reellwertige Funktionen $f_1(x),\ldots,f_r(x)$ auf (X,d) eine stetige Funktion $(X,d)\to\mathbb{R}^r$, denn $x_n\to x$ impliziert $f_i(x_n)\to f_i(x)$ in \mathbb{R} , und wegen $d\big(f(x_n),f(x)\big)\leqq \sqrt{r}\cdot\max_{i=1,\ldots,r}|f_i(x_n)-f_i(x)|$ auch $f(x_n)\to f(x)$ in \mathbb{R}^r .

Definition 2.5. Seien (X, d_X) und (Y, d_Y) metrische Räume. Eine Abbildung

$$f \colon X \to Y$$

heißt stetig im Punkt ξ von X, wenn für jede Folge x_n , die in (X, d_X) gegen ξ konvergiert, die Bildfolge $f(x_n)$ in (Y, d_Y) gegen $f(\xi)$ konvergiert.

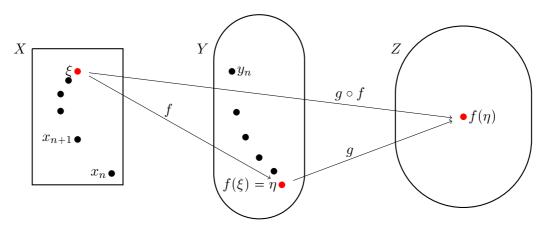
Offensichtlich ist $f:(X,d_X)\to (Y,d_Y)$ stetig genau dann, wenn f in jedem Punkt ξ von X stetig ist.

Satz 2.6. Sei $f:(X,d_X) \to (Y,d_Y)$ stetig im Punkt $\xi \in X$ und sei $g:(Y,d_Y) \to (Z,d_Z)$ stetig im Punkt $\eta = f(\xi) \in Y$. Dann ist die Komposition

$$(g \circ f) \colon (X, d_X) \to (Z, d_Z)$$

stetig im Punkt $\xi \in X$.

Beweis. Zunächst wollen wir eine Veranschaulichung der Behauptung vornehmen:



Nach Voraussetzung gilt für jede gegen ξ konvergente Folge x_n

$$y_n := f(x_n) \to \eta = f(\xi).$$

Da g stetig ist, gilt wegen der Konvergenz von y_n gegen η in (Y, d_Y)

$$g(y_n) = (g \circ f)(x_n) \rightarrow g(\eta) = (g \circ f)(\xi).$$

Also folgt $(g \circ f)(x_n) \to (g \circ f)(\xi)$ und $g \circ f$ ist stetig im Punkt ξ .

Korollar 2.7. *Die Komposition stetiger Abbildungen ist wieder stetig.*

2.2 Eigenschaften stetiger Funktionen

Lemma 2.8. Sei $f: (X, d_X) \to (Y, d_Y)$ eine stetige Abbildung. Ist A in (Y, d_Y) abgeschlossen, dann ist das Urbild $f^{-1}(A)$ abgeschlossen in (X, d_X) .

Beweis. Sei $x_n \to x$ eine in (X, d_X) konvergente Folge mit $x_n \in f^{-1}(A)$. Zu zeigen ist $x \in f^{-1}(A)$. Da f stetig ist, konvergiert die Bildfolge $y_n = f(x_n) \to y = f(x)$. Wegen $y_n = f(x_n) \in A$ und da A abgeschlossen ist, folgt $y \in A$ und damit $x \in f^{-1}(y) \subseteq f^{-1}(A)$. \square

Lemma 2.9. Sei $f: (X, d_X) \to (Y, d_Y)$ eine <u>stetige</u> Abbildung. Ist (X, d_X) <u>folgenkompakt</u>, dann ist auch das Bild f(X) versehen mit der Einschränkung der Metrik d_Y <u>folgenkompakt</u>.

Beweis. Sei y_n eine Folge in f(X). Dann gilt $y_n = f(x_n)$ für eine Urbildfolge $x_n \in X$. Nach Annahme gibt es eine in (X, d_X) konvergente Teilfolge $\tilde{x}_n \to \tilde{x}$. Aus der Stetigkeit folgt, daß die Teilbildfolge $\tilde{y}_n = f(\tilde{x}_n)$ gegen $f(\tilde{x})$ konvergiert in $(f(X), d_Y)$.

Satz 2.10. Auf einem <u>folgenkompakten</u> metrischen Raum (X, d_X) hat jede <u>stetige</u> reellwertige Funktion

$$f\colon (X,d_X)\to \mathbb{R}$$

ein beschränktes Bild, und das Maximum und das Minimum von f werden auf X als Funktionswerte angenommen.

Beweis. Das Bild f(X) ist folgenkompakt bezüglich der Euklidischen Metrik (wegen dem letzten Lemma). Nach Satz 1.22 ist also f(X) beschränkt und abgeschlossen. Insbesondere gilt daher

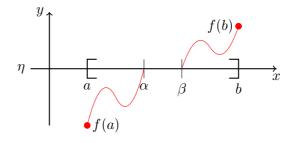
$$\sup(f(X)) = \max(f(X))$$

und analog $\inf(f(X)) = \min(f(X))$. Daraus folgt die Behauptung.

2.3 Der Zwischenwertsatz

Satz 2.11. Sei $f: [a,b] \to \mathbb{R}$ eine stetige Funktion mit $f(a) \leq f(b)$. Dann gibt es für jedes $\eta \in [f(a), f(b)]$ ein $\alpha \in [a,b]$ mit $f(\alpha) = \eta$.

Beweis. Betrachte die (nichtleere beschränkte) Menge $A \coloneqq \{x \in [a,b] \mid f(x) \le \eta\}$. Entweder ist dann $\alpha \coloneqq \sup(A)$ gleich b, oder es gilt per Definition $x > \alpha \Longrightarrow f(x) > \eta$. In beiden Fällen folgt $f(\alpha) \ge \eta$ (im letzteren Fall wegen der Stetigkeit von f, da eine monoton fallend gegen α konvergente Folge von Punkten $x \in [a,b]$ existiert mit $f(x) > \eta$). Andererseits gibt es eine Folge von Punkten aus A, welche gegen das Supremum α von A konvergiert. Aus Stetigkeitsgründen und der Definition von A folgt daraus $f(\alpha) \le \eta$. Beides zusammen genommen ergibt $f(\alpha) = \eta$.

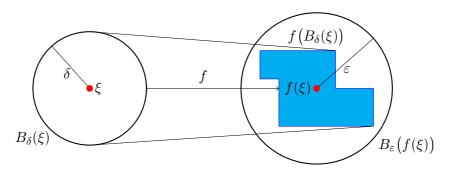


2.4 Das ε - δ -Kriterium

Satz 2.12. Gegeben sei eine Funktion $f:(X,d_X)\to (Y,d_Y)$ und ein $\xi\in X$. Dann ist f genau dann stetig in ξ , wenn zu jedem $\varepsilon>0$ ein $\delta=\delta(\varepsilon)>0$ existiert, so da β gilt

$$d_X(x,\xi) < \delta \implies d_Y(f(x),f(\xi)) < \varepsilon.$$

Auch hierzu wollen wir eine Veranschaulichung liefern. Betrachte die Kugeln $B_{\delta}(x) = \{x \in X \mid d_X(x,\xi) < \delta\}$. Für beliebiges $\varepsilon > 0$ soll es ein $\delta > 0$ geben, sodaß zu jedem $x \in X$, dessen Abstand zu ξ kleiner als δ ist, der Abstand von f(x) zu $f(\xi)$ kleiner als ε ist. f soll also die Kugel $B_{\delta}(\xi)$ um ξ vom Radius $< \delta$ in die Kugel $B_{\varepsilon}(f(\xi))$ um $f(\xi)$ vom Radius $< \varepsilon$ abbilden



Beweis. Zunächst wollen wir zeigen, daß das ε - δ -Kriterium die Stetigkeit impliziert. Sei also x_n eine Folge in X mit $\lim_{n\to\infty}(x_n)=\xi$. Also existiert zu jedem $\tilde{\varepsilon}>0$ ein $N=N(\tilde{\varepsilon})$ mit $d_X(x_n,\xi)<\tilde{\varepsilon}$ für $n\geq N$. Nach Annahme gilt

$$d_Y(f(x_n), f(\xi)) < \varepsilon,$$

für $d_X(x_n, \xi) < \delta = \delta(\varepsilon)$. Wählt man jetzt $\tilde{\varepsilon}$ gleich δ , folgt $d_Y(f(x_n), f(\xi)) < \varepsilon$ für $n \geq N(\delta)$. Also konvergiert $f(x_n)$ gegen f(x).

Zum Beweis der Gegenrichtung nehmen wir an f sei stetig im Punkt ξ und das ε - δ -Kriterium wäre nicht erfüllt im Punkt ξ . Dann würde gelten

$$\exists \varepsilon_0 > 0 \quad \forall \delta > 0 \quad \exists x \in X \quad \left(d_X(x, \xi) < \delta \text{ und } d_Y\left(f(x), f(\xi) \right) \ge \varepsilon_0 \right).$$

Wähle nun $\delta = 1/n$. Dann existiert ein x_n mit $d_X(x_n, \xi) < 1/n$ und $d_Y(f(x_n), f(\xi)) \ge \varepsilon_0$. Wegen $d_X(x_n, \xi) < 1/n$ gilt $x_n \to \xi$. Aus der Stetigkeit von f im Punkt ξ folgt $f(x_n) \to f(\xi)$ im Widerspruch zu $d_Y(f(x), f(\xi)) \ge \varepsilon_0$.

Folgerung. Eine Funktion $f:(X,d_X)\to (Y,d_Y)$ ist stetig genau dann, wenn gilt

$$\forall \xi \in X \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ \left(d_X(x,\xi) < \delta \Longrightarrow d_Y(f(x),f(\xi)) < \varepsilon \right) \ .$$

2.5 Gleichmässige Stetigkeit

Definition 2.13. Eine Abbildung $f:(X,d_X) \to (Y,d_Y)$ heißt gleichmäßig stetig auf (X,d_X) , wenn zu jedem $\varepsilon > 0$ ein $\delta = \delta(\varepsilon) > 0$ existiert, so daß für alle $\xi, x \in X$ gilt:

$$d_X(x,\xi) < \delta \implies d_Y(f(x),f(\xi)) < \varepsilon.$$

oder

$$\boxed{\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall \xi \in X \; \forall x \in X \; \left(d_X(x,\xi) < \delta \Longrightarrow d_Y(f(x),f(\xi)) < \varepsilon \right)} \; .$$

Satz 2.14 (Satz von Heine). *Ist* (X, d_X) *folgenkompakt, dann gilt: Jede <u>stetige</u> Funktion auf* (X, d_X) *ist gleichmäßig stetig.*

Beweis. Wäre die Aussage falsch, dann würde gelten

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists \xi \in X \ \exists x \in X \ \left(d_X(x,\xi) < \delta \ \text{und} \ d_Y(f(x),f(\xi)) \ge \varepsilon_0 \right).$$

Fixiere ein solches $\varepsilon_0>0$. Für alle natürlichen Zahlen $n\geq 1$ und $\delta\coloneqq n^{-1}$ existieren daher $\xi_n,x_n\in X$ mit $d_X(\xi_n,x_n)< n^{-1}$ und $d_Y(f(\xi_n),f(x_n))\geq \varepsilon_0$. Bei sorgfältiger Auswahl von Teilfolgen kann man o. B. d. A. durch Übergang zu den Teilfolgen zusätzlich zu den obigen Bedingungen erreichen

$$\xi_n \xrightarrow[n \to \infty]{} \xi, \quad x_n \xrightarrow[n \to \infty]{} x.$$

(Man geht dazu zu einer konvergenten Teilfolge $\tilde{\xi}_n$ über, und streicht die entsprechenden Folgenglieder auch in der Folge x_n . In dieser Teilfolge geht man nochmals durch durch Streichen von Folgengliedern zu einer konvergenten Teilfolge \tilde{x}_n über. Die entsprechenden Glieder streicht man auch aus der Teilfolge $\tilde{\xi}_n$.) Wegen $d_X(\xi_n,x_n)< n^{-1}$ (dies gilt auch für die Teilfolgen) und

$$0 \le d_X(x,\xi) \le \underbrace{d_X(x,x_n)}_{<\frac{1}{2}\varepsilon} + \underbrace{d_X(x_n,\xi_n)}_{< n^{-1}<\frac{1}{2}\varepsilon} + \underbrace{d_X(\xi_n,\xi)}_{<\frac{1}{2}\varepsilon} < \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon = \varepsilon.$$

für $n \ge N(\varepsilon)$ und alle $\varepsilon > 0$ folgt $d_X(x,\xi) = 0$ im Limes $n \to \infty$. Also gilt $x = \xi$, und damit folgt wegen $f(x) = f(\xi)$ aus der Dreiecksungleichung

$$0 < \varepsilon_0 \le d_Y \left(f(\xi_n), f(x_n) \right) \le \underbrace{d_Y \left(f(\xi_n), f(\xi) \right)}_{< \frac{1}{2} \varepsilon_0} + \underbrace{d_Y \left(f(x_n), f(x) \right)}_{< \frac{1}{2} \varepsilon_0}.$$

Wegen der Stetigkeit von f ist die rechte Seite $< \varepsilon_0$, falls $n \ge N_1(\frac{1}{2}\varepsilon_0)$ resp. $n \ge N_2(\frac{1}{2}\varepsilon_0)$ wegen der Konvergenz der Folgen $f(\xi_n) \to f(\xi)$ und $f(x_n) \to f(x)$). Dies liefert $0 < \varepsilon_0 < \varepsilon_0$, also einen Widerspruch.

2.6 Reellwertige stetige Funktionen

Definition 2.15. Für einen metrischen Raum (X, d_X) ein metrischer Raum sei

$$C(X) \coloneqq \{f \colon X \to \mathbb{R} \mid f \text{ ist stetig auf } (X, d_X)\}$$

der Raum der stetigen reellwertigen Funktionen auf X.

Lemma 2.16. Seien $f, g \in C(X)$ und $\lambda \in \mathbb{R}$. Dann ist auch $f + g, \lambda g, fg$ wieder stetig auf X. Insbesondere bildet C(X) einen **Ring**.

Beweis. Wir beweisen das Lemma lediglich für das Produkt fg, da die anderen Rechnungen analog durchführbar sind. Seien also ein $\xi \in X$ und ein $\varepsilon > 0$ gegeben. Dann ist

$$|f(x)g(x) - f(\xi)g(\xi)| \leq |f(x)g(x) - f(x)g(\xi) + f(x)g(\xi) - f(\xi)g(\xi)|$$

$$\leq \underbrace{|f(x)|}_{\leq c_1} \cdot \underbrace{|g(x) - g(\xi)|}_{<\varepsilon/c_1} + \underbrace{|g(\xi)|}_{\leq c_2} \cdot \underbrace{|f(\xi) - f(x)|}_{<\varepsilon/c_2} < \varepsilon$$

für Konstanten $c_1, c_2 > 0$; ersteres gilt hierbei nur für $d_X(x, \xi) < \delta_1$, letzteres nur für $d_X(x, \xi) < \delta_2$. Außerdem gilt $|f(x) - f(\xi)| < 1$ falls $d_X(x, \xi) < \delta_3$. Falls $d_X(x, \xi) < \delta := \min(\delta_1, \delta_2, \delta_3)$ ist damit $|f(x)| \le 1 + |f(\xi)| =: c_1$. All dies zusammen zeigt, daß $(f \cdot g)(x) = f(x)g(x)$ stetig im Punkt ξ ist.

Korollar 2.17. *Polynome sind stetige Funktionen auf* \mathbb{R} .

Lemma 2.18. Sei $f:(X,d_X) \to \mathbb{R}$ und $f(x) \neq 0$ für alle $x \in X$. Dann gilt:

$$\frac{1}{f(x)} \colon (X, d_X) \to \mathbb{R}$$

ist definiert und stetig auf (X, d_X) .

Beweis. Gegeben sei ein ξ und ein $\varepsilon > 0$. Dann gilt

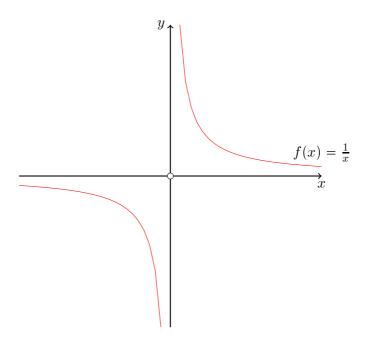
$$\left| \frac{1}{f(x)} - \frac{1}{f(\xi)} \right| = \left| \frac{f(\xi) - f(x)}{f(x)f(\xi)} \right|.$$

Es gilt $|f(x) - f(\xi)| < |\frac{1}{3}f(\xi)| \Rightarrow \varepsilon_1 > 0$ für $d(X,\xi) < \delta_1$ (Stetigkeit von f). Daraus folgt $|f(x)| > \left|\frac{2}{3}f(\xi)\right|$ wegen der unteren Dreiecksungleichung, oder $\left|\frac{1}{f(x)}\right| < \left|\frac{3}{2f(\xi)}\right|$. Also

$$\left| \frac{1}{f(x)} - \frac{1}{f(\xi)} \right| < \varepsilon,$$

falls $|f(x) - f(\xi)| < \frac{2}{3} |f(\xi)|^2 \cdot \varepsilon$. Dies ist erfüllt, falls $d_X(x,\xi)$ klein genug ist. \Box

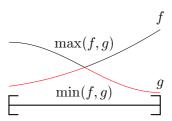
Beispiel 2.19. $f(x) = \frac{1}{x}$ erfüllt diese Bedingung für $X = \mathbb{R}^* = \mathbb{R} \setminus \{0\}$ und definiert daher eine stetige (aber nicht gleichmässig stetige) Funktion auf \mathbb{R}^*



Wir wollen uns nun mit dem Minimum und Maximum von Funktionen auseinandersetzen. Seine also $f,g\colon (X,d_X)\to \mathbb{R}$ Funktionen auf einem metrischen Raum (X,d_X) . Hierzu definieren wir

$$\max(f,g)(x) \coloneqq \max(f(x),g(x))$$

und analog für das Minimum.



Die stetigen Funktionen aus C(X) definieren einen Funktionenverband auf X, d.h. C(X) ist ein reeller Vektorraum von Funktionen und es gilt

Satz 2.20.
$$\min(f,g)$$
 und $\max(f,g)$ sind in $C(X)$ für $f,g \in C(X)$.

Beweis. Es genügt, daß mit f auch |f| (als Komposition stetiger Abbildungen) stetig ist, denn $\max(f,g)=\frac{1}{2}(f+g)+\frac{1}{2}|f-g|$ und $\min(f,g)=-\max(-f,-g)$.

2.7 Gleichmässige Konvergenz

Definition 2.21. Eine Folge $(f_n)_{n\in\mathbb{N}}$ von reellwertigen mit Funktionen $f_n\colon (X,d)\to\mathbb{R}$ heißt **punktweise konvergent** gegen eine Grenzfunktion $f\colon (X,d)\to\mathbb{R}$, wenn für jedes $x\in X$ gilt

$$\lim_{n \to \infty} f_n(x) = f(x).$$

Definition 2.22. Eine Folge $(f_n)_{n\in\mathbb{N}}$ von Funktionen $f_n\colon (X,d_X)\to\mathbb{R}$ heißt **gleichmäßig konvergent** gegen eine Grenzfunktion $f\colon (X,d_X)\to\mathbb{R}$, wenn zu jedem $\varepsilon>0$ ein $N=N(\varepsilon)\in\mathbb{N}$ existiert, so daß für alle $n\geq N$ und alle $x\in X$ gilt

$$|f_n(x) - f(x)| < \varepsilon.$$

Für beschränkte reellwertige Funktionen f definiert man

$$||f|| \coloneqq \sup_{\xi \in X} |f(\xi)|.$$

Offensichtlich gilt ||f||=0 genau dann, wenn f=0 gilt. Ebenso trivial ist die Eigenschaft $||\lambda\cdot f||=|\lambda|\cdot||f||$ für reelle Konstanten λ . Für zwei beschränkte reellwertige Funktionen f,g auf X ist aber auch f+g beschränkt auf X und es gilt

$$||f + g|| \le ||f|| + ||g||$$
,

denn $|f(\xi) + g(\xi)| \le |f(\xi)| + |g(\xi)| \le ||f|| + ||g||$ gilt für alle $\xi \in X$. Somit definiert $||\cdot||$ eine **Norm** auf dem \mathbb{R} -Vektorraum der beschränkten Funktionen auf X, die sogenannte **Supremumsnorm**.

Sei nun (X, d_X) ein folgenkompakter metrischer Raum. Dann ist jede stetige Funktion beschränkt auf X. Damit ist C(X) ein \mathbb{R} -Untervektorraum des Raums der beschränkten Funktionen auf X. Für stetige Funktionen $f \in C(X)$ gilt sogar

$$||f|| = \max_{x \in X} |f(x)|.$$

Die Supremumsnorm definiert vermöge $d(f,g) = \|f - g\|$ eine Metrik auf C(X). Offensichtlich gilt

Korollar 2.23. (C(X),d) ist mit d(f,g) := ||f-g|| ein metrischer Raum. Eine Folge von Funktionen $f_n \in C(X)$ konvergiert gegen $f \in C(X)$ in (X,d) genau dann, wenn $f_n(x)$ gleichmässig auf (X,d_X) gegen die Grenzfunktion f(x) konvergiert.

2.8 Vollständigkeit von C(X)

Satz 2.24. Sei (X, d_X) <u>folgenkompakt</u>. Dann ist (C(X), d) versehen mit der Metrik d der gleichmässigen Konvergenz ein <u>vollständiger</u> metrischer Raum¹.

¹Dies überträgt sich verbatim auf den Raum $C(X, \mathbb{R}^N)$ aller Funktionen auf X mit Werten in \mathbb{R}^N .

Beweis. Gegeben sei eine Cauchyfolge in C(X), also Funktionen $f_n \in C(X)$ für $n=1,2,\ldots$ mit $\|f_n-f_m\|<\varepsilon$ für $n,m\geq N(\varepsilon)$. Wir konstruieren eine Grenzfunktion. Fixiere einen Punkt $x\in X$ und betrachte die Folge $y_n=f_n(x)\in\mathbb{R}$. Dann gilt

$$|y_n - y_m| \le ||f_n - f_m|| < \varepsilon,$$

falls $n, m \ge N(\varepsilon)$. Also definiert y_1, y_2, \ldots eine reelle Cauchyfolge. Daher existiert der Limes $y_n \to y$ und wir setzen

$$f(x) \coloneqq y = \lim_{n \to \infty} (y_n) \in \mathbb{R}.$$

Nun behaupten wir:

$$|f(x) - f_n(x)| < \varepsilon$$
 für $n \ge N(\frac{1}{2}\varepsilon)$

und zwar für alle (!) $x \in X$. Sei nämlich $x \in X$ ein beliebiger Punkt. Dann gibt es ein $m_0 = m_0(\frac{1}{2}\varepsilon,x)$ mit $|f(x)-f_m(x)| < \frac{1}{2}\varepsilon$ für $m \ge m_0(\frac{1}{2}\varepsilon,x)$, weil ja nach Konstruktion $f_n(x) \to f(x)$ gilt. Dies liefert

$$|f(x) - f_n(x)| \le |f(x) - f_m(x)| + |f_m(x) - f_n(x)| < \frac{1}{2}\varepsilon + \underbrace{\|f_m - f_n\|}_{< \frac{1}{2}\varepsilon} \le \varepsilon,$$

falls $n,m \geq N(\frac{1}{2}\varepsilon)$ und $m \geq m_0(\varepsilon,x)$ gilt. Ein solches m kann man immer finden, so daß man jetzt unabhängig von der Wahl von x wie behauptet $|f(x)-f_n(x)|<\varepsilon$ für $n\geq N(\frac{1}{2}\varepsilon)$ gezeigt hat.

Zum anderen behaupten wir $f \in C(X)$, also daß f stetig auf X ist. Betrachte hierzu Punkte $x_1, x_2 \in X$. Dann gilt für geeignetes n und $d_X(x_1, x_2) < \delta$ und δ geeignet,

$$|f(x_1) - f(x_2)| \leq \underbrace{|f(x_1) - f_n(x_1)|}_{<\frac{1}{3}\varepsilon} + \underbrace{|f_n(x_1) - f_n(x_2)|}_{<\frac{1}{3}\varepsilon} + \underbrace{|f_n(x_2) - f(x_2)|}_{<\frac{1}{3}\varepsilon}.$$

Ist $d_X(x_1,x_2)<\delta=\delta(\frac{1}{3}\varepsilon,f_n)$, dann gilt $|f_n(x_1)-f_n(x_2)|<\frac{1}{3}\varepsilon$, da f_n stetig und damit auch gleichmäßig stetig auf (X,d_X) ist. Schliesslich haben wir für beliebiges x (insbesondere also für $x=x_1,x_2$) gezeigt $|f(x)-f_n(x)|<\varepsilon/3$, falls $n\ge N(\frac{1}{2}\varepsilon/3)$. Wählt man daher ein $n\ge N(\varepsilon/6)$, dann folgt für alle x_1,x_2 mit $d_X(x_1,x_2)<\delta$, wobei δ jetzt nur noch von ε abhängt, die Ungleichung

$$|f(x_1)-f(x_2)|<\varepsilon$$
.

Das heißt f ist stetig auf X. Die erste Behauptung zeigt außerdem

$$||f - f_n|| < \varepsilon$$
 für $n \ge N(\frac{1}{2}\varepsilon)$.

Somit konvergiert die Funktionenfolge $f_n(x)$ gleichmässig gegen f(x). Dies zeigt die Cauchy-Vollständigkeit von C(X).

2.9 Monotone Funktionenfolgen

Wir haben im letzten Abschnitt gesehen, daß ein gleichmässiger Limes von stetigen Funktionen (auf einem kompakten Raum X) eine stetige Funktion definiert (Satz 2.24). Das nächste Beispiel zeigt, daß die analoge Aussage für monotone Limiten stetiger Funktionen im Gegensatz dazu nicht richtig ist:

Beispiel 2.25. Sei $X \subset \mathbb{R}^n$ ein nichtdegenerierter abgeschlossener beschränkter Quader. Sei $f(x) \geq 0$ eine beliebige <u>nichtnegative stetige</u> Funktionen $f \in C(X)$ auf X sowie A eine beliebige <u>abgeschlossene</u> Teilmenge von X. Dann ist für die stetige² Abstandsfunktion $d(x,A) = \inf\{d(x,a) \mid a \in A\}$ die Funktion

$$f_n(x) = \max(0, 1 - d(x, A))^n \cdot f(x)$$

stetig auf X und erfüllt $f_n(x) \ge 0$. Wegen $f(x) \ge 0$ definieren die Funktionen $f_n(x)$ eine monoton fallende Folge von stetigen Funktionen. Beachte $0 \le \max(0, 1 - d(x, A)) < 1$ für $x \notin A$ und $0 \le \max(0, 1 - d(x, A)) = 1$ für $x \in A$. Daher konvergiert die Funktionenfolge $f_n(x)$ punktweise

$$C(X)\ni f_n\setminus g$$

gegen die Grenzfunktion

$$g(x) = \chi_A(x) \cdot f(x)$$
 , A abgeschlossen in X , $f \geqslant 0$ in $C(X)$.

Für $A \subseteq X$ bezeichne hierbei χ_A die charakteristische Funktion von A, d.h. es sei $\chi_A(x) = 1$ für $x \in A$ und $\chi_A(x) = 0$ für $x \notin A$.

Die konstante Funktion χ_X liegt in C(X). Für echte Teilquader $A=[c_1,d_1]\times\cdots\times[c_r,d_r]$ von X liegt die charakteristische Funktion χ_A nicht in C(X), wie man leicht sieht. Bereits im einfachsten Fall f=1 ist daher die Grenzfunktion χ_A nicht mehr stetig, wenn A ein echter Teilquader von X ist; denn sei etwa $A=[c,d]\subset[a,b]$ und a< c, dann ist $\lim_n\chi_A(x_n)=0$ für eine linksseitige Folge $x_n\to c$ (mit $x_n< c$) und ist verschieden von $\chi_A(c)=1$.

Die charakteristische Funktion $g(x)=\chi_A(x)$ für abgeschlossene Teilmengen $A\subseteq X$ ist zwar im allgemeinen nicht mehr stetig, aber sie ist wenigstens **oberhalb stetig** in folgendem Sinne: Für alle $\xi\in X$ und alle $\varepsilon>0$ existiert ein $\delta>0$ mit

$$|x - \xi| < \delta \Longrightarrow q(x) < q(\xi) + \varepsilon$$
.

Man nennt g(x) unterhalb stetig, wenn -g(x) oberhalb stetig ist. Endliche Summen oberhalb stetiger Funktionen sind oberhalb stetig. Jede stetige Funktion ist natürlich oberhalb stetig.

 $^{^2}A$ ist folgenkompakt und daher nimmt d(x,a) bei festem $x \in X$ sein Minimum auf A an als Funktion der Variable $a \in A$, sagen wir in einem Punkt $a_0 = a_0(x)$. Also $d(x,A) = d(x,a_0)$. Für beliebiges $y \in X$ gilt daher $d(y,A) - d(x,A) = d(y,A) - d(x,a_0) \le d(y,a_0) - d(x,a_0) \le d(y,x)$ wegen der unteren Dreicksungleichung. Aus der Symmetrie in x und y folgt $|d(y,A) - d(x,A)| \le d(x,y)$, also die Lipschitzstetigkeit.

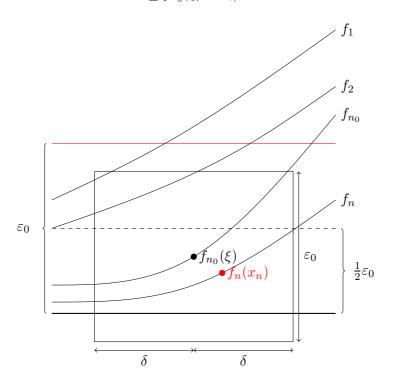
Satz 2.26 (Satz von Dini). Sei (X,d) <u>folgenkompakt</u>. Sei $f_n \setminus f$ eine <u>monoton fallende</u> punktweise konvergente Folge von <u>oberhalb stetigen</u> reellwertigen Funktionen f_n auf X. Ist die Grenzfunktion f <u>stetig</u> auf X, konvergieren die f_n gleichmässig auf X gegen f.

Beweis. Ersetzt man f_n durch $f_n - f$, kann o. B. d. A. angenommen werden f = 0. Wir nehmen an die Funktionenfolge f_n ist monoton fallend. Wäre die Konvergenz nicht gleichmässig, gäbe es ein $\varepsilon_0 > 0$ so daß für alle n ein $x_n \in X$ existiert mit

$$0 < \varepsilon_0 \le f_n(x_n) \quad (\forall n) .$$

a) Durch Übergang zu einer Teilfolge können wir oBdA annehmen $x_n \to \xi$, da X folgenkompakt ist. Wegen $f_n(\xi) \to f(\xi) = 0$ gibt es ein n_0 , so daß gilt

$$0 \leq f_{n_0}(\xi) < \varepsilon_0/2$$
.



b) Wegen der oberhalb Stetigkeit von $f_{n_0}(x)$ im Punkt ξ gilt $f_{n_0}(x_n) - f_{n_0}(\xi) < \varepsilon_0/2$ für alle $n \ge n_1$, bei geeigneter Wahl von $n_1 > n_0$ wegen $x_n \to \xi$. Also

$$0 \le f_{n_0}(x_n) = (f_{n_0}(x_n) - f_{n_0}(\xi)) + f_{n_0}(\xi) < \varepsilon_0, \quad (n \ge n_1).$$

c) Aus der Monotonie der Folge $f_m(x)$ ergibt sich dann

$$0 \le f_m(x_n) \le f_{n_0}(x_n) < \varepsilon_0, \quad (m \ge n_1).$$

Für m=n und beliebiges $n \ge n_1$ steht des im Widerspruch zu $\varepsilon_0 \le f_n(x_n)$.

2.10 Stückweise stetige Funktionen

Sei $X=[a_1,b_1]\times\cdots\times[a_r,b_r]$ ein beschränkter Euklidscher Quader im \mathbb{R}^r . Wir definieren jetzt den Raum CT(X) der **stückweise stetigen Funktionen** auf dem Quader X. Dieser soll für beliebige <u>abgeschlossene</u> Teilquader $A\subseteq X$ den zugehörigen Raum der stetigen Funktionen C(A) enthalten

$$C(A) \subseteq CT(X)$$

in folgendem Sinn:

Eine stetige Funktion $g\colon A\to\mathbb{R}$ in C(A) wird dabei als Funktion auf X aufgefasst, indem man sie durch Null fortsetzt. D.h. man setzt f(x)=g(x) für $x\in A$ und f(x)=0 für $x\notin A$. Diese Nullfortsetzung ist beschränkt auf X, aber im Fall $A\neq X$ im allgemeinen keine stetige Funktion auf X. Insbesondere enthält CT(X) die Funktionen $g(x)=\chi_A(x)\cdot f(x)$ für stetige Funktionen f(x) auf X. Degenerierte Quader $A=[c_1,d_1]\times\cdots\times[c_r,d_r]$, also den entarteten Fall wo $c_i=d_i$ gilt für ein oder mehrere $i=1,\ldots,r$, lassen wir ausdrücklich als Teilquader zu.

Definition. Sei CT(X) der von endlichen Linearkombinationen solcher Fortsetzungen (von Funktionen aus C(A) für Teilquader $A \subseteq X$) aufgespannte \mathbb{R} -Untervektorraum des Raums der beschränkten Funktionen auf X. Offensichtlich gilt

$$C(X) \subseteq CT(X)$$
.

Die sup-Norm $||f|| = \sup_{x \in X} |f(x)|$ definiert eine Metrik auf CT(X). Der Untervektorraum von CT(X), aufgespannt von den charakteristischen Funktionen χ_A (A Teilquader), nennen wir den Raum der **Treppenfunktionen** T(X)

$$T(X) \subseteq CT(X)$$
.

Lemma 2.27. Jede stückweise stetige Funktion $f \in CT(X)$ ist ein gleichmäßiger Limes $f = \lim_{n \to \infty} f_n$ einer geeigneten monoton steigenden (resp. alternativ monoton fallenden) Folge von Treppenfunktion $f_n \in T(X)$. Ist f stetig, können die Funktionen f_n unterhalb stetig (resp. oberhalb stetig) gewählt werden.

Beweis. Man reduziert den Beweis sofort auf den Fall, daß f Nullfortsetzung einer stetigen Funktion auf $A_0 \subseteq X$ ist. O. B. d. A. daher $X = A_0$ und $f \in C(X)$. Der Einfachheit sei die Dimension r=1 und damit A_0 ein Intervall (der allgemeine Fall ist vollkommen analog³). Wir teilen sukzessive das Intervall $A_0 = [a,b]$ in jeweils zwei gleich lange Teilintervalle, im ersten Schritt also $[a,\frac{a+b}{2}]$ und $[\frac{a+b}{2},b]$. Auf diese Weise wird X nach n Schritten in 2^n Teilintervalle $A \subseteq X$ unterteilt. Auf jedem der 2^n so entstandenen Teilintervalle A definiert man nun f_n durch

$$f_n|_A(x) = \begin{cases} \min_{\xi \in A} \left(f(\xi) \right), & \text{falls } x \text{ kein Randpunkt des Intervalls } A \text{ ist} \\ f(x) & \text{falls } x \text{ Randpunkt des Intervalls } A \text{ ist.} \end{cases}$$

³Definiere $f_n(x) = \min\{(f(\xi)) \mid \xi \in K_r(x)\}$ für eine geignete offene Kugel $K_r(x)$ um x mit genügend kleinem Radius r (r ist abhänging von x). Die so definierte Funktion f_n ist dann unterhalb stetig auf A.

Die so auf ganz X definierte Funktion f_n hat die Eigenschaft $f_n(x) \leq f(x)$ für alle $x \in X$, und ist konstant auf allen Teilintervallen A eventuell mit Ausnahme an den Randpunkte des Intervalls A. Also gilt $f_n \in T(X)$. Die Funktion $f_{n+1}(x)$ hat per Definition die Eigenschaft

$$\cdots \le f_n(x) \le f_{n+1}(x) \le \cdots$$

Ersetzt man in obiger Definition der Funktionen f_n die Minima durch Maxima erhält man analog definierte Funktionen g_n auf X mit den Eigenschaften

$$f_n(x) \le f(x) \le g_n(x),$$

so daß $g_{n+1}(x) \leq g_n(x)$ gilt für alle $x \in X$. Wir behaupten, dass die monoton wachsende Folge der f_n , beziehungsweise die monoton fallende Folge der g_n gleichmässig gegen die Grenzfunktion f(x) konvergiert auf X. Beachte dazu: Jedes x liegt in einem der 2^n Teilintervalle A. Für $x \in A$ gilt

$$|f(x) - f_n(x)| \le |g_n(x) - f_n(x)| \le \max_{\eta \in A} (f(\eta)) - \min_{\xi \in A} (f(\xi)).$$

Die rechte Seite lässt sich für ein beliebig vorgegebenes $\varepsilon > 0$ nach oben abschätzen durch

$$|f(\eta_0) - f(\xi_0)| < \varepsilon ,$$

wenn der Abstand $d(\eta_0, \xi_0) \leq l(A) \leq 2^{-n} \cdot |b-a|$ kleiner ist als ein geeignetes $\delta = \delta(f, \varepsilon) > 0$. Dies folgt aus Satz 2.14: Die stetige Funktion f(x) auf dem folgenkompakten Raum X ist gleichmäßig stetig auf X. Für genügend großes n gilt $2^{-n} |b-a| < \delta(f, \varepsilon)$. Da dies unabhängig von der Wahl von A ist, folgt die Behauptung.

2.11 Der eindimensionale Fall

Im eindimensionalen Fall kann man den Vektorraum CT(X) der stückweise stetigen Funktionen auf einem Intervall X = [a, b] recht einfach wie folgt beschreiben:

Eine Funktion $f: X \to \mathbb{R}$ ist stückweise stetig auf X = [a,b] genau dann, wenn es endlich viele Stützpunkte $x_0, \ldots, x_m \in [a,b]$ gibt, o. B. d. A. $x_0 = a \le x_2 \le x_3 \le \ldots \le x_m = b$, so daß die Einschränkungen $f|_{(x_{i-1},x_i)}$ von f auf die offenen Teilintervalle (x_{i-1},x_i) sich zu stetigen Funktionen f_i auf die Intervalle $A_i = [x_{i-1},x_i]$ fortsetzen lassen. Können die Funktionen f_i konstant gewählt werden, ist f eine Treppenfunktion.

Bemerkung. Dies zu zeigen überlassen wir dem Leser. [Hinweis: Setzt man die Funktionen $f_i \in C(A)$ durch Null auf X fort, unterscheiden sich f(x) und $\sum_{i=1}^m f_i(x)$ nur um eine endliche Summe $\sum_{i=1}^{m-1} c_i \cdot \chi_{x_i}(x)$ gebildet zu den degenerierten Intervallen $[x_i, x_i]$ für gewisse $c_i \in \mathbb{R}$].

Sei nun $f(x) \in T(X)$ eine Treppenfunktion auf X = [a, b]. Die obige Charakterisierung der Treppenfunktionen liefert sofort das elementare **Standardintegral** auf T(X), das heißt eine \mathbb{R} -lineare Abbildung

$$I:T(X)\to\mathbb{R}$$

definiert durch

$$I(f) = \sum_{i=0}^{m-1} (x_{i+1} - x_i) \cdot f_i(x_i)$$

falls $f(x) \in T(X)$ als Treppenfunkion bei Wahl der Stützstellen $x_0 = a \le x_1 \le x_2 \le \ldots \le x_m = b$ in X konstante Einschränkungen $f_i = f|_{(x_i, x_{i+1})}$ auf die offenen Teilintervalle (x_i, x_{i+1}) besitzt. Der Wert I(f) hängt dabei ganz offensichtlich nur ab von der Treppenfunktion $f \in T(X)$, aber nicht von der Wahl der Stützpunkte x_0, \ldots, x_m .

Linearität. Aus der Definition folgt offensichtlich $I(c \cdot f) = c \cdot I(f)$ für alle $c \in \mathbb{R}$ und alle $f \in T(X)$. Für $f,g \in T(X)$ kann man weiterhin immer gemeinsame Stützstellen $x_0 = a \le x_1 \le x_2 \le \ldots \le x_m = b$ in X finden so daß f und g konstant auf (x_i,x_{i+1}) werden. Deshalb gilt $I(f+g) = \sum_{i=0}^{m-1} (x_{i+1}-x_i) \cdot (g_i+f_i)(x_i) = \sum_{i=0}^{m-1} (x_{i+1}-x_i) \cdot g_i(x_i) + \sum_{i=0}^{m-1} (x_{i+1}-x_i) \cdot f_i(x_i) = I(g) + I(f)$.

Monotonie. Aus $f(x) \leq g(x)$ für alle $x \in X$ folgt $I(f) \leq I(g)$ für Treppenfunktionen $f, g \in T(X)$, eine unmittelbare Konsequenz aus der Definition.

Bemerkung. Beachte

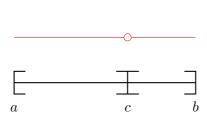
$$I(\chi_A) = |d - c|$$
 für $A = [c, d]$.

Der Versuch das Standardintegral zu definieren, indem man Treppenfunktionen als endliche Linearkombinationen von charakteristischen Funktionen χ_A schreibt, ist naheliegend. Dabei ist aber zu beachten, daß die charakteristischen Funktionen χ_A für abgeschlossene Teilintervalle $A\subseteq X$ zwar ein Erzeugendensystem des \mathbb{R} -Vektorraums T(X) bilden, aber keine Basis. Beispiele für lineare Abhängigkeiten zwischen den Erzeugenden charakteristischen Funktionen sind etwa

$$\chi_{(c,d)} = \chi_{[c,d]} - \chi_{[c,c]} - \chi_{[d,d]}$$
,

oder für $a \leq c \leq b$

$$\chi_{[a,b]} = \chi_{[a,c]} + \chi_{[c,b]} - \chi_{[c,c]}$$
.



Dies ist der Grund für obige Vorgehensweise bei der Definition des Standardintegrals auf T(X).

Lemma 2.28. Sei X = [a,b] und $f_n(x)$ eine monoton fallende (resp. steigende) Folge von Treppenfunktion $f_n \in T(X)$, welche punktweise gegen eine Treppenfunktion $f \in T(X)$ konvergiert. Dann gilt $\inf_n I(f_n) = I(f)$ (resp. $\sup_n I(f_n) = I(f)$).

Beweis. ObdA ist f=0 indem man f_n durch f_n-f ersetzt. ObdA ist dann $f_1\leqslant C$ für einen Konstante C. Die Idee ist nun, für ein vorgegebenes $\varepsilon>0$ die Treppenfunktionen $f_n\searrow 0$ durch eine monoton fallende Folge von oberhalb stetigen Treppenfunktionen g_n zu ersetzen mit den Eigenschaften $0\leqslant g_n\leqslant f_n$ und

$$I(f_n) \leq I(g_n) + \sum_{i=1}^n \frac{C\varepsilon}{2^i}$$
.

Nach dem Satz von Dini konvergiert dann die Folge g_n gleichmässig gegen f=0 auf X. Daraus folgt $\lim_{n\to\infty}I(g_n)=0$ wegen $|I(g_n)|\leqslant |b-a|\cdot \sup_{x\in X}|g_n(x)|$ und $\sup_{x\in X}|g_n(x)|\to 0$. Anderseits gilt $0\leqslant I(f_n)\leqslant I(g_n)+C\varepsilon$. Da die Folge der reellen Zahlen $I(f_n)$ monoton fallend und nach unten durch Null beschränkt ist, existiert nach Satz 1.27 der Limes $\lim I(f_n)$. Es folgt $0\leqslant \lim I(f_n)\leqslant C\varepsilon$. Da aber $\varepsilon>0$ beliebig war, ergibt sich daraus $\lim I(f_n)=0$.

Die Funktionen g_n konstruiert man induktiv in der Form $g_n = \min(\chi_{A_n}, f_n) \leqslant f_n$, wobei A_n eine endliche Vereinigung von abgeschlossenen Intervallen in X ist. Diese wählt man so daß das Komplement $U_n = X \backslash A_n$ eine Vereinigung von endlich vielen genügend kleinen offenen Intervallen in X, welche die Sprungstellen aller Funktionen $f_1,...,f_n$ enthalten und deren Gesamtlänge $<\sum_{i=1}^n \frac{\varepsilon}{2^i}$ ist. Dies erreicht man durch den Ansatz $U_{n+1} = U_n \cup \bigcup_{\nu} K_{r_{\nu}}(x_{\nu})$, wobei ν die endlich vielen Sprungstellen x_{ν} der Treppenfunktion $f_{n+1}(x)$ indiziert, welche nicht bereits in U_n liegen. Für jedes ν wählt man Radien $r_{\nu} > 0$ genügend klein so daß $\sum_{\nu} r_{\nu} < \frac{\varepsilon}{2^{n+1}}$ gilt. Nach Konstruktion ist g_n oberhalb stetig auf X, und die Funktionenfolge g_n ist monoton fallend wegen $A_1 \supset A_2 \supset A_3 \cdots$. Beachte nämlich $\min(\chi_{A_{n+1}}, f_{n+1}) \leqslant \min(\chi_{A_n}, f_n)$ wegen $\chi_{A_{n+1}} \leqslant \chi_{A_n}$ und $f_{n+1} \leqslant f_n$.

Bemerkung. Im Sinne des nächsten Kapitels definieren die oberhalb stetigen Funktionen auf X einen Halbverband mit Werten in \mathbb{R} . Analog bilden die Treppenfunktionen auf einem Intervall X = [a, b] einen Verband. Das letzte Lemma zeigt, daß das Standard Integral auf dem Verband der Treppenfunktionen ein Daniel Integral ist im Sinne von Abschnitt 3.3.

3 Integrale

3.1 Verbände

Sei X eine Menge, später oft ein metrischer Raum. Wir betrachten Funktionen auf X mit Werten in

$$\mathbb{R}^+ = \mathbb{R} \cup \infty$$
 oder $\mathbb{R}^- = \mathbb{R} \cup -\infty$.

Im Gegensatz zu den reellwertigen Funktionen $f:X\to\mathbb{R}$, die auf natürliche Weise einen \mathbb{R} -Vektorraum bilden, ist der Raum solcher Funktionen nur unter Addition und unter Multiplikation mit positiven Skalaren $\lambda>0$ abgeschlossen.

Definition 3.1. Eine Teilmenge B(X) aller \mathbb{R}^+ -(oder \mathbb{R}^-)-wertigen Funktionen auf X heisst **Halbverband**, wenn B(X) unter den Bildungen

$$\min(f(x), g(x))$$
 und $\max(f(x), g(x))$

sowie Addition und Multiplikation mit reellen Skalaren $\lambda \geqslant 0$ abgeschlossen ist (Konvention: $0 \cdot \infty = 0$).

Ist B(X) ein Halbverband mit Werten in \mathbb{R}^{\pm} , dann ist -B(X) ein Halbverband mit Werten in \mathbb{R}^{\mp} . Beachte dazu $\max(-f, -g) = -\min(f, g)$ etc.

Definition 3.2. Ein Halbverband B(X) heisst **Verband**, falls B(X) = -B(X) gilt.

Für Funktionen eines Verbandes liegen die Funktionswerte automatisch in \mathbb{R} . Wegen B(X) = -B(X) ist ein Verband ein \mathbb{R} -Vektorraum. Ein \mathbb{R} -Vektorraum B(X) von Funktionen auf X ist genau dann ein Verband, wenn gilt: $f(x) \in B(X) \Longrightarrow |f(x)| \in B(X)$.

[Beweis: Jede Funktion f aus einem Halbverband B(X) schreibt sich als Summe $f = f^+ + f^-$ der Funktion $f^+ = \max(f,0) \ge 0$ und der Funktion $f^- = \min(f,0) \le 0$ aus B(X). Für Verbände gilt $-f_- \in B(X)$. Es folgt daher $|f| = f^+ + (-f^-) \in B(X)$. Die Umkehrung zeigt man wie bei Satz 2.20].

Beispiel 3.3. Beispiele für Verbände: Der Raum der Treppenfunktionen T(X) oder der stückweise stetigen Funktionen CT(X) auf einem Quader, der stetigen Funktionen C(X) auf einem metrischen Raum. Die einfachsten Beispiele für Halbverbände sind \mathbb{R}^+ resp. \mathbb{R}^- selbst.

3.2 Monotone Hüllen

Die monotone Hülle $B^+(X)$ eines Halbverbandes B(X) mit Werten in \mathbb{R}^+ ist die Menge aller Funktionen

$$f: X \longrightarrow \mathbb{R}^+$$

für die eine punktweise monotone aufsteigende Folge $f_n \in B(X)$ existiert, d.h. $f_1(x) \le f_2(x) \le f_3(x) \le \cdots$, mit der Eigenschaft $f(x) = \sup\{f_n(x) \mid n \in \mathbb{N}\}$ oder kurz

$$f = \sup_{n} f_n = \sup_{n} f_n .$$

Schreibweise. Wir schreiben symbolisch $f_n \nearrow f$, wenn f in diesem Sinne als punktweise 'monotoner Limes' von Funktionen f_n definiert ist.

Ist B(X) ein Verband, oder ein Halbverband mit Werten in \mathbb{R}^- , definiert man analog $f_n \setminus f$ und $B^-(X)$ mittels monoton fallender Limiten. Funktionen in $B^-(X)$ haben dann Werte in $R^- = \mathbb{R} \cup -\infty$. Alle Aussagen sind analog, so daß wir uns im Folgenden vorwiegend auf den Fall von Halbverbänden mit Werten in \mathbb{R}^+ beschränken. Für einen Verband B(X) gilt offensichtlich

$$B^-(X) = -B^+(X).$$

Lemma 3.4. Ist B(X) ein Halbverband mit Werten in \mathbb{R}^+ , dann ist auch $B^+(X) \supseteq B(X)$ ein Halbverband mit Werten in \mathbb{R}^+ .

Beweis. Es gilt $B(X) \subseteq B^+(X)$, denn für $f \in B(X)$ und die konstante Folge $f_n = f$ gilt $f_n \nearrow f$.

Für $f_n \nearrow f, g_n \nearrow g$ mit $f_n, g_n \in B(X)$ und $\lambda > 0$ gilt offensichtlich $f_n + g_n \nearrow f + g$ und $\lambda f_n \nearrow \lambda f$.

Für $\max(f_n,g_n) \nearrow \max(f,g)$ beachte $\max(f_n,g_n) \leqslant \max(f_{n+1},g_n) \leqslant \max(f_{n+1},g_{n+1})$, da die Ungleichung $h \leqslant g$ die Ungleichungen $\max(h,f) \leqslant \max(g,f)$ und $\min(h,f) \leqslant \min(g,f)$ impliziert. Für $\min(f_n,g_n) \nearrow \min(f,g)$ benutze $\min(f_n,g_n) \leqslant \min(f_{n+1},g_{n+1})$.

Lemma 3.5. $B^+(X)$ ist gegenüber monoton wachsenden Limiten abgeschlossen. D.h. aus $f_i \nearrow f$ für $f_i \in B^+(X)$ folgt $f \in B^+(X)$.

Beweis. Wähle $f_{ij} \nearrow f_i$ mit $f_{ij} \in B(X)$. Wegen $f_{ij} \leqslant f_{i,j+1}$ für alle i+j=n gilt $F_n := \max_{i+j=n} (f_{ij}) \nearrow f$ und $F_n \in B(X)$, also $f \in B^+(X)$.

3.3 Integrale

Sei B(X) ein Halbverband (obdA) mit Werten in \mathbb{R}^+ . Für Abbildungen von B(X) in einen anderen Halbverband betrachten wir folgende Eigenschaften

- 1. **Semilinearität**: I(f+g) = I(f) + I(g). und $I(\lambda \cdot f) = \lambda \cdot I(f)$ für reelles $\lambda \ge 0$.
- 2. Monotonie: $f \leq g \Longrightarrow I(f) \leq I(g)$
- 3. Halbstetigkeit: Für $f_n \in B(X)$ mit $f_n \nearrow f \in B(X)$ gilt $\sup I(f_n) = I(f)$, d.h. ¹

$$\boxed{\sup_n I(f_n) = I(\sup_n f_n) \text{ für } f_n \nearrow f \text{ und } f, f_n \in B(X)}.$$

Definition 3.6. Ein **Integral** auf B(X) ist eine semilineare monotone Abbildung

$$I:B(X)\to\mathbb{R}^+$$
,

d.h. I erfüllt die Eigenschaften 1) und 2). Ist auch Eigenschaft 3) erfüllt, nennt man I ein **Daniell-Integral**.

Ein Daniell-Integral besitzt die folgende Daniell-Eigenschaft²

Lemma 3.7. Ist $g_n \in B(X)$ eine monoton wachsende Folge $g_1 \leqslant g_2 \leqslant g_3 \leqslant \cdots$ von Funktionen eines Halbverbandes B(X) mit Werten in \mathbb{R}^+ , und I ein Daniell-Integral auf B(X). Dann gilt

$$B(X) \ni f \leqslant \sup_{n} g_n \implies I(f) \leqslant \sup_{n} I(g_n)$$
.

Beweis. Die monoton wachsende Folge $f_n := \min(f, g_n)$ konvergiert dann punktweise gegen die Funktion $f \in B(X)$ auf X, also $I(f) = \sup I(f_n)$ wegen Eigenschaft 4). Aus der Monotonie folgt $I(f_n) \leq I(g_n)$ wegen $f_n \leq g_n$. Also $\sup_n I(f_n) \leq \sup_n I(g_n)$.

Integrale auf Verbänden. Aus 1) für $\lambda = 0$ folgt $0 \in B(X)$ und aus 1) Additivität folgt I(0) = 0. Ist B(X) sogar ein Verband, dann gilt $f \in B(X) \Rightarrow -f \in B(X)$. Aus 1) folgt dann

$$I(-f) = -I(f) ,$$

und insbesondere ist $I(f) < \infty$ reell. Die Semilinearität von I ist damit auf Verbänden äquivalent zur \mathbb{R} -**Linearität** der Abbildung I. Ist B(X) ein Verband, folgt die Monotonie 2) bereits aus der schwächeren Bedingung $f \geqslant 0 \Longrightarrow I(f) \geqslant 0$, indem man die Hilfsfunktion $g - f \ge 0$ betrachtet.

Lemma 3.8. Sei B(X) ein Verband, der die konstante Funktion $\chi_X(x) = 1$ auf X enthält. Dann gilt für beliebige Integrale

$$\sup_{x \in X} |f(x)| \leqslant C \implies |I(f)| \leqslant C \cdot I(\chi_X)$$

Beweis. Wegen $-C \cdot \chi_X \leqslant f \leqslant C \cdot \chi_X$ liefert die Monotonie von I dann $I(-C \cdot \chi_X) \leqslant I(f) \leqslant I(C \cdot \chi_X)$. Für Verbände gilt $I(-C \cdot \chi_X) = -I(C \cdot \chi_X)$.

Somit ist ein Integral I auf einem Verband mit $\chi_X \in B(X)$ eine **stetige** Funktion in dem Sinne, daß aus der gleichmässigen Konvergenz $f_n \to f$ auf X (im Sinne der Sup-Norm) die Konvergenz der Integrale $I(f_n) \to I(f)$ in $\mathbb R$ folgt.

¹Wir schreiben meist $\sup I(f_n)$ oder $\sup_n I(f_n)$ anstelle von $\sup \{I(f_n) | n \in \mathbb{N}\}$ etc.

²Aus der Daniell-Eigenschaft folgt umgekehrt die Monotonie und die Halbstetigkeit.

3.4 Fortsetzung von Integralen

Lemma 3.9. Sei B(X) ein Halbverband mit Werten in \mathbb{R}^+ und I ein Daniell-Integral³ auf B(X). Dann setzt sich I auf eindeutige Weise zu einem Daniell-Integral I^+ der monotonen Hülle $B^+(X)$ fort

$$\boxed{I^+:B^+(X)\to\mathbb{R}^+}.$$

Beweis. Eindeutigkeit. Für $g \in B^+(X) = B^+$ wähle $g_n \in B(X) = B$ mit $g_n \nearrow g$. Ein Daniell Integral I^+ auf B^+ , das I fortsetzt, ist eindeutig festgelegt durch die Halbstetigkeit

$$I^{+}(g) = \sup I^{+}(g_n) = \sup I(g_n)$$
.

Existenz. Für $g_n \nearrow g$ und $g_n \in B$ definieren wir daher $I^+(g) := \sup I(g_n)$. Dies hängt nicht von der Wahl der Folge $f_n \nearrow g$ mit $f_n \in B$ ab, denn es gilt $I(f_n) \leqslant \sup I(g_n)$ (Lemma 3.7) und damit $\sup I(f_n) \leqslant \sup I(g_n)$ im Limes. Vertauscht man die Rollen von f_n und g_n , folgt $\sup I(f_n) = \sup I(g_n)$. Die Semi-Linearität der Fortsetzung I^+ folgt unmittelbar durch Limesbildung aus der Semilinearität von I.

Monotonie von I^+ : $f \leq g \Longrightarrow I^+(f) \leq I^+(g)$. [Für $f, g \in B^+$ wähle $f_n \nearrow f$ und $f_n \in B$; es folgt $I(f_n) \leq I^+(g)$ (Lemma 3.7) und damit $I^+(f) \leq I^+(g)$ im Limes].

Halbstetigkeit. Gegeben seien $g_n \in B^+$ mit $g_n \nearrow g \in (B^+)^+ = B^+$. Wir behaupten $\sup I^+(g_n) = I^+(g)$. Benutze dazu die Hilfsfolge $G_n \nearrow g$ definiert durch $G_n = \max_{i+j=n} g_{ij} \in B$ wie in Lemma 3.5. Wegen $G_n \leqslant g_n \leqslant g$ gilt $I^+(g) := \sup I(G_n) \leqslant \sup I^+(g_n) \leqslant I^+(g)$. Also $\sup I^+(g_n) = I^+(g)$ (Halbstetigkeit).

Bemerkung. Ist B(X) sogar ein Verband und I ein Daniell-Integral auf B(X), kann man I zu Daniell Integralen $I^+: B^+(X) \to \mathbb{R}^+$ und analog $I^-: B^-(X) \to \mathbb{R}^-$ fortsetzen. Hierbei ist $I^-(h) = \liminf_n I(h_n)$ für $h_n \searrow h$ und $h_n \in B(X)$. Beachte $-h \in B^+(X)$ für $h \in B^-(X)$. Man sieht daher sofort aus der Definition

$$I^{-}(h) = -I^{+}(-h)$$

Sei B(X) ein Verband.

Lemma 3.10. Für h in $B^-(X)$ und g in $B^+(X)$ gilt dann $h \leq g \implies I^-(h) \leq I^+(g)$

Beweis. Wähle $h_n \searrow h$ und $g_n \nearrow g$ mit $h_n, g_n \in B(X)$. Dann ist $f_n := g_n - h_n \in B(X)$ und es gilt $f_n := g_n - h_n \nearrow f := g - h \geqslant 0$. Also $0 \leqslant \sup f_n$ sowie $0 = I(0) \leqslant I^+(f) := \sup_n I(f_n)$ (Lemma 3.7). Aus $I^+(f) = I^+(g) + I^+(-h) = I^+(g) - I^-(h)$ folgt daher $0 \leqslant I^+(g) - I^-(h)$.

 $^{^3}$ oder allgemeine eine semilineare monotone halbstetige Abbildung zwischen zwei Halbverbänden mit Werten in \mathbb{R}^+

3.5 Das mehrdimensionale Standardintegral $\int_X f(x) dx$

In diesem Paragraph sei $X = [a_1, b_1] \times \cdots \times [a_r, b_r]$ ein beschränkter Euklidscher Quader im \mathbb{R}^r . Wir betrachten den Verband T(X) der Treppenfunktionen auf X und definieren das \mathbb{R} -lineare Standardintegral

$$I:T(X)\to\mathbb{R}$$
,

welches die Eigenschaft besitzt, daß für einen beliebigen Teilquader $A = [c_1, d_1] \times \cdots \times [c_r, d_r]$ von X und die zugehörige charakteristische Treppenfunktionen $\chi_A(x)$ gilt

$$I(\chi_A) = \prod_{i=1}^r |c_i - d_i|.$$

Diese Bedingung legt I eindeutig fest, da die χ_A ein Erzeugendensystem des \mathbb{R} -Vektorraums T(X) definieren. Die Existenz von I zeigt man am besten induktiv. Man definiert I als Kompositum von r eindimensionalen Standardintegralen. Wir schreiben $X = X_{r-1} \times [a_r, b_r]$ und setzen

$$I_r(f) = \int_{[a_r,b_r]} f(x_1,..,x_{r-1},t)dt$$

(Integration bezüglich der letzten Variable). Offensichtlich gilt dann $I_r(\chi_{A_r}) = |d_r - c_r| \cdot \chi_{A_{r-1}}$ für Teilquader $A_r = A_{r-1} \times [c_r, d_r]$. Da jede Funktion eine endliche Summe von Treppenfunktionen ist, gilt offensichtlich

$$I_r: T(X) \to T(X_{r-1})$$
.

Nach Abschnitt 3.3 ist das eindimensionale Standardintegral und damit auch I_r semilinear monoton und halbstetig, letzteres wegen Lemma 2.28. Durch Iteration wird das gesuchte r-dimensionale Standardintegral $I=I_1\circ\cdots\circ I_r$ definiert. Als Zusammensetzung \mathbb{R} -linearer, monotoner und halbstetiger Abildungen $I_{\nu}, \nu=1,...,r$ ist es selbst wieder \mathbb{R} -linear, monoton und halbstetig.

Das so definierte $I:T(X)\to\mathbb{R}$ ist ein \mathbb{R} -lineares Daniell Integral auf dem Verband T(X). Aus dem nächsten Korollar folgt, daß es sich auf den Raum CT(X) fortsetzen lässt. (Wir werden den Bereich der integrierbaren Funktionen darüber hinaus noch wesentlich erweitern). Beachte: CT(X) liegt sowohl in beiden Hüllen $T^+(X)$ und $T^-(X)$ nach Lemma 3.9. Aber $T^+(X)$ und $T^-(X)$ sind (im Gegensatz zu CT(X)) keine Verbände, sondern nur Halbverbände. Wir können aber I auf diese Weise zu Integralen I^+ und I^- auf $T^+(X)$ und $T^-(X)$ fortsetzen. Wegen $CT(X) \subset T^\pm(X)$ definiert dies auf CT(X) zwei Integrale I^+ und I^- ; das nächste Korollar zeigt $I^+ = I^-$ auf CT(X). Somit ist das Standardintegrals $I := I_+ = I_-$ auf CT(X) nicht nur semilinear, sondern sogar \mathbb{R} -linear $[I(-f) = I^+(-f) = -I^-(f) = -I(f)]$.

Korollar 3.11. Ein Integral auf CT(X) ist durch seine Werte auf dem Teilraum T(X) eindeutig festgelegt. Mehr noch: Ein gegebenes Integral $I: T(X) \to \mathbb{R}$ mit den Eigenschaften I)-3) auf dem Teilraum $T(X) \subset CT(X)$ der Treppenfunktionen läßt sich auf eindeutige Weise zu einem \mathbb{R} -linearen Integral auf CT(X) fortsetzen.

Beweis. Ist I ein Integral auf CT(X), welches das gegebene I auf T(X) fortsetzt, dann folgt aus der Monotonie des Integrals $I(h_n) \leq I(f) \leq I(g_n)$ und somit im Limes $I^+(f) \leq I(f) \leq I^-(f)$. Die Eindeutigkeit der Fortsetzung folgt somit aus $I^+(f) = I^-(f)$ für $f \in CT(X)$. Wegen $I^+(-f) = -I^-(f)$ folgt aus $I^-(f) = I^+(f)$ auf CT(X) außerdem sofort die \mathbb{R} -Linearität von $I := I^+ = I^-$ auf dem Verband CT(X).

Mit Hilfe von Lemma 2.27 wählt man zum Beweis Funktionen $h_n \in T(X)$, die monoton steigend und gleichmässig auf X gegen ein gegebenes $f \in CT(X)$ konvergiert. Dann gilt per Definition

$$I^+(f) = \lim_{n \to \infty} I(h_n).$$

Ditto existieren Funktionen $g_n \in T(X)$, die monoton fallend und gleichmässig auf X gegen $f \in CT(X)$ konvergieren und per Definition gilt

$$I^-(f) = \lim_{n \to \infty} I(g_n)$$

Die Supremumsnorm $\|g_n-h_n\| \leq \|g_n-f\|+\|f-h_n\|$ geht dann für $n\to\infty$ gegen Null. Daraus folgt $I^+(f)-I^-(f)=\lim I(h_n)-\lim I(g_n)=\lim I(h_n-g_n)=0$ und somit $I^+(f)=I^-(f)$ wegen $|I(h_n-g_n)|\leq I(\chi_X)\cdot\|g_n-h_n\|$. Ein ähnlicher Schluß zeigt die Eindeutigkeit der Fortsetzung.

Diese eindeutige Fortsetzung des Standardintegrals auf den Verband CT(X) nennen wir wieder Standard-Integral. Für $f \in CT(X)$ schreibt man dann auch

$$I(f) = \int_X f(x_1, \dots, x_r) dx_1 \cdots dx_r = \int_X f(x) dx.$$

Weiterhin: Für $f \in CT(X)$ ist $\chi_A \cdot f \in CT(X)$ und es gilt

$$\int_X \chi_A(x) f(x) \ dx_1 \cdots dx_r = \int_A f(x) \ dx_1 \cdots dx_r \ .$$

Diese Aussage ist offensichtlich richtig für Treppenfunktionen f, und gilt daher auch für beliebiges $f \in CT(X)$ durch Limesbildung.

Korollar 3.12. Das Standard-Integral I auf C(X) definiert ein \mathbb{R} -lineares Daniell Integral und lässt sich eindeutig zu Daniell-Integralen I^{\pm} auf den monotonen Hüllen $C^{\pm}(X)$ fortsetzen.

Caveat. Für degenerierte abgeschlossene Quader $A \subseteq X \subseteq \mathbb{R}^r$ gilt $I(\chi_A) = 0$. Mit anderen Worten: Das r-dimensionale Integral verschwindet

$$\int_A dx_1 \dots dx_r = 0.$$

Lemma 3.8 impliziert dann I(f)=0 für die Nullfortsetzung f einer beliebigen stetiger Funktion auf dem degenerierten Quader A

$$A \text{ degeneriert und } f \in C(X) \quad \Longrightarrow \quad \int_A f(x) \ dx_1...dx_r = 0 \ .$$

Translationsinvarianz. Funktionen der Gestalt $g(x) = \chi_A(x) f(x)$ können durch Null fortgesetzt werden zu Funktionen auf ganz \mathbb{R}^n . Ist Q ein beliebiger beschränkter abgeschlossener Quader der A enthält, dann hängt das Standard Integral $\int_Q g(x) dx$ nicht von der Wahl des Quaders Q ab. Man schreibt deshalb auch $I(g) = \int_{\mathbb{R}^n} g(x) dx$. Mit dieser Schreibweise gilt dann

$$\boxed{\int_{\mathbb{R}^n} g(x+x_0)dx = \int_{\mathbb{R}^n} g(x)dx}.$$

Zum Beweis wähle Q so groß, daß Q die Quader A und $A-x_0$ enthält. Dann gilt trivialerweise die Aussage für Treppenfunktionen g mit Träger in A, und durch Limesbildung dann für stetige Funktionen g auf A.

3.6 Der Logarithmus

Für $0 < a \le b$ ist $f(t) = \frac{1}{t}$ eine stetige Funktion auf [a,b] und nach Lemma 3.12 ist das Integral $\int_{[a,b]} \frac{dt}{t}$ erklärt. Dies definiert für $x \ge 1$ den natürlichen **Logarithmus**

$$\log(x) = \int_{[1,x]} \frac{dt}{t} \,.$$

Es gilt $\log(1) = 0$, und wir setzen $\log(x) := -\log(1/x)$ für $x \in (0,1)$. Offensichtlich ist $\log(x) \ge l([1,x])/x = 1 - 1/x > 0$ für alle x > 1. Wir benutzen nun die **elementare Substitutionsregel**

$$\frac{1}{\lambda} \int_{[\lambda a, \lambda b]} f(\frac{t}{\lambda}) dt = \int_{[a,b]} f(t) dt,$$

die für $\lambda>0$ und beliebige Funktionen $f\in CT([a,b])$ gilt. [Wie bei der Translationsinvarianz genügt es mittels Limesbildung diese Aussage für Treppenfunktionen zu beweisen, wo sie evident ist]. Man erhält daraus für $\lambda=y>0$ die Formel $\int \frac{dt}{t}=\int \frac{dt}{t}$. Im Fall $x,y\geq 1$

evident ist]. Man erhält daraus für $\lambda=y>0$ die Formel $\int\limits_{[y,xy]}\frac{dt}{t}=\int\limits_{[1,x]}\frac{dt}{t}$. Im Fall $x,y\geq 1$ kann man diese Beziehung wegen $\int\limits_{[1,y]}\frac{dt}{t}+\int\limits_{[y,xy]}\frac{dt}{t}=\int\limits_{[y,y]}\frac{dt}{t}+\int\limits_{[1,xy]}\frac{dt}{t}=\int\limits_{[1,xy]}\frac{dt}{t}$ wie folgt schreiben

$$\log(x) + \log(y) = \log(xy)$$

Man zeigt ohne Mühe, daß diese Formel für alle x,y>0 gilt. Somit gilt log(b)-log(a)=log(b/a)>0 für alle b>a>0 wegen a/b>1. Es folgt

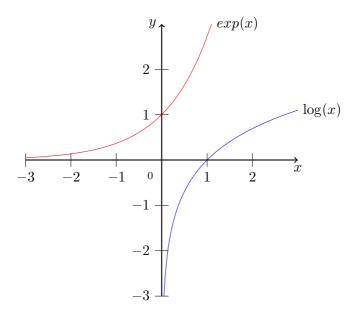
Satz 3.13. Der Logarithmus $\log \colon \mathbb{R}_{>0} \to \mathbb{R}$ ist eine streng monoton wachsende Funktion, und definiert einen Gruppenhomomorphismus von der multiplikativen Gruppe in die additive Gruppe

$$\log \colon (\mathbb{R}_{>0}, \cdot) \to (\mathbb{R}, +).$$

Weiterhin ist nicht schwer einzusehen, daß der Logarithmus sogar einen Isomorphismus

$$(\mathbb{R}_{>0},\cdot)\cong(\mathbb{R},+)$$

definiert. Die Injektivität folgt sofort aus der strengen Monotonie. Der Logarithmus nimmt als nichttrivialer Gruppenhomomorphismus andererseits beliebig große Werte an. Der Logarithmus erfüllt $log(x) - log(y) \leqslant \frac{1}{a}|x-y|$ für $x,y \in [a,b]$ wegen $\max_{t \in [a,b]} (\frac{1}{t}) = \frac{1}{a}$, ist also eine Lipschitz-stetige Funktion. Daher folgt aus dem Zwischenwertsatz, daß jede Zahl ≥ 0 im Bild des Logarithmus ist (und damit sogar jede reelle Zahl, da es sich um einen Gruppenhomomorphismus handelt).



Die dadurch eindeutig bestimmte monotone Umkehrfunktion des Logarithmus ist die **Exponentialfunktion**, die einen bijektiven Gruppenhomomorphismus

$$\exp: (\mathbb{R}, +) \to (\mathbb{R}_{>0}, \cdot)$$

definiert. Also gilt die folgende Funktionalgleichung

$$\exp(x+y) = \exp(x) \cdot \exp(y)$$

für alle reellen Zahlen x, y. Insbesondere $\exp(0) = 1$.

Notation. Für beliebige reelle Zahlen α und x > 0 ist daher

$$x^{\alpha} := \exp(\alpha \cdot log(x))$$

wohldefiniert. Es gilt $(xy)^{\alpha}=x^{\alpha}\cdot y^{\alpha}$ und $x^{\alpha+\beta}=x^{\alpha}\cdot x^{\beta}$ für alle reellen Zahlen x>0 und y>0. Beachte daß für natürliche Zahlen α der Wert x^{α} die übliche Potenz von x ist wegen der Funktionalgleichung der Exponentialfunktion.

4 Differentiation

Eine Teilmenge X von \mathbb{R}^n heisst **zulässig**, wenn für jeden Punkt ξ aus X ein nicht degenerierter abgeschlossener Quader Q existiert mit $\xi \in Q \subset X$.

Eine Teilmenge X im \mathbb{R}^n (oder allgemeiner in einem metrischen Raum) heisst **offen**, wenn für jeden Punkt ξ aus X eine Kugel $B_r(\xi) = \{x \mid d(x,\xi) < r\}$ mit Radius r > 0 existiert mit $\xi \in B_r(\xi) \subset X$. Jede offene Teilmenge von \mathbb{R}^n ist zulässig. Der Durchschnitt von zwei offenen Mengen ist wieder offen. Dies gilt jedoch nicht für zulässige Mengen.

4.1 Das Landausymbol

Wir erklären in diesem Abschnitt, was es bedeuten soll, daß eine Funktion f schneller in einem Punkt ξ gegen Null geht als jede (von Null verschiedene) lineare Funktion. Man schreibt in diesem Fall nach Landau: $f(x) = o(x - \xi)$. Dies soll nun präzise definiert werden.

Sei dazu X eine Teilmenge des Euklidschen Raumes \mathbb{R}^n und sei $\xi \in X$ ein gegebener Punkt. Für eine Funktion

$$f: X \to \mathbb{R}^m$$

schreiben wir

$$f(x) = o(x - \xi),$$

wenn eine Funktion $H:X\to\mathbb{R}^m$ existiert, welche stetig im Punkt ξ ist mit $H(\xi)=0$, so daß gilt

$$f(x) = ||x - \xi||_{\mathbb{R}^n} \cdot H(x).$$

Bemerkung. Man sieht sofort, daß für Funktionen $f_1(x)$ und $f_2(x)$ auf X mit Werten in \mathbb{R}^m gilt: $f_i(x) = o(x - \xi) \Longrightarrow \alpha \cdot f_1(x) + \beta \cdot f_2(x) = o(x - \xi)$ für alle $\alpha, \beta \in \mathbb{R}$.

Lemma 4.1. Sei $X \subset \mathbb{R}^m$ einen zulässige Teilmenge. Sei $L : \mathbb{R}^n \to \mathbb{R}^m$ eine \mathbb{R} -lineare Abbildung und ξ aus X. Gilt $L(x - \xi) = o(x - \xi)$ auf X, dann ist L = 0.

Beweis. ObdA ist X ein Quader. Durch eine Translation des Quaders kann man obdA annehmen $\xi = 0$. Dann gilt es ein H stetig in 0 mot H(0) = 0, so daß für alle $x \in X$ gilt

$$L(x) = ||x|| \cdot H(x)$$

sowie: Für $\varepsilon>0$ existiert $\delta=\delta(\varepsilon)>0$ mit $\|x\|<\delta\Longrightarrow |H(x)|<\varepsilon$. Fixiere nun $x\in X$. Mit x liegt auch x/n im Quader X für alle $n\geqslant 1$ in $\mathbb N$. Da L linear ist, gilt L(x/n)=L(x)/n. Aus $\|x/n\|=\|x\|/n$ folgt daher H(x)=H(x/n). Wählt man n gross genug, ist $\|x/n\|<\delta(\varepsilon)$ und damit $\|H(x/n)\|<\varepsilon$. Also $0\leqslant \|H(x)\|<\varepsilon$. Da dies (bei festem x) für alle $\varepsilon>0$ gilt, folgt $\|H(x)\|=0$. Also H(x)=0.

Dies zeigt L(x) = 0 für alle x aus dem Quader X. Da der Quader eine Basis des Vektorraums \mathbb{R}^n enthält, folgt daraus L = 0.

4.2 Differenzierbarkeit

Sei $X \subset \mathbb{R}^n$ eine zulässige Teilmenge, und sei

$$f: X \to \mathbb{R}^m$$

eine Funktion. Unter diesen Annahmen machen wir die folgende

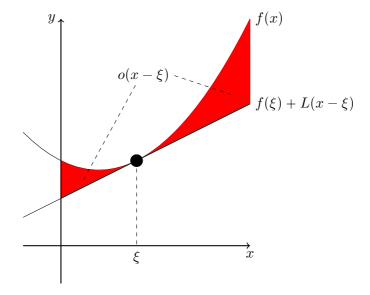
Definition 4.2. f heisst <u>differenzierbar</u> im Punkt $\xi \in X$, wenn es eine \mathbb{R} -lineare Abbildung $L : \mathbb{R}^n \to \mathbb{R}^m$ gibt, so dass gilt (*)

$$f(x) - f(\xi) - L(x - \xi) = o(x - \xi).$$

Die stetige lineare Abbildung $L: \mathbb{R}^n \to \mathbb{R}^m$ ist dann eindeutig bestimmt durch f und ξ , und man nennt L das Differential der Abbildung f im Punkt ξ . Wir schreiben dann

$$Df(\xi) = L$$
.

Ableitung/Tangente im eindimensionalen Fall:



Beweis. Angenommen zwei lineare Abbildungen L_1, L_2 erfüllen Eigenschaft (*). Dann hätte die Differenz $L = L_1 - L_2$ die Eigenschaft $L(x - \xi) = o(x - \xi)$ auf X. Nach Lemma 4.1 folgt daraus L = 0.

Bemerkung. Im Fall m = n = 1 schreibt man üblicher Weise auch

$$Df(\xi) = f'(\xi) = \frac{d}{dx}f(\xi) = \frac{df}{dx}(\xi) .$$

Definition 4.3. Die Funktion $f: X \to \mathbb{R}^m$ heisst differenzierbar, wenn sie in jedem Punkt $\xi \in X$ differenzierbar ist.

Beispiel 4.4. Seien $(\mathbb{R}^n, \|.\|)$, $(\mathbb{R}^m, \|.\|)$ Euklidische Räume und $c \in \mathbb{R}^m$ eine Konstante und $L : \mathbb{R}^n \to \mathbb{R}^m$ eine \mathbb{R} -lineare Abbildung. Dann ist die affin lineare Abbildung f(x) = c + L(x) differenzierbar, und hat in jedem Punkt $\xi \in \mathbb{R}^n$ die Ableitung

$$Df(\xi) = L$$
.

Diese Aussage ist evident, denn $H(x):=f(x)-f(\xi)-L(x-\xi)$ ist nach Annahme identisch Null, also $H(x)=o(x-\xi)$.

Eine Reduktion. Eine Abbildung $f: X \to \mathbb{R}^m$ mit Werten in dem Euklidschen Vektorraum \mathbb{R}^m wird beschrieben durch reellwertige Abbildungen $f_i: X \to \mathbb{R}$ für i=1,...,m (die sogenannten Komponenten von f)

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_{m-1}(x) \\ f_m(x) \end{pmatrix}$$

Lemma 4.5. f(x) ist differenzierbar im Punkt ξ genau dann, wenn jede der Komponenten $f_1(x),...,f_m(x)$ differenzierbar ist im Punkt ξ .

Beweis. Die durch $f(x)-f(\xi)-L(x-\xi)=\|x-\xi\|\cdot H(x)$ definierte vektorwertige Funktion H(x) konvergiert gegen Null für $x\to \xi$ genau dann, wenn ihre Komponenten $H_1(x),...,H_m(x)$ gegen Null konvergieren für $x\to \xi$. Analog ist L stetig und $\mathbb R$ -linear genau dann, wenn alle Komponenten $L_1,..,L_m$ stetige $\mathbb R$ -Linearformen sind.

Lemma 4.6. *Ist* f *differenzierbar im Punkt* ξ , *dann ist* f *stetig im Punkt* ξ .

Beweis. Sowohl $d(x,\xi) = \|x-\xi\|$ als auch H(x) ist stetig im Punkt ξ . Summen und Produkte in ξ stetiger reellwertiger Funktionen sind stetig in ξ . Daher sind die Komponenten der Funktion $f(x) = f(\xi) + L(x-\xi) + \|x-\xi\| \cdot H(x)$ stetig im Punkt ξ . Daher gilt dasselbe auch für f(x) nach Lemma 4.5.

Lemma 4.7 (**Kettenregel**). Seien $X \subseteq \mathbb{R}^n, Y \subseteq \mathbb{R}^m$ nicht degenerierte Quader (oder zulässige Mengen) und sei $Z = \mathbb{R}^k$. Gegeben seien Abbildungen f, g und Punkte $\xi \in X, \eta = f(\xi) \in Y$ mit

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$\xi \stackrel{f}{\longmapsto} \eta$$

Dann gilt: Ist f differenzierbar im Punkt ξ und ist g differenzierbar im Punkt η , dann ist die Zusammensetzung $g \circ f$ differenzierbar im Punkt ξ und es gilt

$$\boxed{D(g \circ f)(\xi) \ = \ Dg(\eta) \circ Df(\xi)} \ .$$

Beweis. Die Differenzierbarkeit von f im Punkt ξ besagt

$$(**) f(x) = f(\xi) + Df(\xi) \cdot (x - \xi) + H(x) \cdot ||x - \xi||$$

für eine Funktion H(x) mit $\lim_{x\to\xi} \|H(x)\| = 0$. Analog gilt:

(*)
$$g(y) = g(\eta) + Dg(\eta) \cdot (y - \eta) + \tilde{H}(y) \cdot ||y - \eta||$$

für eine Funktion $\tilde{H}(y)$ mit $\lim_{y\to\eta} \|\tilde{H}(y)\| = 0$. Durch Einsetzen folgt daraus

$$(g \circ f)(x) = g(f(x)) \stackrel{(*)}{=} g(\eta) + Dg(\eta) \cdot (f(x) - \eta) + \tilde{H}(f(x)) \cdot ||f(x) - \eta||$$

$$\stackrel{(**)}{=} g(\eta) + Dg(\eta) \cdot \left(Df(\xi) \cdot (x - \xi) + H(x) \cdot ||x - \xi|| \right) + \tilde{H}(f(x)) \cdot ||Df(\xi) \cdot (x - \xi) + H(x) \cdot ||x - \xi|||$$

$$= (g \circ f)(\xi) + \left(Dg(\eta) \cdot Df(\xi) \right) \cdot (x - \xi) + H_1(x) \cdot ||x - \xi||$$

mit der Abkürzung

$$H_1(x) = Dg(\eta) \cdot H(x) + \tilde{H}(f(x)) \frac{\|Df(\xi) \cdot (x - \xi) + H(x) \cdot \|x - \xi\|\|}{\|x - \xi\|}.$$

Nach zweimaligem Anwenden der Dreiecksungleichung folgt

$$||H_1(x)|| \le ||Dq(\eta)|| \cdot ||H(x)|| + ||\tilde{H}(f(x))|| \cdot (||Df(\xi)|| + ||H(x)||).$$

Hier wurde auch benutzt $\|L(v)\| \le \|L\|\|v\|$ für $\mathbb R$ -lineare Abbildungen L. Aber f ist stetig im Punkt $x = \xi$ nach Lemma 4.6. Also gilt $\lim_{x \to \xi} \|\tilde{H}(f(x))\| = \lim_{y \to \eta} \|\tilde{H}(y)\| = 0$. Wegen $\lim_{x \to \xi} \|H(x)\| = 0$ folgt daraus $\lim_{x \to \xi} \|H_1(x)\| = 0$. Dies zeigt, daß $g \circ f$ differenzierbar ist im Punkt ξ mit der Ableitung $L = Dg(\eta) \circ Df(\xi)$.

4.3 Die Jacobi-Matrix

Sei $X \subseteq \mathbb{R}^n$ eine zulässige Teilmenge des Euklidschen Raums und

$$f: X \to \mathbb{R}^m$$

eine im Punkt $\xi \in X$ differenzierbare Abbildung.

Für genügend kleines $\varepsilon > 0$ und alle $t \in (-\varepsilon, 0]$ oder $[0, \varepsilon)$ liegt $i_{\nu}(t) = \xi + t \cdot e_{\nu}$ in X (hierbei sei e_{ν} der ν -te Basisvektor). Bezeichne $p_{\mu} : \mathbb{R}^n \to \mathbb{R}$ die Projektion auf die μ -te Koordinate. Die drei Funktionen i_{ν} (affin linear), f und p_{μ} (linear) sind differenzierbar. Nach der Kettenregel ist daher auch die Zusammensetzung

$$p_{\mu} \circ f \circ i_{\nu}(t) = f_{\mu}(\xi_1, ..., \xi_{\nu-1}, \xi_{\nu} + t, \xi_{\nu+1}, ..., \xi_n)$$

eine differenzierbare Funktion, definiert auf einem zulässigen Intervall in $\mathbb R$. Dies zeigt, dass f partiell nach der ν -ten Variable im Punkt ξ abgeleitet werden kann. Mehr noch: Die Kettenregel 4.7 liefert für die Ableitung nach t im Punkt t=0

$$\frac{d}{dt}f_{\mu}(\xi_{1},..,\xi_{\nu-1},\xi_{\nu}+t,\xi_{\nu+1},...,\xi_{n})\Big|_{t=0} = \frac{\partial}{\partial x_{\nu}}f_{\mu}(\xi)$$

den Wert $Di_{\nu}(0) \circ Df(\xi) \circ Dp_{\mu}(\eta)$, also wegen 4.4 die Formel

$$\frac{\partial}{\partial x_{\nu}} f_{\mu}(\xi) = \begin{pmatrix} 0 & \cdots & 1 & \cdots & 0 \end{pmatrix} \cdot Df(\xi) \cdot \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = Df(\xi)_{\nu\mu}.$$

Hierbei fassen wir die lineare Abbildung $Df(\xi)$ als eine $n \times m$ -Matrix auf. Auf der rechten Seite steht dann der Matrixkoeffizient von $Df(\xi)$ an der ν , μ -ten Stelle.

Wir fassen zusammen: Differenzierbarkeit im Punkt ξ impliziert partielle Differenzierbarkeit im Punkt ξ , und die Ableitung $Df(\xi)$ wird durch die Matrix der partiellen Ableitungen (Jacobimatrix) gegeben

$$Df(\xi) = \left(\frac{\partial f_{\mu}}{\partial x_{\nu}}(\xi)\right),$$

für $\nu = 1, ...n$ und $\mu = 1, ..., m$.

In der Situation von Lemma 4.7 schreibt sich die Kettenregel daher auch in der Form

$$\boxed{ \frac{\partial (g \circ f)_{\mu}}{\partial x_{\nu}}(\xi) \ = \ \sum_{\lambda=1}^{m} \frac{\partial g_{\mu}}{\partial y_{\lambda}}(f(\xi)) \cdot \frac{\partial f_{\lambda}}{\partial x_{\nu}}(\xi) } \ .$$

Notation. Wir schreiben oft nur $\partial_{\nu} f$ anstelle von $\frac{\partial}{\partial x_{\nu}} f$.

4.4 Extremwerte

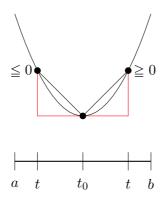
Eine differenzierbare Funktion $h:[a,b] \to \mathbb{R}$ ist stetig und nimmt damit auf dem Intervall [a,b] Minimum und Maximum an (Folgenkompaktheit). Sei

$$t_0 \in (a,b)$$

ein innerer Punkt, in dem h sein Minimum annimmt. Wählt man jetzt eine Folge $t \to t_0$, deren Glieder alle von t_0 verschieden sind, dann impliziert die Differenzierbarkeit

$$\frac{h(t) - h(t_0)}{t - t_0} \longrightarrow h'(t_0) + \lim_{t \to t_0} \left(H(t) \cdot \frac{|t - t_0|}{t - t_0} \right) = h'(t_0).$$

Der Zähler der linken Seite ist nach Annahme nicht negativ. Wählt man eine Folge von Punkten $t \in (0,1)$ für die alle $t-t_0$ positiv sind, folgt daher im Limes $h'(t_0) \ge 0$.



Wählt man eine Folge, deren Glieder $t-t_0$ negativ sind, folgt $h'(t_0) \le 0$. Wegen $t_0 \in (0,1)$ sind beide Möglichkeiten realisierbar, also

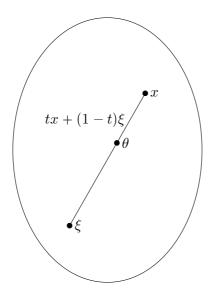
$$h'(t_0) = 0 .$$

Satz 4.8 (Mittelwertsatz). Sei X zulässig im \mathbb{R}^n und $f: X \to \mathbb{R}$ differenzierbar. Seien $x, \xi \in X$ Punkte, für die die Verbindungsgerade $\{tx + (1-t)\xi \mid t \in [0,1]\}$ ganz in X liegt (z.B. wenn X ein Quader ist). Dann gibt einen Punkt $\theta \in X$

$$\theta = tx + (1-t)\xi$$
 , $0 < t < 1$

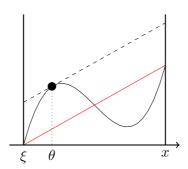
mit der Eigenschaft

$$f(x) - f(\xi) = Df(\theta) \cdot (x - \xi).$$



Beweis. Im Fall von affin lineare Abbildungen f ist die Aussage richtig für alle $\theta \in Q$. Daher kann man eine geeignete affin lineare Abbildung von f subtrahieren und obdA annehmen $f(x) = f(\xi) = 0$.

Wir betrachten $h(t) = f(tx + (1-t)\xi)$. Die Kettenregel liefert $h'(t_0) = Df(\theta) \cdot (x-\xi)$ mit $\theta = t_0x + (1-t_0)\xi$. Dies reduziert uns auf folgende Aufgabe: Für die differenzierbare Funktion $h: [0,1] \to \mathbb{R}$ mit h(0) = h(1) = 0 suche ein $0 < t_0 < 1$ mit $h'(t_0) = 0$. Lösung: Ein Maximum oder Minimum von h in [0,1]. Solche existieren, da h stetig ist und [0,1] folgenkompakt. Ist $h \neq 0$ kann man einen solchen Extremwert t_0 in (0,1) finden.



Folgerung. Gilt $Df(\xi) = 0$ für alle $\xi \in U$ und ist U offen, dann ist f <u>lokalkonstant</u>¹.

Lemma 4.9 (Extremwerte). Sei f eine differenzierbare reellwertige Funktion auf einer offenen Teilmenge U von \mathbb{R}^n . Nimmt f in $\xi \in U$ ein Maximum (analog Minimum) an, dann verschwindet die Jacobimatrix im Punkt ξ

$$f(\xi) = \max_{x \in U} f(x) \implies Df(\xi) = 0$$
.

¹d.h., für jeden Punkt $x \in U$ gibt es eine offene Kugel um x in U, auf der f konstant ist.

Beweis. $x_i = \xi_i$ ist ein Extremwert der eingeschränkten Funktion $f(\xi_1, ..., x_i, ..., \xi_n)$ für festes ξ . Daher gilt $D_i f(\xi_1, ..., \xi_i, ..., \xi_n) = D_i f(\xi) = 0$ für alle i. Das heisst $D f(\xi) = 0$.

Die Umkehrung gilt bekanntlich nicht! Die Funktion $f(x) = x^3$ hat Ableitung Null im Punkt x = 0, obwohl an dieser Stelle kein Extremwert vorliegt. Wenigstens gilt

Lemma 4.10. Sei $h : [0, r] \to \mathbb{R}$ eine zweimal stetig differenzierbare Funktion. Gilt h'(0) = 0 und $h''(\eta) < 0$ für alle $\eta \in (0, r)$, dann gilt h(t) < h(0) für alle $0 < t \le r$.

Beweis. Aus dem Mittelwertsatz folgt die Existenz von Punkten $0 < \eta < \theta < t$ mit $h(t) - h(0) = t \cdot h'(\theta)$ und $h'(\theta) = h'(\theta) - h'(0) = \theta \cdot h''(\eta)$. Letzteres zeigt $h'(\theta) < 0$, und damit folgt h(t) - h(0) < 0.

4.5 Symmetrie der Hessematrix

Sei $U \subseteq \mathbb{R}^n$ zulässig und $f: U \to \mathbb{R}$ sei in $C^2(U)$, d.h. f sei eine zweimal stetig partiell differenzierbare reellwertige Funktion auf U. Damit sei gemeint, daß f zweimal partiell differenzierbar ist auf U in alle Richtungen, und daß diese partiellen Ableitungen stetige Funktionen auf U definieren. Dann ist die **Hessematrix** H(f)(x)

$$H(f)(x) = \left(\frac{\partial^2}{\partial x_i \partial x_j} f(x)\right)$$

als reelle $n \times n$ -Matrix für alle Punkte $x \in U$ definiert. Die Koeffizienten $H(f)_{ij}(x)$ der Hessematrix sind nach Annahme stetige Funktionen auf U.

Satz 4.11. Unter den obigen Annahmen an f und U ist die Hessematrix $H(f)(\xi)$ eine symmetrische reelle $n \times n$ -Matrix. für alle $\xi \in U$.

Beweis. Zum Beweis genügt der Fall einer Funktion in zwei Variablen f(x,y). Angenommen $f_{xy}(\xi) \neq f_{yx}(\xi)$. Dann gibt es aus Stetigkeitsgründen einen nicht degenerierten kleinen Quader Q um den Punkt ξ so daß gilt

$$\partial_x \partial_y f(\theta) \, \neq \, \partial_y \partial_x f(\eta)$$
 für alle $\, \theta, \eta \in Q \,$.

Für $F=f(x_1,x_2)-f(x_1,\xi_2)-f(\xi_1,x_2)+f(\xi_1,\xi_2)$ gilt $F=g(x_1)-g(\xi_1)$, wenn man $g(x)=f(x,x_2)-f(x,\xi_2)$ setzt. Für $x=(x_1,x_2)\in Q$ liefert zweimal Anwenden des Mittelwertsatzes

$$F = (x_1 - \xi_1) \cdot g'(\theta_1) = (x_1 - \xi_1)(x_2 - \xi_2) \cdot \partial_u \partial_x f(\theta_1, \theta_2) .$$

Hierbei weiß man $\theta_1 \in (x_1, \xi_1)$ und $\theta_2 \in (x_2, \xi_2)$. Also $\theta = (\theta_1, \theta_2) \in Q$. Ebenso gilt auch $F = h(x_2) - h(\xi_2)$ für $h(y) = f(x_1, y) - f(\xi_1, y)$. Dies liefert vollkommen analog

$$F = (x_1 - \xi_1)(x_2 - \xi_2) \cdot \partial_x \partial_y f(\eta_1, \eta_2)$$

für ein $\eta = (\eta_1, \eta_2) \in Q$. Offensichtlich ein Widerspruch, da man $x_2 \neq \xi_2$ und $x_1 \neq \xi_1$ wählen kann, und dann die rechten Seiten, die beide F berechnen, verschieden sind!

4.6 Lokale Maxima

Eine <u>symmetrische</u> $n \times n$ -Matrix H mit reellen Koeffizienten H_{ij} heisst <u>positiv definit</u>, und man schreibt H > 0, wenn für alle Vektoren $v = (v_1, ..., v_n) \neq 0$ gilt

$$v'Hv = \sum_{1 \leqslant i,j \leqslant n} v_i v_j H_{ij} > 0.$$

Ist -H positiv definit, nennt man H <u>negativ definit</u> und schreibt H < 0.

Satz 4.12. Sei U zulässig im \mathbb{R}^n . Gilt für $f \in C^2(U)$

$$Df(\xi) = 0$$
 und $H(f)(\xi) < 0 \ (resp. \ H(f)(\xi) > 0)$,

dann ist $f(\xi)$ ein lokales **striktes Maximum (Minimum)** von f. Insbesonder gibt es eine offene Teilmenge V von U, welche ξ enthält, so dass gilt

$$f(\xi) = \max_{x \in V} f(x)$$

(resp. $f(\xi) = \min_{x \in V} f(x)$).

Setze H(x) := H(f)(x), dann gilt unter den Voraussetzungen von Satz 4.12

Lemma 4.13. Ist $H(\xi) < 0$, dann gibt es eine Konstante C > 0 und ein r > 0, so da β für alle x in der offenen Kugel um ξ vom Radius r gilt

$$\boxed{v'H(x)v \leqslant -C\|v\|^2}.$$

Beweis. ObdA genügt es dazu die Menge S aller Vektoren v von der Länge 1 zu betrachten, und x aus einer abgeschlossenen beschränkten Kugel K von positivem Radius v um v. Dann ist v ist v folgenkompakt, und die Aussage folgt aus Satz 2.10, vorausgesetzt v'H(v)v < 0 gilt für alle v ist v ist v is v is v in v is v in v is v in v in

$$v'_m H(x_m) v_m \geqslant 0$$
.

Da die Einheitskugel S abgeschlossen und beschränkt und damit folgenkompakt ist, kann man durch Übergang zu einer Teilfolge annehmen $v_m \to v$ für einen Vektor v der Länge 1. Daraus folgt im Limes $m \to \infty$

$$v'H(\xi)v \geqslant 0$$
 , $v \neq 0$

im Widerspruch zur Annahme.

Wir kommen zum Beweis des Satzes 4.12

Beweis. Sei $v \in S$ und $h(t) = f(\xi + tv)$ für $0 \le t \le r$. Aus $h'(t) = \sum_{i=1}^{n} v_i \partial_i f(\xi + tv)$ und $Df(\xi) = 0$ folgt dann h'(0) = 0. Weiteres Anwenden der Kettenregel zeigt

$$h''(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} v_i v_j \partial_j \partial_i f(\xi + tv) = v' H(f)(\xi + tv) v.$$

Aus Lemma 4.13 folgt h''(t) < 0 für $v \in S$ und alle $t \in (0, r)$. Der Satz folgt damit aus Lemma 4.10.

4.7 Der Hauptsatz

Satz 4.14. Sei $f:[a,b] \to \mathbb{R}$ eine <u>stetige</u> Funktion und sei a < b. Dann ist die Funktion

$$F(x) = \int_a^x f(t)dt := I(\chi_{[a,x]} \cdot f)$$

eine <u>differenzierbare</u> Funktion auf dem Intervall [a, b], und es gilt

$$\boxed{F'(x) = f(x)}.$$

Jede andere differenzierbare Funktion G(x) auf [a,b] mit der Eigenschaft G'(x) = f(x) (eine solche Funktion nennt man **Stammfunktion** von f) unterscheidet sich von F(x) um eine reelle Konstante C.

Beweis. Sei $\xi \in [a,b]$ beliebig. Für $h(x) = F(x) - F(\xi) - f(\xi) \cdot (x - \xi)$ ist $h(x) = o(x - \xi)$ zu zeigen. Dazu genügt, daß für jedes $\varepsilon > 0$ ein $\delta > 0$ existiert mit der Eigenschaft $|h(x)| < |x - \xi| \varepsilon$ für alle x mit $|x - \xi| < \delta$. Dabei können wir h(x) durch -h(x) ersetzen. Die stetige Funktion f(x) ist gleichmässig stetig auf dem folgenkompakten Raum [a,b]. Also gilt $\sup_{t \in [\varepsilon,x]} |f(t) - f(\xi)| < \varepsilon$ für alle $|x - \xi| < \delta = \delta(\varepsilon)$ mit $x \in [a,b]$.

Für $x \ge \xi$ gilt $\chi_{[a,\xi]} + \chi_{[\xi,x]} = \chi_{[\xi,\xi]} + \chi_{[a,x]}$, und somit

$$h(x) = I\left(\chi_{[a,x]} \cdot f\right) - I\left(\chi_{[a,\xi]} \cdot f\right) - I\left(\chi_{[\xi,x]} \cdot f(\xi)\right) = I\left(\chi_{[\xi,x]} \cdot (f - f(\xi))\right)$$

$$\leq |x - \xi| \sup_{t \in [\xi,x]} |f(t) - f(\xi)| < |x - \xi|\varepsilon$$

 $f\ddot{u}r |x - \xi| < \delta.$

Für $x\leqslant \xi$ gilt $\chi_{[a,x]}+\chi_{[x,\xi]}=\chi_{[x,x]}+\chi_{[a,\xi]}$, und man zeigt analog $-h(x)=I\big(\chi_{[x,\xi]}\cdot (f-f(\xi))\big)$ mit demselben Ergebnis $|h(x)|<|x-\xi|\varepsilon$ für $|x-\xi|<\delta=\delta(\varepsilon)$. Damit ist die erste Behauptung gezeigt. Der Zusatz folgt aus dem Mittelwertsatz. Die Ableitung der Funktion F(x)-G(x) ist Null auf ganz [a,b]. Nach dem Mittelwertsatz ist daher F(x)-G(x) konstant auf [a,b].

Konvention. Man definiert ganz allgemein für eine stetige Funktion $f:[a,b] \to \mathbb{R}$ und beliebige $x,y \in [a,b]$ das *orientierte* Integral

$$\int_{x}^{y} f(t)dt$$

durch $I(\chi_{[x,y]}f)$, wenn $x \leq y$ gilt, bzw. durch $-I(\chi_{[y,x]}f)$, wenn $y \leq x$ gilt. Mit dieser Konvention gilt dann (wegen des Hauptsatzes) für jede Stammfunktion G von f auf [a,b] die Formel

$$\boxed{\int_x^y f(t)dt = G(y) - G(x)}.$$

Folgerung. $\log(x) = \int_1^x \frac{dt}{t}$ ist differenzierbar² auf $\mathbb{R}_{>0}$ mit Ableitung $\frac{1}{x}$.

4.8 Differentialgleichungen

Gegeben sei eine stetige Funktion h(x, y)

$$h: [a,b] \times \mathbb{R}^N \longrightarrow \mathbb{R}^N$$
,

welche von den Variablen $x \in [a,b]$ und $y \in \mathbb{R}^N$ abhängt. Gesucht ist eine differenzierbare Funktion $f:[a,b] \to \mathbb{R}^N$ mit der Eigenschaft

$$f'(x) = h(x, f(x))$$
 und $f(x_0) = y_0$

für gegebenes $x_0 \in [a, b]$ und $y_0 \in \mathbb{R}^N$. Hierbei bezeichne f'(x) die komponentenweise Ableitung nach x.

Satz 4.15 (Picard). Sei h(x,y) ausserdem Lipschitz-stetig in der Variable y mit einer nicht von x abhängigen Lipschitzkonstante M. Dann existiert auf dem Intervall [a,b] eine <u>eindeutig</u> bestimmte Lösung $f(x) \in C^1([a,b],\mathbb{R}^N)$ der Differentialgleichung f'(x) = h(x,f(x)) zu gegebenem <u>Anfangswert</u> $f(x_0) = y_0$.

Nach Annahme gilt die Lipschitz-Stetigkeit $||h(x,y_1) - h(x,y_2)||_{\mathbb{R}^N} \le M \cdot ||y_1 - y_2||_{\mathbb{R}^N}$ für eine Lipschitz-Konstante M, welche nicht (!) von der Variable $x \in [a,b]$ abhängt.

Beweis. Die <u>Differentialgleichung</u> mit Anfangsbedingung ist wegen dem Hauptsatz 4.14 äquivalent zu einer <u>Integralgleichung</u>:

$$\begin{cases} f(x) \text{ ist differenzierbar auf } [a,b] \\ f'(x) = h(x,f(x)), \ f(x_0) = y_0 \end{cases} \iff \begin{cases} f(x) \text{ ist stetig auf } [a,b] \\ f(x) = y_0 + \int\limits_{x_0}^x h(t,f(t)) \ dt \end{cases}$$

Beweis der Äquivalenz von rechts nach links. Nach Annahme sind h(t,y) und f(t), und daher auch h(t,f(t)), stetig. Das vektorwertige Integral $F(x)=\int_{x_0}^x h(t,f(t))\ dt$ ist komponentenweise definiert und alle Komponenten sind in der Variable x differenzierbare Funktionen (Hauptsatz), und für den Vektor der Ableitungen gilt F'(x)=h(x,f(x)). Aus $f(x)=y_0+F(x)$ folgt daher durch Ableiten f'(x)=h(x,f(x)). Für $x=x_0$ gilt $f(x_0)=y_0$ wegen $F(x_0)=0$.

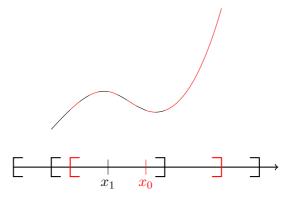
²Wegen der Kettenregel gilt daher $\lim_{x\to 0}\log(1+yx)/x=\lim_{x\to 0}\frac{\log(1+yx)-0}{x-0}=\log(1+yx)'|_{x=0}=y.$ Anwenden der stetigen Funktion \exp für $x_n=\frac{1}{n}$ liefert die Formel $\lim_{n\to\infty}(1+\frac{y}{n})^n=e^y.$

Beweis der Äquivalenz von links nach rechts. Ist f(x) differenzierbar, dann ist f(x) auch stetig. Aus dem Hauptsatz folgt andererseits

$$f(x) - f(x_0) = \int_{x_0}^x f'(t)dt = \int_{x_0}^x h(t, f(t)) dt.$$

Es genügt also die entsprechende Integralgleichung auf [a,b] zu lösen. Wir lösen die Integralgleichung und damit die Differentialgleichung zuerst *lokal* auf Teilintervallen der Länge $<\frac{1}{M_A/N}$.

Verheftung. Angenommen die Lösung der Differential-(oder Integral)gleichung existiert und ist lokal eindeutig auf jedem Teilintervall von [a,b] der Länge $<\frac{1}{M\cdot\sqrt{N}}$. Man überdeckt dann das Intervall [a,b] durch überlappende Teilintervalle der Länge $<\frac{1}{M\sqrt{N}}$, wählt Hilfspunkte x_i in den Überlappungen und wendet das lokale Resultat sukzessive für alle Hilfspunkte x_i an. Dies reduziert den allgemeinen Fall auf den



Beweis der lokalen Version. Der Raum $X=C([a,b],\mathbb{R}^N)$ aller stetigen \mathbb{R}^N -wertigen Funktionen ist, versehen mit der Supremums-Norm, ein <u>vollständiger</u> metrischer Raum. Dies zeigt man wie in Satz 2.24. Die Abbildung $F:X\to X$

$$F(f)(x) = y_0 + \int_{x_0}^{x} h(t, f(t)) dt$$

ist wohldefiniert, denn für stetiges $f:[a,b]\to\mathbb{R}^N$ ist $F(f):[a,b]\to\mathbb{R}^N$ auch stetig, sogar komponentenweise differenzierbar. Die Lösung unserer (lokalen) Integralgleichung ist äquivalent zu der Fixpunktgleichung

$$\boxed{F(f) = f \quad , \quad f \in X}$$

Unsere Behauptung (lokale Existenz und Eindeutigkeit) ergibt sich daher sofort aus dem Banachschen Fixpunktsatz, denn im Fall $l([a,b]) < \frac{1}{M\sqrt{N}}$ ist $F: X \to X$ kontraktiv

$$d_X(F(f), F(g)) = d_X \left(y_0 + \int_{x_0}^x h(t, f(t)) dt, y_0 + \int_{x_0}^x h(t, g(t)) dt \right)$$

$$\overset{\text{Def.}}{=} \sup_{x \in [a,b]} \left\| \int_{x_0}^x \left(h(t,f(t)) - h(t,g(t)) \right) dt \right\|_{\mathbb{R}^N}$$

und Abschätzen des vektorwertigen Integrals (siehe Seite 13) liefert für $\kappa = |b-a|M\sqrt{N}$

$$d_X(F(f), F(g)) \leq |b - a| \cdot \sqrt{N} \cdot \sup_{t \in [a,b]} ||h(t, f(t)) - h(t, g(t))||_{\mathbb{R}^N}$$

$$\leqslant \|b-a|M\sqrt{N} \cdot \sup_{t \in [a,b]} \|f(t)-g(t)\|_{\mathbb{R}^N} \ = \ \kappa \cdot d_X(f,g) \ .$$

Wegen $|b-a|<\frac{1}{M\cdot\sqrt{N}}$ folgt $\kappa<1$ wie gewünscht.

Beispiel 4.16. Ist h(x, y) linear in y

$$h(x,y) = A(x) \cdot y + b(x)$$

mit einer $N \times N$ -Matrix A(x) und einem Vektor b(x), welche stetig von x abhängen, dann sind die Voraussetzungen des Satzes von Picard erfüllt. [Benutze Satz 2.10 und den Beweis von Beispiel 2.2 (3).]

Beispiel 4.17. Um Differentialgleichungen vom Typ

$$g^{(n)}(x) = H(x, g(x), ..., g^{(n-1)}(x))$$

mit der Anfangswertbedingung $g(x_0)=\eta_0,\cdots,g^{(n-1)}(x_0)=\eta_{n-1}$ zu behandeln, definiert man die <u>vektorwertige</u> Hilfsfunktion

$$f(x) = \begin{pmatrix} g(x) \\ g'(x) \\ \dots \\ g^{(n-1)}(x) \end{pmatrix}$$

und erhält eine äquivalente Differentialgleichung

$$f'(x) = h(x, f(x))$$
 , $f(x_0) = y_0$

wobei $h: [a,b] \times \mathbb{R}^n \to \mathbb{R}^n$ definiert ist durch

$$(x, y_1, \dots, y_n) \mapsto (y_2, \dots, y_{n-1}, H(x, y_1, \dots, y_{n-1}))$$

und $y_0 = (\eta_0, ..., \eta_{n-1}).$

Kombiniert man die letzten beiden Beispiele erhält man folgende Aussage über lineare Differentialgleichungen auf einem Intervall [a, b] mit a < b.

Satz 4.18. Seien $a_0(x), ..., a_n(x)$ stetige reellwertige Funktionen auf [a, b]. Seien $x_0 \in [a, b]$ und $\eta_0, ..., \eta_{n-1} \in \mathbb{R}$ gegeben. Dann besitzt die lineare Differentialgleichung

(*)
$$g^{(n)}(x) + a_1(x) \cdot g^{(n-1)}(x) + \dots + a_{n-1}(x) \cdot g'(x) + a_n(x) \cdot g(x) = a_0(x)$$

mit gegebenen Anfangsbedingungen

$$g(x_0) = \eta_0 , \dots , g^{(n-1)}(x_0) = \eta_{n-1}$$

eine eindeutige Lösung $g:[a,b] \to \mathbb{R}$, welche n-mal stetig differenzierbar ist auf [a,b].

Beweis. Die Methode von Beispiel 4.17 führt auf eine vektorwertige lineare Differentialgleichung $f'(x) = A(x) \cdot f(x) + b(x)$ wie in Beispiel 4.16, hier für die Funktion

$$A(x) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -a_n(x) & -a_{n-1}(x) & \dots & -a_2(x) & -a_1(x) \end{pmatrix}$$

Die Koordinaten des Vektors b(x) sind Null bis auf den letzten Eintrag $b_n(x) = a_0(x)$.

Ist b(x)=0 oder äquivalent dazu $a_0(x)=0$, nennt man die Differentialgleichung **homogen**. Die Lösungen einer homogen linearen Differentialgleichung wie in Satz 4.18 bilden einen reellen Vektorraum V von Funktionen, wenn man die Forderung von Anfangswertbedingungen weglässt. Denn für Lösungen g(x) und $\tilde{g}(x)$ und beliebige reelle Konstanten α, β ist auch $\alpha \cdot g(x) + \beta \cdot \tilde{g}(x)$ eine Lösung, wie man sofort sieht.

Satz 4.19. *Der Raum V aller Lösungen einer homogenen Differentialgleichung vom Typ* (*) *ist ein endlich dimensionaler* \mathbb{R} *-Vektorraum der Dimension* n.

Beweis. Wähle $x_0 \in [a, b]$. Die Abbildung

$$ev_{x_0}: V \to \mathbb{R}^n , g \mapsto (g(x_0), ..., g^{(n-1)}(x_0))$$

ist injektiv (Eindeutigkeitsaussage von Satz 4.18) und surjektiv (Existenzaussage von Satz 4.18), also ein ℝ-linearer Isomorphismus von ℝ-Vektorräumen.

Beispiel 4.20 (Sinus und Cosinus). Wir definieren $\sin(x)$ resp. $\cos(x)$ als die eindeutig bestimmten (zweimal stetig differenzierbaren) Funktionen auf \mathbb{R} , welche in dem zweidimensionalen \mathbb{R} -Vektorraum V der Lösungen der homogenen Differentialgleichung

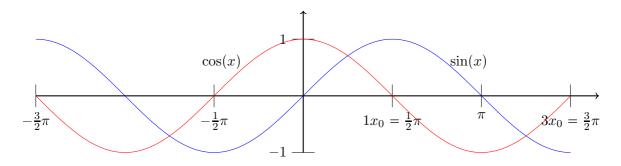
$$a''(x) + a(x) = 0$$

liegen und die Anfangswertbedingungen g(0)=0, g'(0)=1 resp. g(0)=1, g'(0)=0 erfüllen. Wegen $g\in V\Longrightarrow g'\in V$ gilt $\sin(x)'=\cos(x)$ und $\cos(x)'=-\sin(x)$, und somit durch Ableiten $\sin(x)^2+\cos(x)^2=1$.

Für $g \in V$ gilt $g(x) = g(0) \cdot \cos(x) + g'(0) \cdot \sin(x)$. Wegen $g(x) \in V \Longrightarrow g(x + x_0) \in V$ folgt $\cos(x + x_0) = \cos(x_0)\cos(x) - \sin(x_0)\sin(x)$ und $\sin(x + x_0) = \sin(x_0)\cos(x) + \cos(x_0)\sin(x)$ und somit

Lemma 4.21 (Additionstheorem). Für $e(x) := \cos(x) + i \cdot \sin(x)$ in \mathbb{C} gilt

$$e(x+x_0) = e(x) \cdot e(x_0)$$



Der Kern K des Homomorphismus $e: \mathbb{R} \to \{z \in \mathbb{C} \mid |z| = 1\}$ ist eine Untergruppe der additiven Gruppe von \mathbb{R} und es gilt

$$K = 2\pi \cdot \mathbb{Z}$$

für eine reelle Zahl $2\pi > 0$. Die Funktionen $\sin(x)$ und $\cos(x)$ sind daher periodisch mit Periode 2π .

Beweis. Wegen $\cos(0)=1$ existiert aus Stetigkeitsgründen ein $\delta>0$ mit $\cos(x)>0$ auf $I=(0,\delta)$. Für $0\leqslant x_1< x_2\leqslant \delta$ ist nach dem Mittelwertsatz die Funktion $\sin(x)$ dann streng monoton steigend auf I wegen $\sin(x_2)-\sin(x_1)=(x_2-x_1)\cdot\cos(\theta)>0$. Also $K\cap I=\varnothing$. Daraus folgt, K ist entweder Null oder von $\inf(K\cap\mathbb{R}_{>0})$ erzeugt als Gruppe. Wir zeigen $K\neq 0$. Dazu genügt die Existenz einer Nullstelle $x_0>0$ der Funktion $\cos(x)$ [wegen $\sin(x_0)=\pm 1$, somit $e(x_0)=\pm i$ und $e(4x_0)=1$. Also $4x_0\in K$.]

Zur Existenz von x_0 . Wäre $\cos(x)>0$ für alle x>0, dann wäre nach dem Mittelwert-satz $\sin(x)$ monoton steigend auf $(0,\infty)$ (> 0 und nach oben beschränkt durch 1) und wegen $\cos(x)^2+\sin(x)^2=1$ damit $\cos(x)$ monoton fallend und nach unten beschränkt durch 0. Wegen Satz 1.27 existiert dann der Limes $\zeta=\lim_{n\to\infty}e(n)$ und es gilt $\zeta\notin\mathbb{R}$. Wegen Lemma 4.21 wäre aber andererseits $\zeta=\zeta\cdot\zeta$, also $\zeta=0,1$. Ein Widerspruch! Also nimmt $\cos(x)$ im Bereich $\mathbb{R}_{>0}$ nicht positive Werte an. Folglich existiert (Zwischenwertsatz!) eine kleinste Nullstelle $x_0>0$ von $\cos(x)$ (Infimimum!).

4.9 Stetig partiell differenzierbare Funktionen

Sei $U \subseteq \mathbb{R}^n$ eine offene Teilmenge und sei

$$f: U \to \mathbb{R}^m$$

in $C^1(U,\mathbb{R}^m)$, d.h. eine auf U stetig partiell differenzierbare Funktion.

Lemma 4.22. Ist $f: U \to \mathbb{R}^m$ eine stetig partiell differenzierbare Funktion, dann ist f differenzierbar auf U.

Beweis. Wegen Lemma 4.5 können wir annehmen m=1. Für festes $\xi \in U$ und alle x nahe genug bei ξ ist die folgende Umformung wohldefiniert

$$f(x) - f(\xi) = [f(x_1, ..., x_n) - f(\xi_1, x_2, ..., x_n)] + [f(\xi_1, x_2, ..., x_n) - f(\xi_1, \xi_2, x_3, ..., x_n)] + ... + [f(\xi_1, ..., \xi_{n-1}, x_n) - f(\xi_1, \xi_2, ..., \xi_n)].$$

Betrachtet man die Funktion in der i-ten Klammer als Funktion der Variable x_i bei festgehaltenen anderen Variablen ergibt der eindimensionale Mittelwertsatz 4.8.

$$f(x) - f(\xi) = \sum_{i=1}^{n} (x_i - \xi_i) \cdot \frac{\partial}{\partial x_i} f(\xi_1, ..., \xi_{i-1}, \theta_i, x_{i+1}, ..., x_n)$$

für gewisse θ_i zwischen x_i und ξ_i . Es folgt daher

$$f(x) - f(\xi) - \sum_{i=1}^{n} (x_i - \xi_i) \cdot \frac{\partial}{\partial x_i} f(\xi) = o(x - \xi) ,$$

denn rechts steht $\sum_i (x_i - \xi_i) \cdot \left[\frac{\partial}{\partial x_i} f(\xi_1, ..., \xi_{i-1}, \theta_i, x_{i+1}, ..., x_n) - \frac{\partial}{\partial x_i} f(\xi) \right]$ und es gilt $|x_i - \xi_i| \le \|x - \xi\|$ sowie

$$\lim_{x \to \xi} \left| \frac{\partial}{\partial x_i} f(\xi_1, ..., \xi_{i-1}, \theta_i, x_{i+1}, ..., x_n) - \frac{\partial}{\partial x_i} f(\xi) \right| = 0,$$

weil die partiellen Ableitungen $\frac{\partial}{\partial x_i} f$ stetig im Punkt ξ sind. Beachte $x \to \xi$ impliziert $\theta_i \to \xi_i$. Also ist f differenzierbar im Punkt ξ .

Lemma 4.23 (Kritische Punkte). Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^m$ stetig partiell differenzierbar auf U. Gilt $Df(\xi) = 0$ für ein $\xi \in U$, dann existiert für jedes $\varepsilon > 0$ ein $\delta > 0$, so dass gilt (für die Kugelnorm oder die Quadernorm)

$$||x - \xi|| < \delta$$
, $||y - \xi|| < \delta$ \Longrightarrow $||f(x) - f(y)|| < \varepsilon \cdot ||x - y||$.

Beweis. ObdA ist m=1. Wähle $\delta>0$ so klein, daß die Kugel vom Radius δ um ξ ganz in U enthalten ist. Aus dem Zwischenwertsatz sowie der Kettenregel folgt dann

$$|f(x) - f(y)| = ||Df(\theta) \cdot (x - y)|| \le n \sup_{i} |\frac{\partial}{\partial x_i} f(\theta)|||x - y||$$

für alle x,y aus dieser Kugel, da die Verbindungsgerade zwischen x und y dann auch in dieser Kugel liegt. Aus der Annahme $\frac{\partial}{\partial x_1}f(\xi)=\cdots=\frac{\partial}{\partial x_n}f(\xi)=0$ und der Stetigkeit der partiellen Ableitungen im Punkt ξ folgt aber $n|\frac{\partial}{\partial x_i}f(\theta)|<\varepsilon$ für alle θ mit $\|\theta-\xi\|<\delta$, wenn $\delta>0$ genügend klein gewählt wird.

4.10 Der Umkehrsatz

Sei U offen in \mathbb{R}^n und sei

$$f:U\to\mathbb{R}^n$$

eine stetig partiell differenzierbare, also differenzierbare Funktion auf U. Beachte n=m. In jedem Punkt $\xi \in U$ ist daher die Jacobimatrix eine $n \times n$ -Matrix. Der folgende Satz zeigt, dass die Invertierbarkeit der Jacobimatrix $Df(\xi)$ im Punkt ξ eine hinreichende Bedingung für die Existenz einer lokalen Umkehrfunktion von f in der Nähe von ξ resp. $f(\xi)$ ist:

Satz 4.24. Für ξ_0 in U gibt es eine offene Teilmenge V von U, welche ξ_0 enthält, für die f eingeschränkt auf V eine <u>bijektive</u> Abbildung von V auf W = f(V) definiert, so dass gilt

$$W = f(V) \subseteq \mathbb{R}^n \text{ ist } \underline{\text{offen}}$$
.

Weiterhin: Die lokale Umkehrfunktion

$$f^{-1}: W \to V$$

ist stetig partiell differenzierbar, also differenzierbar auf W = f(V).

Beispiel. Sei $U=(0,\infty)$ und $f(x)=\log(x)$. Dann ist f'(x)=1/x eine stetige Funktion auf U, und die Voraussetzungen des Umkehrsatzes sind erfüllt. Daher ist die Umkehrfunktion exp des Logarithmus eine differenzierbare Funktion. Aus $log(\exp(x)) = x$ und der Kettenregel folgt $\log'(\exp(x)) \cdot \exp(x)' = x' = 1$. Also $\exp(x)' = \exp(x)$. Dies zeigt³

Korollar 4.25. Die Exponentialfunktion $\exp: \mathbb{R} \to \mathbb{R}$ ist eine (unendlich oft) differenzierbare Funktion mit der Ableitung

$$\exp(x)' = \exp(x) .$$

Bemerkung. Dass die Invertierbarkeit von $Df(\xi)$ im Umkehrsatz andererseits eine <u>notwendige</u> Bedingung für die Existenz einer differenzierbaren lokalen Umkehrfunktion $g=f^{-1}$ in der Nähe von ξ ist, folgt sofort aus der Kettenregel: $g\circ f=id$ impliziert ganz allgemein $Dg(\eta)\circ Df(\xi)=D(id)(\xi)=id$ für $\eta=f(\xi)$. Somit ist $Dg(\eta)$ die zu $Df(\xi)$ inverse Matrix.

Beweis. Wir geben zuerst den Beweis im Spezialfall $\xi_0 = f(\xi_0) = 0$ und $Df(\xi_0) = id$. Die Hilfsfunktion $F = F_{\eta}$:

$$F(x) = x - f(x) + \eta$$

hat für gegebenes konstantes $\eta \in \mathbb{R}^n$ verschwindende Ableitung im Punkt ξ . Für $\varepsilon=1/2$ gilt dann nach Lemma 4.23 für alle x,y vom Abstand kleiner $\delta=\delta(1/2)>0$ zu $\xi_0=0$

$$||F(x) - F(y)|| < \frac{1}{2}||x - y||$$
.

³Es folgt $(x^{\alpha})' = \alpha \cdot x^{\alpha-1}$ wegen $\exp(\alpha \cdot \log(x))' = \exp(\alpha \cdot \log(x)) \cdot \frac{\alpha}{x}$ sowie $\frac{1}{x} = \exp(-\log(x))$.

 $Der \ vollst \ddot{a}ndige \ Raum \ X$. Wir wählen eine $\underline{abgeschlossene}$ Kugel $^4 \ X$ um $\xi_0 = 0$ vom Radius r für ein $0 < r < \delta$. Dann ist $F: X \to \mathbb{R}^N$ eine Lipschitz-stetige Abbildung mit Lipschitzkonstante $\frac{1}{2}$.

Bedingung an η . $F(0) = \eta$ und $||F(x)|| \le ||F(x) - F(0)|| + ||F(0)|| \le \frac{1}{2}||x|| + ||\eta||$ impliziert für $x \in X$ (d.h. $||x|| \le r$) sowie gleichzeitig für

$$\|\eta\| < r/2$$

die Ungleichung $||F(x)|| \le r$, oder anders ausgedrückt

$$F:X\to X$$
.

Fixpunktsatz. Der Fixpunktsatz von Banach liefert daher einen <u>eindeutig</u> bestimmten Fixpunkt $\xi \in X$ der kontraktiven Abbildung $F: X \to X$. Beachte $F(\xi) = \xi$ ist äquivalent zu $f(\xi) = \eta$. Mit anderen Worten $\xi = f^{-1}(\eta)$:

$$\exists ! \ \xi \in X \ \ \mathrm{mit} \ f(\xi) = \eta \ , \ \mathrm{falls} \ \ \|\eta\| < r/2 \ .$$

Konstruktion von V. Sei $W = B_{r/2}(0)$ die offene Kugel um Null aller $\eta \in \mathbb{R}^n$ mit $\|\eta\| < r/2$. Da $W \subseteq \mathbb{R}^n$ offen und f stetig ist, ist das Urbild $f^{-1}(W)$ offen in \mathbb{R}^n (benutze Lemma 4.6 und Satz 2.12). Für $V = f^{-1}(W) \cap X$ gilt wie bereits gezeigt

$$\boxed{f:\ V\ \cong\ f(V)=W}\ .$$

Kontroll-Abschätzungen. Die Kontraktivität $||F(x) - F(y)|| < \frac{1}{2}||x - y||$ von F auf X liefert für $x, y \in X$ mit Hilfe der unteren und oberen Dreiecksungleichung⁵ (s. Seite 6)

$$\boxed{\frac{1}{2}\|x-y\| < \|f(x)-f(y)\| < \frac{3}{2}\|x-y\|}.$$

V ist offen. $\xi \in V \Longrightarrow \eta = f(\xi) \in W$. Aus der unteren Kontroll-Abschätzung von f folgt für $x = \xi, y = 0$ dann $\frac{1}{2} \|\xi\| < \|\eta\|$. Andererseits $\|\eta\| < \frac{r}{2}$. Somit $\|\xi\| < r$. Also liegt ξ bereits in der offenen Kugel $X^0 \subset X$ vom Radius r um Null. Daher ist $V = f^{-1}(W) \cap X = f^{-1}(W) \cap X^0$ als Durchschnitt zweier offener Mengen selbst offen.

Stetigkeit von $f^{-1}: W \to V$. Eine unmittelbare Konsequenz von

$$\frac{1}{2} \|f^{-1}(\eta_1) - f^{-1}(\eta_2)\| < \|\eta_1 - \eta_2\|.$$

Dies gilt für alle $\eta_1, \eta_2 \in W$ wegen der linken Kontrollabschätzung

⁴Dies ist eine abgeschlossene Teilmenge des \mathbb{R}^n , also versehen mit der Euklidschen Metrik nach 2.8 ein vollständiger metrischer Raum.

 $^{^5\}mathrm{Benutze} \ \|u\| - \|v\| \leqslant \|u + v\| \leqslant \|u\| + \|v\| \ \mathrm{für} \ u = x - y \ \mathrm{und} \ v = F(y) - F(x) \ \mathrm{und} \ u + v = f(y) - f(x).$

Differenzierbarkeit von f^{-1} im Punkt 0. Für $\eta \neq 0 \iff f^{-1}(\eta) = \xi \neq 0$ gilt

$$\frac{\|f^{-1}(\eta) - f^{-1}(0) - id(\eta - 0)\|}{\|\eta - 0\|} = \frac{\|f^{-1}(\eta) - \eta\|}{\|\eta\|} = \frac{\|\xi - f(\xi)\|}{\|f(\xi)\|}$$
$$= \frac{\|\xi\|}{\|f(\xi)\|} \cdot \frac{\|f(\xi) - f(0) - id(\xi - 0)\|}{\|\xi - 0\|}$$

Da f nach 4.6 stetig auf V ist, und f^{-1} stetig auf W ist, sind $\xi \to 0$ und $\eta = f(\xi) \to 0$ zueinander äquivalent. Da rechts der Limes $\xi \to 0$ existiert und Null ist (f ist differenzierbar im Punkt $\xi = 0$ mit der Ableitung id, und der Faktor $\|\xi\|/\|f(\xi)\|$ kann durch 2 abgeschätzt werden wegen der Kontrollabschätzungen) existiert der Limes $\eta \to 0$ links, und ist auch Null. Somit ist f^{-1} differenzierbar im Punkt $\eta = 0$ mit der Ableitung $Df^{-1}(0) = id$.

Differenzierbarkeit von f^{-1} auf W. Hierzu nehmen wir an, dass der Radius r obdA so klein gewählt wurde, dass für alle $\xi \in X$ und damit für alle $\xi \in V$ die Ableitung von f im Punkt ξ invertierbar ist. Dann zeigt unser vorheriges Argument die Differenzierbarkeit von f^{-1} in allen Punkten $\eta = f(\xi) \in W$. Beachte die nachfolgende Reduktion auf den Spezialfall.

Stetig partielle Differenzierbarkeit von f^{-1} auf W. Aus der Kettenregel folgt, dass die Jacobimatrix $Df^{-1}(\eta)$ die zu $Df(\xi)$ inverse Matrix ist. Die Cramersche Regel oder der Laplace Entwicklungssatz liefert daher die Formel

$$Df^{-1}(\eta) = \left(Df(\xi)\right)^{-1} = \frac{Df(\xi)^{ad}}{\det\left(Df(\xi)\right)}.$$

Beachte ξ hängt stetig von η ab, da f^{-1} stetig ist. Die Einträge der adjungierten Matrix und die Determinante von $Df(\xi)$ sind Polynome in den Matrixkoeffizienten von $Df(\xi)$, also stetig in ξ , da f stetig partiell differenzierbar ist. Andererseits sind die partiellen Ableitungen von f^{-1} die Koeffizienten der Jacobimatrix $Df^{-1}(\eta)$. Also sind dies stetige Funktionen der Variable $\eta \in W$.

Reduktion auf den Spezialfall. Die zum Beweis des Umkehrsatzes gemachten Annahmen

$$\xi_0 = 0 \text{ und } \eta_0 = f(\xi_0) = 0 \text{ und } Df(\xi_0) = id$$

sind unbedenklich. Dies sieht man von ein allgemeines f durch Modifikation mit affin linearen Abbildungen der Gestalt $\varphi(x) = L(x) + \xi_0, L \in Gl(n,\mathbb{R})$ und $\psi(x) = x - \eta_0$. Diese Abbildungen haben die Jacobimatrix L bzw. id, und sind invertierbar auf ganz \mathbb{R}^n . Ihre Umkehrabbildungen sind wieder affin linear. Hat daher

$$\tilde{f} = \psi \circ f \circ \varphi$$

eine lokale Umkehrfunktion bei x=0, dann hat auch f wie behauptet eine lokale Umkehrfunktion⁶ bei $x=\xi_0$, nämlich

$$f^{-1} = \varphi \circ \tilde{f}^{-1} \circ \psi \ .$$

Anderseits $\tilde{f}(0) = 0$ und $D\tilde{f}(0) = id$, falls L geeignet gewählt wird, nämlich

$$L = Df(\xi_0)^{-1} .$$

Genau an dieser Stelle geht die <u>Invertierbarkeit</u> der Jacobimatrix $Df(\xi_0)$ ein!

П

 $[\]overset{6}{f} \circ (\varphi \circ \tilde{f}^{-1} \circ \psi) = \psi^{-1} \circ \tilde{f} \circ \tilde{f}^{-1} \circ \psi = id \text{ und } (\varphi \circ \tilde{f}^{-1} \circ \psi) \circ f = \varphi \circ \tilde{f}^{-1} \circ \tilde{f} \circ \varphi^{-1} = id.$

⁷Für die Funktion \tilde{f} folgt die Existenz der lokalen Umkehrfunktion bei x=0 aus dem vorherigen Abschnitt.

4.11 Substitutionsregel

Sei $U \subset \mathbb{R}^n$ eine offene Menge und

$$f:U\to\mathbb{R}$$

eine stetige Funktion auf U. Man sagt f hat **Träger** in K (für eine abgeschlossene Teilmenge K von U), wenn f(x) ausserhalb von K verschwindet. Kann man einen in U (und damit auch in \mathbb{R}^n) folgenkompakten Träger K von f wählen, sagt man f hat **kompakten Träger** in U.

Sei $C_c(U) \subset C(U)$ die Menge aller stetigen Funktionen $f: U \to \mathbb{R}$ mit kompaktem Träger in U. Die Vereinigung zweier folgenkompakter Mengen ist folgenkompakt. Somit ist $C_c(U)$ ein \mathbb{R} -Untervektorraum von C(U).

Funktionen in $C_c(U)$ können durch Null zu stetigen Funktionen auf jeden Quader X fortgesetzt werden, welcher K enthält. In diesem Sinne gilt $f \in CT(X)$, und das Integral I(f) ist daher erklärt und hängt nicht von der Wahl des Quaders X ab. Dies definiert das Integral als \mathbb{R} -lineares, monotones Funktional auf $C_c(U)$

$$I(f) = \int_{U} f(x)dx$$
 , $f \in C_c(U)$.

Dieses Integral ist ein Daniell-Integral, wie eine Analyse des Beweises von Lemma 3.12 zeigt: Der Satz von Dini lässt sich wie in loc. cit. anwenden, da für $f,g_n \in C_c(U)$ die Funktionen $\min(f,g_n)$ wegen $g_1 \leq \min(f,g_n) \leq f$ ihren Träger in einem festen einem Kompaktum $X \subset U$ haben (etwa die Vereinigung X des Trägers von g_1 und f).

Definition 4.26. Ein Koordinatenwechsel ist eine <u>bijektive</u> stetig partiell differenzierbare Abbildung zwischen offenen Mengen U, V im \mathbb{R}^n

$$\varphi: U \to V$$
,

so dass

$$det D\varphi(x) \neq 0$$
 für alle $x \in U$.

 φ heisst **orientierter** Koordinatenwechsel, wenn für alle $x \in U$ gilt $det D\varphi(x) > 0$.

Nach dem Satz von der Umkehrfunktion ist für einen Kartenwechsel $\varphi:U\to V$ auch $\psi=\varphi^{-1}:V\to U$ ein Kartenwechsel.

Satz 4.27 (Substitutionsregel). Sei φ ein Koordinatenwechsel. Dann liegt für jede Funktion $f: V \to \mathbb{R}$ aus $C_c(V)$ auch die Funktion $f(\varphi(x)) \cdot |\det D\varphi(x)|$ in $C_c(U)$, und es gilt

(*)
$$\int_{V} f(y)dy = \int_{U} f(\varphi(x)) \cdot |\det D\varphi(x)| dx$$

Bemerkung. Der obige Satz ergibt durch einen einfachen Limesschluß die analoge Substitutionsregel auch für Funktionen $f:V\to\mathbb{R}$, welche Lebesgue integrierbar sind im Sinne von Kapitel 5.

Beweis. 1. Schritt. Mittels der Zerlegung $f = f^+ - f^-$ mit $f^+ = \max(f, 0)$ und $f^- = f^+$ $-\min(f,0)$ und der \mathbb{R} -Linearität des Integrals kann man auf den Fall $f \ge 0$ reduzieren. Sei also obdA $f \ge 0$, und damit auch $g(x) = f(\varphi(x))|detD\varphi(x)| \ge 0$.

2. Schritt. Es genügt für alle Koordinatenwechsel $\varphi:U\to V$ und alle $f\in C_c(V)$ (resp. L(V)) mit $f \ge 0$ zu zeigen

(**)
$$\int_{V} f(y)dy \leq \int_{U} f(\varphi(x)) \cdot |\det D\varphi(x)| dx |,$$

denn angewandt auf $\psi:V\to U$ mit $\psi=\varphi^{-1}$ und $g(x)=f(\varphi(x))|det D\varphi(x)|$ gibt (**) die Ungleichung $\int_U g(x)dx \leqslant \int_V g(\psi(y))|det D\psi(y)|dy$. Nun ist $g(\psi(y))|det D\psi(y)|$ gleich $f(\varphi(\psi(y)))|det D\varphi(\psi(y))||det D\psi(y)| = f(y)|det D(\varphi\circ\psi)(y)| = f(y)$. Aus (**) folgt damit

$$\int_{U} f(\varphi(x)) \cdot |det D\varphi(x)| \leqslant \int_{V} f(y) dy \qquad ,$$

also die Substitutionsregel (*).

3. Schritt. Gilt (**) für $\varphi:U\to V$ und $\psi:V\to W$, dann gilt (**) für $\psi\circ\varphi:U\to W$ W. [(**) für die Substitutionen $y=\varphi(x)$ und $z=\psi(y)$ liefert $\int_W g(z)dz\leqslant \int_V g(\psi(y))$. $|\det D\psi(y)|dy\leqslant \int_{U}g(\psi(\varphi(x))\cdot |\det D(\psi(\varphi(x))|\cdot |\det D\varphi(x)|dx=\int_{U}g((\psi\circ\varphi)(x))|\det D(\psi\circ\varphi(x))|dx$ φ)(x)|dx vermöge der Kettenregel und der Produktformel für Determinanten. Ditto für (*).]

4. Schritt. Um die Aussage (*) - oder äquivalent (**) - für die Einschränkung $\varphi:U\to V$ von linearen Abbildungen $\varphi:\mathbb{R}^n\to\mathbb{R}^n$ zu zeigen, kann man sich wegen Schritt 3 auf den Fall von Elementarmatrizen zurückziehen [Jede invertierbare Matrix ist ein Produkt von Diagonalmatrizen und oberen und unteren elementaren Dreiecksmatrizen (Scherungen).] Den Fall von Diagonalmatrizen behandelt man wie in Abschnitt 3.6. Der Fall einer elementaren Scherung ist ein einfacher Spezialfall des späteren Satzes von Fubini⁸, folgt aber auch aus einer simplen Modifikation des Arguments in Schritt 8. Wir wollen daher hier annehmen, im Fall von linearen Koordinatenwechseln sei (*) bereits gezeigt. Ditto für Translationen.

5.Schritt. Also angenommen es gäbe einen Fall, wo die Ungleichung (**) tatsächlich falsch wäre, also die linke Seite in (**) etwa um $\kappa > 0$ grösser wäre als die rechte. Wir legen dann den Träger K von $f(\varphi(x))$ in U in einen Quader $Q = Q_0 \subseteq \mathbb{R}^n$, sagen wir mit Seitenlänge c, und halbieren alle Seitenlängen sukzessive (Quaderschachtelung). Für jeden der iterierten Teilquader Q_m ist die Funktion $\chi_{\varphi(Q_m)}(y)f(y)$ integrierbar bezüglich eines erweiterten Integrals I^- (siehe Beispiel 2.25 zusammen mit Korollar 3.12). Dann zeigt⁹¹⁰ man leicht durch einen

Schubfachschluss(!): Es gibt eine absteigende Folge von Teilquadern $Q_m \subseteq Q_0$ mit $vol(Q_m) =$ $2^{-mn}vol(Q_0)$ und

$$\lim_{m \to \infty} \frac{\int \chi_{\varphi(Q_m)}(y) f(y) dy}{vol(Q_m)} \ \geqslant \ \frac{\kappa}{vol(Q_0)} + \ \lim_{m \to \infty} \frac{\int_{Q_m} f(\varphi(x)) \cdot |\det D\varphi(x)| dx}{vol(Q_m)}$$

⁸Im Scherungsfall ist obdA n=2 und die Aussage folgt aus $\int_{\mathbb{R}} (\int_{\mathbb{R}} f(x,\lambda \cdot x+y) dy) dx = \int_{\mathbb{R}} (\int_{\mathbb{R}} f(x,y) dy) dx$ wegen der Translationsinvarianz $\int_{\mathbb{R}} h(y_0+y) dy = \int_{\mathbb{R}} h(y) dy$.

⁹Schubfachschluss: Gilt $\kappa \geqslant \lambda_{Q_{m-1}}/vol(Q_{m-1}) = \sum_{\nu=1}^{2^n} \lambda_{Q_{m,\nu}}/vol(Q_{m-1})$, und ist Q_m einer der 2^n Teilquader $Q_{m,\nu}$ mit maximalem $\lambda_{Q_{m,\nu}}$, dann gilt $\kappa \geqslant 2^n \cdot \lambda_{Q_m}/vol(Q_{m-1}) = \lambda_{Q_m}/vol(Q_m)$.

¹⁰S Schrift: Figuration müsete als Integrationshersich destehan Q_m at V and V Abore figure V and V Abore figure V and V and V Abore figure V and V are V and V and V and V and V are V and V and V and V are V and V and V and V are V are V and V are V are V and V are V and V are V are V and V are V are V and V are V are V are V are V and V are V are V are V are V are V and V are V and V are V are V are V and V are V and V are V and V are V are V are V and V are V are V and

 $^{^{10}}$ 5.Schritt: Eigentlich müsste als Integrationsbereich dastehen $Q_m \cap U$ respektive $\varphi(Q_m \cap U)$. Aber für m >> 0gilt $Q_m \subseteq U$ wegen $x_0 \in K \subseteq U$.

sowie $\bigcap Q_m = \{x_0\}$ (Quaderschachtelung; siehe Übungsaufgaben).

Hinweis. Lasse den Limes weg und multipliziere mit $vol(Q_m)$. Wie findet man wohl den Quader Q_m in Q_{m-1} ? Natürlich durch einen Schubfachschluss: Q_m ist einer der Teilquader mit maximaler Abweichung von (**)!

6.Schritt. Wegen der Stetigkeit von f existiert der Limes¹¹

$$\lim_{m \to \infty} \frac{\int_{Q_m} f(\varphi(x)) \cdot |\det D\varphi(x)| dx}{vol(Q_m)} = f(\varphi(x_0)) \cdot |\det D\varphi(x_0)|.$$

7. Schritt. Durch Komposition mit einer linearen Abbildung (wie in Schritt 2, 3 und 4) kann weiterhin obd A $D\varphi(x_0)=id_{\mathbb{R}^n}$ angenommen werden. Dann gilt für $y_0:=\varphi(x_0)$

$$\lim_{m \to \infty} \frac{\int_{Q_m} f(\varphi(x)) \cdot |\det D\varphi(x)| dx}{vol(Q_m)} \ = \ f(y_0) \ .$$

ObdA sei ausserdem $x_0 = 0$ und $y_0 = 0$.

8.Schritt. Sei $\varepsilon > 0$ beliebig. Es gilt $\|\varphi(x) - y_0 - D\varphi(x_0)(x - x_0)\| < \varepsilon \|x - x_0\|$ für $\|x - x_0\| < \delta(\varepsilon)$ nach Lemma 4.23. Wegen Schritt 7 ist $D\varphi(x_0) = id_{\mathbb{R}^n}$. Ist daher m gross genug, gilt wegen dieser Abschätzung¹²:

• $\varphi(Q_m)$ in einem Quader Q'_m der Seitenlänge $<(1+\varepsilon)\frac{c}{2^m}$ enthalten. Zur Erinnerung: $\frac{c}{2^m}$ war die Seitenlänge von Q_m . Also $vol(Q'_m)=(1+\varepsilon)^n vol(Q_m)$.

Wegen Schritt 1 gilt $\chi_{Q'_m}(y)f(y) \geqslant \chi_{\varphi(Q_m)}(y)f(y)$, und damit ist wegen der Monotonie des Daniell-Integrals I^-

$$\frac{\int \chi_{Q'_m}(y)f(y)dy}{vol(Q_m)} \geqslant \frac{\int \chi_{\varphi(Q_m)}(y)f(y)dy}{vol(Q_m)}.$$

Schritt 9. Die Stetigkeit von f und $y_0 \in \varphi(Q_m)$ liefert im Limes $m \to \infty$

$$(1+\varepsilon)^n \cdot f(y_0) \geqslant \lim_{m\to\infty} \frac{\int \chi_{Q'_m}(y)f(y)dy}{vol(Q_m)}.$$

Somit ergibt unser Schubfachschluß die Ungleichung

$$(1+\varepsilon)^n \cdot f(y_0) \geqslant \frac{\kappa}{vol(Q_0)} + f(y_0),$$

oder $(1+\varepsilon)^n \cdot f(y_0) - f(y_0) \geqslant \frac{\kappa}{vol(Q_0)} > 0$ wegen der Schritt 5, 6, 7 und 8. Wählt man $\varepsilon > 0$ genügend klein, wird die linke Seite $f(y_0) \cdot [(1+\varepsilon)^n - 1] = O(\varepsilon)$ kleiner als jede feste positive Zahl im Widerspruch zur Annahme $\frac{\kappa}{vol(Q_0)} > 0$ von Schritt 5. Dies zeigt (**) und damit die Behauptung (*).

¹¹6.Schritt: Es gilt $vol(Q_m) \cdot \min_{x \in Q_m} h(x) \le \int_{Q_m} h(x) dx \le vol(Q_m) \cdot \max_{x \in Q_m} h(x)$, und somit $\lim_{m \to \infty} vol(Q_m)^{-1} \int_{Q_m} h(x) dx = h(x_0)$ für jede stetige Funktion h.

 $^{^{12}}$ 8.Schritt: Die hier benutzte Norm sei obdA die Norm $\|x\|=\max_{i=1,...,n}|x_i|$ und obdA $x_0=y_0=0$. Dann gilt $(1-\varepsilon)x_i<\varphi_i(x)<(1+\varepsilon)x_i$. Daraus folgt $\varphi(Q_m)\subset Q_m'$ für einen Quader Q_m' wie behauptet.

4.12 Differentialformen

Sei $U\subseteq\mathbb{R}^n$ zulässig. Wir betrachten Teilmengen $I\subseteq\{1,\cdots,n\}$ der festen Kardinalität |I|=i und Ausdrücke der Gestalt

$$\omega(x) = \sum_{I,|I|=i} \omega_I(x) dx_I .$$

Sind hierbei alle Koeffizienten $\omega_I(x) \in C^{\infty}(U)$, nennen wir ω eine alternierende *i*-Form auf U. Den \mathbb{R} -Vektorraum aller alternierende *i*-Formen auf U bezeichnen wir mit

$$A^i(U)$$
.

Schreibweise. Sei $I = \{n_1, \dots, n_i\}$ mit $n_1 < \dots < n_i$, dann schreiben wir symbolisch $dx_I = dx_{n_1} \wedge \dots \wedge dx_{n_i}$ sowie $dx_{\emptyset} = 1$. Für die einelementigen Teilmengen $I = \{i\}$ schreiben wir meistens dx_i anstelle von $dx_{\{i\}}$.

Wir erhalten für $A^{\bullet}(U) = \bigoplus_{i=0}^{n} A^{i}(U)$

- $\bullet \ A^0(U) = C^{\infty}(U)$
- $A^1(U) = C^{\infty}(U) \cdot dx_1 \oplus \cdots \oplus C^{\infty}(U) \cdot dx_n$
- ...
- $A^n(U) = C^{\infty}(U) \cdot \omega_n$ für $\omega_n := dx_1 \wedge \cdots \wedge dx_n$.

Das \wedge -**Produkt**. Wir definieren $dx_I \wedge dx_J = 0$, falls $I \cap J \neq \emptyset$. Anderenfalls setzen wir $dx_I \wedge dx_J = sign(\sigma)dx_{I \cup J}$, wobei σ die Permutation ist, welche $n_1, ..., n_i, m_1, ..., m_j$ in eine aufsteigende Reihenfolge bringt. Hierbei seien $n_1 < ... < n_i$ und $m_1 < ... < m_j$ so gewählt, dass $dx_I = dx_{n_1} \wedge ... \wedge dx_{n_i}$ und $dx_J = dx_{m_1} \wedge ... \wedge dx_{m_j}$ gilt. Wir erhalten eine wohldefinierte \mathbb{R} -bilineare Abbildung¹³

$$A^{i}(U) \times A^{j}(U) \xrightarrow{\wedge} A^{i+j}(U)$$

$$(\sum_{I} \omega_{I}(x) dx_{I}, \sum_{J} \omega_{J}(x) dx_{J}) \mapsto \sum_{I} \sum_{J} \omega_{I}(x) \omega_{J}(x) \cdot dx_{I} \wedge dx_{J}.$$

Das ∧-Produkt ist per Definition distributiv.

Beispiel. Aus der Definition des \(\lambda \)-Produkts folgt unmittelbar

- $dx_i \wedge dx_i = 0$
- $dx_i \wedge dx_j = -dx_i \wedge dx_i$

¹³Wir zeigen später, dass das \land -Produkt assoziativ ist $(dx_I \land d_J) \land dx_K = dx_I \land (dx_J \land dx_K)$. Da es offensichtlich distributiv ist, wird dadurch $A^{\bullet}(U)$ zu einem (nichtkommutativen) Ring.

Allgemeiner gilt nach Definition $dx_I \wedge dx_J = (-1)^{|I||J|} dx_J \wedge dx_I$. Also für beliebige $\eta \in A^i(U)$ und $\omega \in A^j(U)$

$$\boxed{\eta \wedge \omega = (-1)^{ij} \cdot \omega \wedge \eta}.$$

Die Cartanableitung d. Wir definieren nun den Differentialformenkomplex durch eine Serie von Ableitungen

$$A^{0}(U) \xrightarrow{d} A^{1}(U) \xrightarrow{d} \cdots \xrightarrow{d} A^{n-1}(U) \xrightarrow{d} A^{n}(U) \xrightarrow{d} A^{n+1}(U) = 0$$

gegeben durch

$$d\left(\sum_{I}\omega_{I}(x)dx_{I}\right) = \sum_{I}\sum_{i=1}^{n}\frac{\partial}{\partial x_{i}}\omega_{I}(x)\cdot dx_{i}\wedge dx_{I}.$$

Beispiel. Für eine Funktion $f(x) \in A^0(U) = C^{\infty}(U)$ bedeutet dies gerade

$$df(x) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} f(x) \cdot dx_i .$$

Man nennt dann $df \in A^1(U)$ das **totale Differential** von f (im Prinzip ist es dasselbe wie die Jacobimatrix von f, nur etwas anders geschrieben). Die Abbildungen $d_i = d : A^{i-1}(U) \to A^i(U)$ nennt man manchmal auch grad im Fall i = 1 und div im Fall i = n. Für n = 3, i = 2 benutzt man auch die Bezeichnung $d_2 = rot$.

Spezialfall. Ist $f(x) = x_i$ die die *i*-te Koordinatenfunktion, das heisst die Zusammensetzung $U \hookrightarrow \mathbb{R}^n \xrightarrow{pr_i} \mathbb{R}$, dann gilt

$$df = 1 \cdot dx_i = dx_i$$
.

Also kurz $d(x_i) = dx_i$. Achtung: Dies motiviert die Schreibweise dx_i .

Die Produktformel. Für $\eta \in A^i(U)$ und $\omega \in A^j(U)$ gilt

$$\boxed{d(\eta \wedge \omega) = d\eta \wedge \omega + (-1)^i \eta \wedge d\omega}.$$

Beweis. Wegen der Bilinearität des \land -Produkts können wir obdA annehmen $\eta = f(x) \cdot dx_I$ und $\omega = g(x) \cdot dx_J$ für $f, g \in C^{\infty}(U)$. Dann gilt

$$d(\eta \wedge \omega) = d(fg \cdot dx_I \wedge dx_J) = d(fg) \wedge dx_I \wedge dx_J$$

nach der Definition der Cartanableitung. Die übliche Produktformel für die partiellen Ableitungen einer Funktion liefert

$$d(fq) = qdf + fdq$$
.

Also $d(\eta \wedge \omega) = (gd(f) + fd(g)) \wedge (dx_I \wedge dx_J) = d(f)dx_I \wedge gdx_J + (-1)^i f dx_I \wedge (d(g) \wedge dx_J) = d\eta \wedge \omega + (-1)^i \eta \wedge d\omega$. Hierbei wurde benutzt $dx_i \wedge (dx_I \wedge dx_J) = (dx_i \wedge dx_I) \wedge dx_J = (dx_i \wedge dx_J) \wedge dx_J + (dx_i \wedge dx_J) \wedge dx_J = (dx_i \wedge dx_J) \wedge dx_J + (dx_i \wedge d$

 $(-1)^i(dx_I \wedge dx_i) \wedge dx_J = (-1)^i dx_I \wedge (dx_i \wedge dx_J)$ vermöge des Assoziativgesetzes. Dies bleibt hier als Übungsaufgabe¹⁴.

Integration. Sei $\omega = f(x) \cdot dx_1 \wedge \cdots \wedge dx_n$ eine Form höchsten Grades mit kompaktem Träger $\omega \in A^n_c(U) := C^\infty_c(U) \cdot \omega_n$. Dann wird per Definition das Integral $\int_U \omega$ erklärt durch das n-dimensionale Standard Integral der Funktion f(x)

$$\int_{U} \omega := \int_{U} f(x) dx_1 dx_2 \cdots dx_n.$$

Der Pullback φ^* . Sei $\varphi: U \to V$ eine unendlich oft differenzierbare Abbildung für zulässige Mengen $U \subset \mathbb{R}^n$ und $V \subset \mathbb{R}^m$. Dann gibt es eine graderhaltende Abbildung

$$\varphi^*: A^{\bullet}(V) \to A^{\bullet}(U)$$

eindeutig bestimmt durch die folgenden vier Eigenschaften

- 1. φ^* ist \mathbb{R} -linear
- 2. φ^* ist multiplikativ $\varphi^*(\omega \wedge \eta) = \varphi^*(\omega) \wedge \varphi^*(\eta)$ für alle $\omega, \eta \in A^{\bullet}(V)$
- 3. φ^* vertauscht mit der Cartan Ableitung: $\varphi^*(d\omega) = d\varphi^*(\omega)$ für alle $\omega \in A^{\bullet}(V)$
- 4. Für Nullformen (Funktionen) $\omega = f(y)$ aus $A^0(V)$ gilt

$$\varphi^*(f)(x) = f(\varphi(x)).$$

Beachte $\varphi^*(\sum_I \omega_I(y) dy_I) = \sum_I \omega_I(\varphi(x)) \varphi^*(dy_I)$ und $\varphi^*(dy_I) = \varphi^*(dy_{m_1} \wedge \cdots \wedge dy_{m_i}) = \varphi^*(dy_{m_1}) \wedge \cdots \wedge \varphi^*(dy_{m_i})$ sowie $\varphi^*(dy_k) = d\varphi^*(y_k)$ für alle k = 1, ..., m. Also

$$\varphi^*(dy_k) = \sum_{l=1}^n \frac{\partial \varphi_k}{\partial x_l}(x) dx_l \quad , \quad \frac{\partial \varphi_k}{\partial x_l}(x) = (D\varphi(x))_{kl} .$$

Aus der Leibnitz Formel für die Determinante der Matrix $D\varphi(x)$ folgt daher im Spezialfall n=m für Formen $\omega=f(y)\cdot dy_1\wedge\cdots\wedge dy_m\in A^m(V)$

$$\varphi^* (f(y) \cdot dy_1 \wedge \cdots \wedge dy_m) = f(\varphi(x)) \cdot \det D\varphi(x) \cdot dx_1 \wedge \cdots \wedge dx_n.$$

Aus der Substitutionsformel Satz 4.27 folgt daher sofort

 $^{^{14}\}text{F\"{u}r} \left(dx_I \wedge d_J \right) \wedge dx_K = dx_I \wedge \left(dx_J \wedge dx_K \right) \text{ benutze Induktion nach } i+j+k \text{ und bei festem } i+j+k \text{ Induktion nach } max(i,j,k). \text{ Der Induktionsanfang } i=j=k=1 \text{ ist trivial. Sei } j>1, \text{ also } dx_J=dx_U \wedge dx_V. \text{ Dann gilt } \left(dx_I \wedge dx_J \right) \wedge dx_K = \left(dx_I \wedge \left(dx_U \wedge dx_V \right) \right) \wedge dx_K = \left(\left(dx_I \wedge dx_U \right) \wedge dx_V \right) \wedge dx_K = \left(dx_I \wedge dx_U \right) \wedge \left(dx_V \wedge dx_K \right) = dx_I \wedge \left(dx_U \wedge dx_V \right) = dx_I \wedge \left(dx_J \wedge dx_K \right). \text{ Ist } k>1 \text{ und } dx_K = dx_U \wedge dx_V, \\ \text{dann } dx_I \wedge \left(dx_J \wedge dx_K \right) = dx_I \wedge \left(dx_J \wedge \left(dx_U \wedge dx_V \right) \right) = dx_I \wedge \left(\left(dx_J \wedge dx_U \right) \wedge dx_V \right) = \left(dx_I \wedge \left(dx_J \wedge dx_J \right) \wedge dx_K. \text{ Analog f\"{u}r } i>1. \end{aligned}$

Korollar 4.28. Für <u>orientierungserhaltende</u> Koordinatenwechsel¹⁵ $\varphi: U \to V$ und Formen $\omega = f(y) \cdot \omega_n$ in $A_c(V)$ gilt

$$\int_{U} \varphi^*(\omega) = \int_{V} \omega.$$

Lemma 4.29. Zweimaliges Anwenden der Cartanableitung $d^2: A^i(U) \to A^{i+2}(U)$ gibt die Nullabildung

$$d^2 = 0 .$$

Beweis. Sei i=0, dann ist $d^2(f)=d(\sum_{\mu=1}^n \frac{\partial}{\partial x_\mu} f(x) \cdot dx_\mu)$, oder

$$d^{2}(f) = \sum_{\nu=1}^{n} \sum_{\mu=1}^{n} \frac{\partial}{\partial x_{\nu}} \frac{\partial}{\partial x_{\mu}} f(x) \cdot dx_{\nu} \wedge dx_{\mu} .$$

Da $dx_{\nu} \wedge dx_{\mu}$ alternierend in ν und μ ist, und andererseits die zweiten partiellen Ableitungen symmetrisch in ν und μ sind wegen Satz 4.11, verschwindet dieser Ausdruck. Damit ist der Fall i=0 gezeigt. Im Fall i>0 sei obdA $\omega=f(x)dx_I$ für $f\in C^{\infty}(X)$, und wir benutzen die Produktformel: Damit ist $d^2\omega=d(df\wedge dx_I+(-1)^0fd(dx_I))=d(df\wedge dx_I)=d(df)\wedge dx_I+(-1)^1df\wedge d(dx_I)=0$ wegen d(df)=0 (der Spezialfall i=0) und wegen $d(dx_I)=d(1\cdot dx_I)=0$ (Definition der Cartanableitung).

Wir haben damit gezeigt, dass alle **exakten** Formen $\omega=d\eta$ **geschlossene** Formen sind: $d\omega=d^2\eta=0$. Für Differentialformen vom Grade >0 gilt auch die Umkehrung.

Satz 4.30 (Poincare Lemma). Sei $U \subseteq \mathbb{R}^n$ offen und <u>sternförmig</u> 16 und $\omega \in A^j(U)$. Dann gilt

- $d\omega = 0$ für $j > 0 \implies \exists \eta \in A^{j-1}(U)$ mit $\omega = d\eta$.
- $d\omega = 0$ im Fall $j = 0 \implies \omega \in A^0(U)$ ist <u>lokalkonstant</u>.

Der eindimensionale Fall. Ist U eine zulässige Teilmenge in \mathbb{R} , dann reduziert sich der Differentialformenkomplex auf die Grade 0 und 1

$$A^{0}(U) = C^{\infty}(U) \xrightarrow{d} A^{1}(U) = C^{\infty}(U) \cdot dx$$

und für $f(x) \in C^{\infty}(U)$ ist die Ableitung df

$$df(x) = f'(x) \cdot dx$$
.

Das <u>Poincare Lemma</u> im eindimensionalen Fall ist fast der <u>Hauptsatz</u> der Differential- und Integralrechnung. Im Grad j=1 besagt es, dass jede Funktion $g(x) \in C^{\infty}(U)$ eine Stammfunktion

¹⁵ zwischen offenen Teilmengen U, V im \mathbb{R}^n im Sinne von Abschnitt 4.11. Orientierungserhaltend bedeutet hierbei $sign(\det D\varphi(x)) > 0$.

¹⁶Das bedeutet, es gibt einen Punkt $x_0 \in U$, so dass für alle $x \in U$ der Verbindungsweg $x_0 + \{t(x - x_0) \mid 0 \le t \le 1\}$ auch in U liegt.

besitzt, da im letzten Grad j=n (hier ist n=1) automatisch für jede Differentialform $d\omega=0$ gilt. Im Grad 0 besagt das Poincare Lemma, dass eine Stammfunktion eindeutig ist bis auf eine lokalkonstante Funktion. Allerdings gibt es zwei Einschränkungen. Erstens: Wir beschränken uns auf C^{∞} -Funktionen anstelle von stetigen Funktionen. Zweitens: Erst der Satz von Stokes wird die noch fehlende Verbindung zur Integrationstheorie herstellen. Die höherdimensionale Integrationstheorie werden wir dazu noch verfeinern müssen.

4.13 Beweis des Poincare Lemmas

Lemma 4.31. $U \subseteq \mathbb{R}^n$ sei offen und <u>sternförmig</u>¹⁷. Dann ist für $f(x) \in C^{\infty}(U)$ das Integral

$$\boxed{I^{(j)}(f) = \int_0^1 t^j f(tx) \ dt} \quad , \quad (\textit{für } j \in \mathbb{N})$$

als Funktion von $x \in U$ definiert, und als solche wieder eine Funktion in $C^{\infty}(U)$.

Wir formulieren und beweisen nun unter Vorgriff auf Kapitel 5 einen allgemeinen Satz unter Benutzung der Theorie Lebesgue integrierbarer Funktionen, welcher in unserem Fall Y=[0,1] wegen $C(Y) \subset L(Y)$ unmittelbar anwendbar ist. Die Behauptung von Lemma 4.31 folgt unmittelbar aus diesem

Satz 4.32. Sei $Y = \mathbb{R}^n$, $Y = \mathbb{Z}$ oder $Y = \mathbb{N}$. Sei $f(x,y) : [a,b] \times Y \to \mathbb{R}$ partiell differenzierbar nach x. Ist f(x,y) für feste x in L(Y), und gilt unabhängig von x die Abschätzung $|\partial_x f(x,y)| \leq F(y)$ für ein $F \in L(Y)$, dann ist

$$g(x) = \int_{V} f(x, y) dy$$

differenzierbar auf [a,b] und es gilt

$$g'(x) = \int_{Y} \partial_x f(x, y) dy$$
.

Beweis. Für jede Folge $x_n \to \xi$ $(x_n \neq \xi)$ gibt es $\theta_{y,n} \in [a,b]$ zwischen ξ und x mit

$$f(x_n, y) - f(\xi, y) = (x_n - \xi)\partial_x f(\theta_{y,n}, y) =: (x_n - \xi)f_n(y)$$

(Mittelwertsatz). Nach Annahme ist die linke Seite in L(Y). Also $f_n(y) \in L(Y)$, und nach der Definition der Ableitung $\lim_n f_n(y) = f'(\xi,y)$. Wegen $|f_n(y)| = |\partial_x f(\theta_{y,n},y)| \leq F(y)$ folgt dann $\int_Y f_n(y) dy \longrightarrow \int_Y \partial_x f(\xi,y) dy$ aus dem Satz von der dominierten Konvergenz 6.9 (siehe nächstes Kapitel Lebesgue Integration). Nach Definition von $f_n(y)$ ist der Limes der $\int_Y f_n(y) dy$ aber $\lim_n (g(x_n) - g(\xi))/(x_n - \xi) = g'(\xi)$.

Für $f(x) \in C^{\infty}(U)$ sei $f_{\alpha} := \frac{\partial}{\partial x_{\alpha}} f(x)$. Wegen $f(x) = t^{j} f(tx) \big|_{0}^{1} = \int_{0}^{1} \frac{d}{dt} (t^{j} f(tx)) dt$ und $\frac{d}{dt} f(tx) = \sum_{\alpha} x_{\alpha} f_{\alpha}(tx)$ folgt dann

¹⁷Wir nehmen zur Vereinfachung der Notation $x_0 = 0$ für den Sternmittelpunkt an.

Lemma 4.33.
$$f(x) = j \cdot I^{(j-1)}(f)(x) + \sum_{\alpha=1}^{n} x_{\alpha} I^{(j)}(f_{\alpha})(x)$$
 für alle $j > 0$.

Wir kommen nun zum eigentlichen Beweis des Poincare Lemmas.

Beweis. Für $\beta \in \{1, \dots, n\}$ und $J \subset \{1, \dots, n\}$ setze

$$dx_{\beta} \vee dx_{J} = 0 \quad (\text{ im Fall } \beta \notin J) \qquad dx_{\beta} \vee dx_{J} = \varepsilon \cdot dx_{J \setminus \{\beta\}} \quad (\text{ im Fall } \beta \in J)$$

mit dem eindeutig bestimmten Vorzeichen $\varepsilon \in \{\pm 1\}$ so daß $dx_{\beta} \wedge \varepsilon \cdot dx_{J\setminus \{\beta\}} = dx_{J}$.

Der Operator I. Wir definieren nun für alle j > 0 den \mathbb{R} -linearen Operator

$$I: A^{j}(U) \longrightarrow A^{j-1}(U)$$
,

$$\mathrm{durch}\ I\left(\sum_J \omega_J(x) \cdot dx_J\right) = \sum_J I^{(j-1)}(\omega_J(x)) E(dx_J) \ \mathrm{mit}\ E(dx_J) = \sum_{\beta=1}^n x_\beta \cdot dx_\beta \vee dx_J.$$

Für j = 0 folgt das Poincare Lemma aus dem Mittelwertsatz 4.8.

Bemerkung: Im Grad j=0 gilt $(I\circ d)f(x)=f(x)-f(0)$ wie man leicht zeigt.

Im Fall j>0 setze $\eta=I(\omega)$, und dann folgt aus $d\omega=0$ sofort die Existenz eines $\eta\in A^{j-1}(U)$ mit $\omega=d\eta$ wegen der folgenden

Homotopieformel

$$\boxed{(d \circ I + I \circ d) \omega = \omega}.$$

Da diese Formel linear in ω ist, kann man für ihren Beweis $\omega = f(x) \cdot dx_J$ annehmen:

I.Schritt. Es gilt $I(\omega) = I^{(j-1)}(f) \cdot \sum_{\beta \in J} x_{\beta} \cdot (dx_{\beta} \vee dx_{J})$. Wegen der Produktformel für die Cartanableitung ist daher $(d \circ I)(\omega)$ gleich

$$d\Big(I^{(j-1)}(f)\Big) \wedge \Big(\sum_{\beta \in I} x_{\beta} \cdot (dx_{\beta} \vee dx_{J})\Big) + I^{(j-1)}(f) \cdot d\Big(\sum_{\beta \in I} x_{\beta} \cdot (dx_{\beta} \vee dx_{J})\Big).$$

Es gilt $d(I^{(j-1)}(f)) = \sum_{\alpha} (\partial_{\alpha} \int_{0}^{1} t^{j-1} f(tx) dt) dx_{\alpha} = \sum_{\alpha} (\int_{0}^{1} t^{j-1} \partial_{\alpha} f(tx) dt) dx_{\alpha}$ wegen dem Vertauschungssatz 4.32. Also $d(I^{(j-1)}(f)) = \sum_{\alpha} (\int_{0}^{1} t^{j} f_{\alpha}(tx) dt) dx_{\alpha} = \sum_{\alpha} I^{(j)}(f_{\alpha}) dx_{\alpha}$. Ausserdem ist $d(\sum_{\beta \in J} x_{\beta} (dx_{\beta} \vee dx_{J}) = \sum_{\beta \in J} dx_{\beta} \wedge (dx_{\beta} \vee dx_{J}) = |J| \cdot dx_{J}$. Deshalb ist $(d \circ I)(\omega)$ gleich

$$\left(\sum_{\alpha} I^{(j)}(f_{\alpha}) \cdot dx_{\alpha}\right) \wedge \left(\sum_{\beta \in J} x_{\beta} \cdot (dx_{\beta} \vee dx_{J})\right) + |J| \cdot I^{(j-1)}(f) \cdot dx_{J}$$

oder gleich

$$(d \circ I)(\omega) = \left(\sum_{\alpha \notin J} I^{(j)}(f_{\alpha}) \cdot dx_{\alpha}\right) \wedge \left(\sum_{\beta \in J} x_{\beta} \cdot (dx_{\beta} \vee dx_{J})\right)$$
$$+ \left(\sum_{\alpha = \beta \in J} x_{\alpha} I^{(j)}(f_{\alpha}) \cdot dx_{J}\right) + |J| \cdot I^{(j-1)}(f) \cdot dx_{J}.$$

2. Schritt. Andererseits ist $(I \circ d)(\omega) = I(\sum_{\alpha \notin J} f_{\alpha} \cdot dx_{\alpha} \wedge dx_{J})$ gleich

$$\sum_{\alpha \notin J} I^{(j)}(f_{\alpha}) \sum_{\beta \in \{\alpha\} \cup J} x_{\beta} \cdot (dx_{\beta} \vee (dx_{\alpha} \wedge dx_{J}))$$

und damit gleich

$$(I \circ d)(\omega) = \left(\sum_{\alpha \notin J} I^{(j)}(f_{\alpha}) \sum_{\beta \in J} x_{\beta} \cdot (dx_{\beta} \vee (dx_{\alpha} \wedge dx_{J})) \right) + \sum_{\alpha = \beta \notin J} x_{\alpha} I^{(j)}(f_{\alpha}) \cdot dx_{J}.$$

3.Schritt. Die jeweils ersten Terme in beiden Formeln unterscheiden sich nur um ein Vorzeichen¹⁸ und heben sich deshalb bei der Addition der beiden Formeln weg. Die Addition der Formeln in Schritt 1 und 2 liefert für j > 0 nach Lemma 4.33 also

$$(dI + Id)(\omega) = |J| \cdot I^{(j-1)}(f) \cdot dx_J + (\sum_{\alpha=1}^n x_{\alpha} I^{(j)}(f_{\alpha})) \cdot dx_J = f(x) \cdot dx_J = \omega.$$

Bemerkung. Die Sternförmigkeit von U ist wesentlich. Die gelochte Ebene $U=\mathbb{R}^2\backslash 0$ ist nicht sternförmig! Sei $\omega=Im(\frac{dz}{z})$, d.h.

$$\omega = \frac{xdy - ydx}{x^2 + y^2}$$

mit einer Singularität im Ursprung, aber $\omega \in A^1(U)$. Man zeigt leicht $d\omega = 0$ sowie

$$\varphi^*(\omega) = \frac{\cos(t)\sin(t)' - \sin(t)\cos(t)'}{\cos(t)^2 + \sin(t)^2}dt = dt$$

bezüglich $\varphi: \mathbb{R} \to U$ definiert durch $\varphi(t) = (\cos(t), \sin(t))$. Hätte ω eine Stammfunktion η auf U, d.h. gilt $d\eta = \omega$ für ein $\eta \in A^0(U)$, würde gelten

$$\varphi^*(\omega) = \varphi^*(d\eta)(t) = d\varphi^*(\eta)(t) = d(\eta(\varphi(t))) = \eta(\varphi(t))' \cdot dt.$$

Wegen dem Hauptsatz folgt aus $\eta(\varphi(t))'dt = dt$ dann

$$\eta(\varphi(t)) = t + C$$

für eine Integrationskonstante C. Dies liefert einen Widerspruch, denn $\eta(\varphi(t))$ ist periodisch in t mit der Periode 2π . Die Funktion t+C dagegen ist für keine Wahl von C periodisch in t. Also gilt das Poincare Lemma in U nicht!

 $[\]overline{ ^{18}dx_{\alpha} \wedge (dx_{\beta} \vee dx_{J}) = -dx_{\beta} \vee (dx_{\alpha} \wedge dx_{J})}$ falls $\beta \in J$ und $\alpha \notin J$

4.14 Satz von Stokes für Quader

Sei $Q = \prod_{i=1}^n [a_i, b_i]$ ein nichtdegenerierter Quader im \mathbb{R}^n . Wir schreiben $\varepsilon \cdot Q$ für eine **Orientierung** $\varepsilon = \pm 1$ des Quaders Q. Dann ist der Rand ∂Q des Quaders Q in natürlicher Weise die Vereinigung von 2n nicht degenerierten orientierten Quadern im \mathbb{R}^{n-1} (aber degeneriert im \mathbb{R}^n). Es gilt

Satz 4.34. (Baby Stokes) Für jede Differentialform $\omega \in A^{n-1}(Q)$ gilt

$$\int_{Q} d\omega = \int_{\partial Q} \omega|_{\partial Q} .$$

Wir erläutern dies obdA im Fall n=2 des Quaders $Q=+[a,b]\times [c,d]$ (positiv orientiert). Hier ist

$$\partial(Q) \; := \; +[a,b] \times [c,c] \; +[b,b] \times [c,d] \; -[a,b] \times [d,d] \; -[a,a] \times [c,d]$$

und per Definition ist $\omega|_{\partial Q}=i^*(\omega)$ für $i:\partial(Q)\to Q$ der Pullback von ω auf die 2n Randflächen von Q. Man definiert dann für

$$\omega = \sum_{i=1}^{n} f_i(x) dx_i \vee (dx_1 \wedge \dots \wedge dx_n)$$

das Integral (die i-te Integration wird jeweils weggelassen)

$$\int_{\partial Q} \omega|_{\partial Q} := \sum_{i=1}^{n} \int_{a_{1}}^{b_{1}} \dots \int_{a_{n}}^{b_{n}} f_{i}(x_{1}, ..., x_{i-1}, b_{i}, x_{i+1}, ..., x_{n}) dx_{1} \dots dx_{n}$$

$$- \sum_{i=1}^{n} \int_{a_{1}}^{b_{1}} \dots \int_{a_{n}}^{b_{n}} f_{i}(x_{1}, ..., x_{i-1}, a_{i}, x_{i+1}, ..., x_{n}) dx_{1} \dots dx_{n}.$$

Die Aussage des Satzes von Stokes ist additiv in ω . Daher ist obdA $\omega = f_i(x) \cdot dx_i \vee (dx_1 \wedge \cdots \wedge dx_n)$ für ein festes i und $d\omega = \partial_i f_i(x) \cdot dx_1 \wedge \cdots \wedge dx_n$. Der Aussage des Satzes von Stokes lautet dann: Das Integral $\int_O d\omega$, nach Korollar 6.11 gegeben durch

$$\int_{Q} d\omega = \int_{a_{1}}^{b_{1}} \dots \int_{a_{n}}^{b_{n}} \partial_{i} f_{i}(x) \cdot dx_{1} \wedge \dots \wedge dx_{n} ,$$

ist gleich $\int_{\partial Q} \omega|_{\partial Q}$, d.h. gleich

$$\int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} \left(f_i(x_1, ..., x_{i-1}, b_i, x_{i+1}, ..., x_n) - f_i(x_1, ..., x_{i-1}, a_i, x_{i+1}, ..., x_n) \right) dx_1 \dots dx_i \dots dx_n.$$

Diese Aussage ist offensichtlich eine unmittelbare Folge des Hauptsatzes der Differential- und Integralrechnung. □

4.15 Analytische Funktionen

Beispiel 4.35. Ist $X = \mathbb{Z}$, dann sind die folgenkompakten Teilmengen die endlichen Teilmengen von X. Die stetigen Funktionen $f \in C_c(X)$ mit kompaktem Träger auf X sind also die Funktionen mit endlichem Träger. Auf $C_c(X)$ definiert daher trivialerweise die endliche (!) Summe $I(f) = \sum_{n \in \mathbb{Z}} f(n)$ ein Daniell-Integral. Analog für \mathbb{N} anstelle von \mathbb{Z} . Eine Funktion $f : \mathbb{Z} \to \mathbb{R}^+$ ist in $B^+(\mathbb{Z})$ genau dann, wenn f(n) < 0 nur für endlich viele $n \in \mathbb{Z}$ gilt.

In diesem Abschnitt wenden wir Satz 4.32 im setting von Beispiel 4.35 an um zu zeigen, daß die im folgenden betrachteten Potenzreihen gliedweise abgeleitet werden dürfen.

Gegeben sei einen Folge a_l reeller (oder komplexer) Zahlen. Dann kann man die formale **Potenzreihe** $\sum_{l=0}^{\infty} a_l x^l$ betrachten und sich fragen, für welche Werte von $x=x_0\in\mathbb{R}$ (oder $x=x_0\in\mathbb{C}$) der Limes

$$\lim_{N \to \infty} \sum_{l=0}^{N} a_l \cdot x^l =: \sum_{l=0}^{\infty} a_l \cdot x^l$$

existiert. Wenn dieser Limes existiert, nennt man die Potenzreihe konvergent im Punkt $x=x_0$. Allgemeiner kann man anstatt der Monome $P_l(x)=a_lx^l$ auch homogene Polynome $P_l(x)$ vom Grad l in mehreren Variablen betrachten.

Seien $P_l(x)$ für l=0,1,2,... homogene Polynome $P_l:\mathbb{R}^n\to\mathbb{R}$ vom Grad l, d.h. es gelte $P_l(t\cdot x)=t^l\cdot P_l(x)$ für alle $t\in\mathbb{R}.$ Wie man leicht aus der Homogenität folgert, nimmt ein homogenes Polynom $P_l(x)$ auf einer Kugel $\|x\|\leqslant\rho$ das Maximum auf dem Rand $\|x\|=\rho$ an. Zur Untersuchung der Konvergenz von $\sum_{l=0}^\infty P_l(x)$ definiert man den Konvergenzradius

$$\boxed{R = \sup \bigl\{ \rho \mid \exists C_\rho > 0 \text{ mit } \max_{\|y\| = \rho} (|P_l(y)|) \leqslant C_\rho \text{ für alle } l \bigr\}} \ .$$

Der Konvergenzradius R ist eine Zahl in $\mathbb{R}^+_{\geqslant 0} = \mathbb{R}_{\geqslant 0} \cup \{+\infty\}$.

Satz 4.36. Ist der Konvergenzradius R > 0, so ist die offene Kugel $X = \{x \in \mathbb{R}^n \mid ||x|| < R\}$ nichtleer und

$$f(x) = \sum_{l=0}^{\infty} P_l(x)$$

konvergiert absolut für $x \in X$. Für $\rho' \in [0, R)$ ist die Konvergenz absolut und gleichmässig auf der folgenkompakten Teilmenge $K = \{x \in \mathbb{R}^n \mid ||x|| \le \rho'\}$ von X. Die Grenzfunktion f(x) ist daher eine stetige Funktion der Variable x auf K, und damit durch Variation von ρ' auch eine stetige Funktion auf X.

Beweis. Für gegebenes $x \in X$ wähle $\rho < R$ und $0 \le q < 1$, so daß x in der kompakten Kugel K vom Radius $\le q\rho$ enthalten ist. Wir wollen $|P_l(x)|$ auf K abschätzen. ObdA sei dazu $||x|| = q\rho$. Für $||y|| \le \rho$ gilt $|P_l(y)| \le C_\rho$. Aus der Homogenität folgt daher wegen $||x/q|| \le \rho$

$$|P_l(x)| = |P_l(x/q)q^l| \leqslant C_\rho \cdot q^l$$
.

Für die Partialsummen $f_n(x) := \sum_{l=0}^n P_l(x)$ gilt auf K dann für $m \geqslant n$

$$||f_m - f_n||_K = \max_{x \in K} |f_m(x) - f_n(x)| = \max_{x \in K} |\sum_{l=n+1}^m P_l(x)| \le \sum_{l=n+1}^m C_\rho q^l \le C_\rho \frac{q^{n+1}}{1-q},$$

und dies geht wegen |q| < 1 gegen Null für $n \to \infty$ (mit Schranken unabhängig von x). Die stetigen Polynome $f_n(x)$ bilden daher einen Cauchyfolge im Raum C(K) der stetigen Funktionen auf der kompakten Menge K. Dieser Raum ist vollständig nach Satz 2.24, somit konvergiert die Folge der $f_n(x)$ gleichmässig auf K gegen eine auf K stetige Grenzfunktion f(x). Die Vereinigung aller solchen K, für geeignete $\rho < R$ und q < 1, ist $\{x | \|x\| < R\}$. Daraus folgt die Behauptung.

Wir betrachten jetzt den eindimensionalen Fall mit Bezeichnungen q, ρ wie im obigen Beweis. Wähle $\varepsilon > 0$ genügend klein, so daß gilt $\tilde{q} := q(1+\varepsilon) < 1$. Es existiert dann eine Konstante \tilde{C} , zum Beispiel $\tilde{C} = 1/\varepsilon$, so daß gilt $l < \tilde{C}(1+\varepsilon)^l$. Wir sind dann in einer Situation, wo wir Satz 4.32 für auf die Funktionen $f_l(x) = a_l x^l$ anwenden können. Dieser lautet im Fall $Y = \mathbb{N}$:

Sei $f_l(x):[a,b] \to \mathbb{R}$ eine Folge auf [a,b] differenzierbarer Funktionen. Ist die reelle Folge $f_l(x)$ für jedes feste $x \in [a,b]$ absolut summierbar, und gilt unabhängig von x für die Ableitungen eine Abschätzung $|f'_l(x)| \le F_l$ für eine absolut summierbare reelle Folge F_l . Dann ist

$$f(x) = \sum_{l=0}^{\infty} f_l(x)$$

wohldefiniert und differenzierbar auf [a,b] mit Ableitung $f'(x) = \sum_{l=0}^{\infty} f'_l(x)$.

 $f_l'(x)=la_lx^{l-1}$ lässt sich für $|x|\leqslant \rho q$ durch die absolut summierbare geometrische Folge $F_l=C\tilde{q}^{l-1},\, |\tilde{q}|<1$ abschätzen wegen (obdA für $|x|=q\rho$)

$$|f'_l(x)| = |a_l l x^{l-1}| \leqslant C_\rho q^l \frac{l}{|x|} \leqslant C_\rho \tilde{C} (1+\varepsilon)^l q^l / \rho q = C \cdot \tilde{q}^{l-1}.$$

Dies benutzt natürlich $|a_lx^l| \leqslant C_\rho \rho^l$. Also ist f(x) differenzierbar im Intervall $[-q\rho,q\rho]$, und die Potenzreihe kann dort gliedweise abgeleitet werden, und die abgeleitete Potenzreihe besitzt (mindestens) denselben Konvergenzradius R. Iteriert man diesen Schluß, und betrachtet $q \to 1$ und $\rho \to R$, folgt

Satz 4.37. Ist der Konvergenzradius R der Potenzreihe $f(x) = \sum_{l=0}^{\infty} a_l x^l$ echt grösser als 0, dann ist im Bereich $\|x\| < R$ die Funktion f(x) unendlich oft differenzierbar und die Potenzreihe ist gliedweise ableitbar

$$f'(x) = \sum_{l=0}^{\infty} la_l x^{l-1},$$

wobei der Konvergenzradius der Ableitung wieder R ist.

Im Fall R > 0 folgt durch n-faches Ableiten der Potenzreihe f(x) die Formel $f^{(n)}(x) = n! \cdot a_n + \sum_{l>n} a_l(x^l)^{(n)}$. Setzt man x=0 wird die Summe Null. Also

Lemma 4.38. Ist der Konvergenzradius der Potenzreihe $f(x) = \sum_{n=0}^{\infty} a_n x^n$ echt größer als 0, dann gilt

$$a_n = \frac{f^{(n)}(0)}{n!} \ .$$

Insbesondere sind alle Koeffizienten a_n durch f(x) eindeutig bestimmt.

Im folgenden geben wir einige einfache, aber fundamentale Beispiele für Potenzreihen:

Die Funktion $f(t)=(1+t)^{\alpha}$ ist auf $X=(-1,\infty)$ differenzierbar und die eindeutig bestimmte Lösung der linearen Differentialgleichung $(1+t)f'(t)=\alpha\cdot f(t)$ zum Anfangswert f(0)=1. Es folgt für $\binom{\alpha}{n}=\frac{1}{n!}\prod_{i=1}^n(\alpha+1-i)$ dann 19

Lemma 4.39. Für alle $t \in (-1,1)$ und $\alpha \in \mathbb{R}$ gilt

$$(1+t)^{\alpha} = \sum_{n=0}^{\infty} {\binom{\alpha}{n}} \cdot t^n.$$

Beweis. Die Differentialgleichung folgt aus $n \cdot {\alpha \choose n} + (n+1) \cdot {\alpha \choose n+1} = \alpha \cdot {\alpha \choose n}$ und ${\alpha \choose 0} = 1$ und gliedweises Ableiten.

Analog zeigt man

Lemma 4.40. Für alle $t \in (-1,1)$ gilt $\log(1+t) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{t^n}{n}$.

Satz 4.41. Für alle $t \in \mathbb{R}$ gilt²⁰

$$\exp(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} .$$

Allgemeiner ist für eine $n \times n$ -Matrix X die Matrix Exponentialfunktion

$$f(t) = \exp(tX) = \sum_{n=0}^{\infty} \frac{X^n}{n!} t^n$$

erklärt als matrixwertige Funktion $f: \mathbb{R} \to M_{nn}(\mathbb{R})$, und ist dabei eindeutig bestimmt durch die lineare Differentialgleichung

$$\frac{d}{dt}f(t) = X \circ f(t) \quad , \quad f(0) = id .$$

Für $t, t' \in \mathbb{R}$ gilt die Matrix-Funktionalgleichung

$$\exp(tX) \circ \exp(t'X) = \exp((t+t')X).$$

¹⁹Für $0 < \rho := |x| < 1$ gilt $|\binom{\alpha}{l}\rho^l| \leqslant C|1 - \frac{\alpha+1}{l_0}|^l\rho^l \leqslant C$ für alle $l \geqslant l_0$, wenn l_0 so groß ist daß $|1 - \frac{\alpha+1}{l_0}|\rho < 1$ und $l_0 < |\alpha+1|$. Hierbei ist C eine geeignet gewählte von l unabhängige Konstante. Also ist der Konvergenzradius $R \geqslant 1$.

 $^{^{20}}$ Für beliebiges ρ gilt $|\frac{\rho^l}{l!}|\leqslant C\cdot |\frac{\rho}{l_0}|^l\leqslant C$ für $l\geqslant l_0,$ falls l_0 so groß ist, daß $|\frac{\rho}{l_0}|<1.$ Hierbei ist obdA $C=\prod_{1\leqslant i< l_0}\frac{l_0}{i}.$ Also ist der Konvergenzradius $R=+\infty.$

Insbesondere ist $\exp(tX)$ eine invertierbare Matrix

$$\exp(tX) \in Gl(n, \mathbb{R})$$

mit Umkehrmatrix $\exp(-tX)$. Zum Beweis der Funktionalgleichung genügt, daß beide Seiten dieselbe Differentialgleichung $\frac{d}{dt}F(t)=X\circ F(t)\circ \exp(t'X)$ erfüllen mit $F(0)=\exp(t'X)$.

Ähnlich gilt $\exp(tX) \in Gl(n,\mathbb{C})$ für komplexe Matrizen $X \in M_{n,n}(\mathbb{C})$. Eine komplexe Matrix $M \in M_{n,n}(\mathbb{C})$ heißt **unitär**, wenn $M^{\dagger} \circ M = id$ gilt. Hierbei bezeichne $M^{\dagger} = {}^T\overline{M}$ die hermitesch transponierte Matrix. Eine Matrix $X \in M_{n,n}$ heißt **antihermitesch**, wenn gilt $X^{\dagger} = -X$. Die antihermiteschen Matrizen bilden eine **Lie Algebra** wegen $[X,Y]^{\dagger} = (XY - YX)^{\dagger} = Y^{\dagger}X^{\dagger} - X^{\dagger}Y^{\dagger} = (-Y)(-X) - (-X)(-Y) = -(XY - YX) = -[X,Y]$ für antihermitesche Matrizen X,Y.

Lemma 4.42. Für $M \in M_{n,n}(\mathbb{C})$ gilt: $\exp(tX)$ ist unitär für alle $t \in \mathbb{R}$ genau dann wenn X antihermitesch ist.

Beweis. Ist $\exp(tX)$ unitär für alle $t \in \mathbb{R}$, gilt $\exp(tX)^{\dagger} \circ \exp(tX) = id$. Durch Ableiten folgt aus der Produktregel $(X \exp(tX))^{\dagger} \circ \exp(tX) + \exp(tX)^{\dagger} \circ X \exp(tX) = 0$. Setzt man t = 0, folgt $X^{\dagger} + X = 0$.

Ist umgekehrt X antihermitesch, dann gilt $\exp(tX)^{\dagger} \circ \exp(tX) = \exp(tX^{\dagger}) \circ \exp(tX) = \exp(-tX) \circ \exp(tX) = \exp(0) = id$. Im ersten Schritt wurde die Stetigkeit der Abbildung (.) † benutzt, im zweiten Schritt die Annahme $X^{\dagger} = -X$ und im letzten Schritt die Matrix-Funktionalgleichung der Exponentialfunktion.

Übungsaufgabe. Zeige für reelles t die Aussage

$$\exp(it) = \cos(t) + i \cdot \sin(t)$$

5 Ausgewählte Anwendungen I

5.1 Wegintegrale

Sei U eine offene Teilmenge im \mathbb{R}^n und

$$\omega = \sum_{i=1}^{n} F_i(x) dx_i$$

eine 1-Form $\omega \in A^1(U)$ auf U. Ein **Weg** $\gamma : [a,b] \to U$ ist eine stückweise stetig differenzierbare Funktion auf [a,b] (mit Stützstellen $a=t_0 \leqslant t_1 \leqslant \ldots \leqslant t_{r-1} \leqslant t_r=b$); d.h. γ ist stetig differenzierbar auf jedem der Teilintervalle $[t_{i-1},t_i]$. Wir definieren dann das **Wegintegral**

$$\boxed{\int_{\gamma} \omega := \sum_{i=1}^{r} \int_{t_{i-1}}^{t_i} \gamma^*(\omega)}.$$

Beachte $\gamma^*(dx_i) = d\gamma^*(x_i) = d\gamma_i(t) = \dot{\gamma}_i(t)dt$ (Ableitung nach t), also

$$\gamma^*(\omega)(t) = \sum_i \gamma^*(F_i(x)dx_i) = \left(\sum_i F_i(\gamma(t))\dot{\gamma}_i(t)\right) = \langle F(\gamma(t)), \dot{\gamma}(t)\rangle \cdot dt$$

(Skalarprodukt). Besitzt ω eine Stammfunktion ϕ , d.h. gilt $\omega = d\phi$ für ein $\phi \in A^0(U)$, dann gilt

$$\int_{\gamma} d\phi = \phi(B) - \phi(A)$$

für $P=\gamma(a)$ (Anfangspunkt) und $B=\gamma(b)$ (Endpunkt des Weges). Das heißt, in diesem Fall hängt das Wegintegral nur vom Anfangsounkt A und vom Endpunkt B des Weges ab. Dies ist klar, denn dann gilt

$$\int_{t_{i-1}}^{t_i} \gamma^*(\omega) = \int_{t_{i-1}}^{t_i} \gamma^*(d\phi) = \int_{t_{i-1}}^{t_i} d(\phi(\gamma(t))) = \int_{t_{i-1}}^{t_i} \phi(\gamma(t))'dt = \phi(\gamma(t_i)) - \phi(\gamma(t_{i-1})).$$

Also ist $\int_{\gamma} d\phi$ als teleskopierende Summe gleich $\phi(\gamma(t_r)) - \phi(\gamma(t_0))$.

In der klassischen Mechanik kann eine 1-Form ω im \mathbb{R}^n als **Kraft** aufgefaßt werden (speziell im Fall n=3), und $\int_{\gamma} \omega$ als **Arbeit** entlang des Weges γ . Ist die Kraft ω von der Form $\omega=d\phi$, nennt man ϕ ein **Potential**. Eine Kraft heißt **konservativ**, wenn die Arbeit nicht vom Weg γ , sondern nur von dem Anfangspunkt $P=\gamma(a)$ und vom Endpunkt $B=\gamma(b)$ des Weges abhängt. Offensichtlich äquivalent dazu ist, daß das Wegintegral $\int_{\gamma} \omega$ für jeden geschlossenen Weg γ in U, d.h mit $\gamma(a)=\gamma(b)$, verschwindet.

Satz 5.1. Sei $\omega \in A^1(U)$. Verschwindet für jeden geschlossenen Weg γ in U das Wegintegral $\int_{\gamma} \omega = 0$, dann gilt $d\omega = 0$.

Beweis. Für $\xi \in U$ wählen wir ein kleines Quadrat Q (in der x_i, x_j -Ebene) um ξ in U. Nach Annahme gilt $\int_{\partial Q} \omega|_{\partial Q} = 0$. Also $\int_Q d\omega = \int_{\partial Q} \omega|_{\partial Q} = 0$ (Satz von Stokes). Sei $d\omega = \sum_{\nu < \mu} \omega_{\nu\mu}(x) dx_{\nu} \wedge dx_{\mu}$, dann ist $\int_Q d\omega = \int_{a_i}^{b_i} \int_{a_j}^{b_j} \omega_{ij}(\xi_1,...,x_i,...,x_j,...,\xi_n) dx_i dx_j$ also Null. Lässt man das Quadrat schrumpfen, konvergiert $\int_Q d\omega/vol(Q)$ gegen $\omega_{ij}(\xi)$. Es folgt $\omega_{ij}(\xi) = 0$ für alle i,j und damit $d\omega = 0$.

Aus dem Poincare Lemma und dem letzten Satz folgt daher

Satz 5.2. Ist U sternförmig. Dann ist eine Form $\omega \in A^1(U)$ konservativ (mit Potential ϕ) genau dann, wenn $d\omega = 0$ gilt. Das Potential ϕ ist eindeutig durch ω bestimmt bis auf eine Konstante.

Bemerkung. Sei $x_0 = 0$ ein Sternmittelpunkt von U. Aus der Homotopie Formel dI + Id = id (siehe Sektion 4.13) und $d\omega = 0$ ergibt sich $\phi(x) = I(\omega)(x)$, also

$$\phi(x) = \sum_{i=1}^{n} \int_{0}^{1} x_i F_i(tx) dt$$

in Übereinstimmung mit der obigen Formel $\phi(x)-\phi(0)=\int_{\gamma}\omega=\int_{0}^{1}\langle F(\gamma(t)),\dot{\gamma}(t)\rangle\cdot dt$, bei Wahl des speziellen geraden Weges $\gamma(t)=tx$.

Satz 5.3. Eine Form $\omega \in A^1(U)$ ist konservativ genau dann, wenn ein $\phi \in A^0(U)$ existiert mit $d\phi = \omega$.

Existiert ein Potential, dann ist die Kraft konservativ. Die Umkehrung: ObdA kann man jeden Punkt in U mit einem fixierten Punkt x_0 durch einen Weg verbinden. Dann setzt man $\phi(x):=\int_{\gamma}\omega$ für einen beliebigen Weg γ mit Anfangspunkt x_0 und Endpunkt x. Um $d\phi=\omega$, in einem beliebigen Punkt $\xi\in U$, zu zeigen, kann man U durch eine offene nichtleere Kreisscheibe $V=K_{\varepsilon}(\xi)\subset U$ ersetzen wegen $\phi(x)=\phi(\xi)+\int_{\gamma}\omega$ (für einen Weg γ in V von ξ nach x). Die Behauptung folgt dann, in der sternförmigen Menge V, aus Satz 5.3 und der nach diesem Satz folgenden Bemerkung.

Beispiel. Sei

$$\omega = \frac{dz}{z} = \frac{(x - iy) \cdot (dx + idy)}{x^2 + y^2} = \frac{xdx + ydy}{r^2} + i\frac{xdy - ydx}{x^2 + y^2} = dlog(r) + i \cdot \omega.$$

Dies ist eine komplexwertige C^{∞} -Form auf $U=\mathbb{R}^2\backslash 0$. Ihr Realteil $\frac{xdx+ydy}{x^2+y^2}$ ist konservativ mit Potential log(r) in U. Ihr Imaginärteil $\omega=\frac{xdy-ydx}{x^2+y^2}$ ist nicht konservativ. Nach Sektion 4.13 gilt $\int_{\gamma}\omega=2\pi$ für den geschlossenen Kreisweg $\gamma:[0,2\pi]\to U$ definiert durch $\gamma(t)=(\cos(t),\sin(t))$. Dies liefert für den Kreisweg γ das Wegintegral

$$\int_{\gamma} \frac{dz}{z} = 2\pi i \ .$$

5.2 Holomorphe Funktionen

Eine Differentialform mit komplexen Koeffizienten $\omega = \alpha + i\beta$ wird definiert durch zwei reelle Differentialformen α und β , die man den Real- bzw. Imaginärteil von ω nennt. Für komplexwertige 1-Formen erklärt man das Wegintegral durch

$$\int_{\gamma} \omega = \int_{\gamma} \alpha + i \cdot \int_{\gamma} \beta.$$

Sei nun U eine offene Teilmenge der komplexen Ebene $\mathbb{C}=\mathbb{R}^2$. Für Funktionen f auf U schreiben wir dann häufig f(z)=f(x,y), falls $z=x+iy\in U$. Sei $\beta\in A^1(U)$ eine reelle 1-Form auf U. Diese lässt sich schreiben in der Gestalt $\beta=v(x,y)dx+u(x,y)dy$ für Funktionen $u,v\in C^\infty(U)$. Diese reelle 1-Form lässt sich interpretieren als Imaginärteil der komplexen 1-Form auf U

$$\omega = (u(x,y)dx - v(x,y)dy) + i \cdot (v(x,y)dx + u(x,y)dy).$$

Für die komplexwertige C^{∞} -Funktion f(z) = u(x,y) + iv(x,y) auf U und die komplexwertige 1-Form dz := dx + idy gilt dann (duch Ausmultiplizieren)

$$\omega = f(z) \cdot dz = (u + iv)(dx + idy).$$

Lemma 5.4. *Mit den obigen Annahmen und Bezeichnungen sind die folgenden Eigenschaften äquivalent:*

- 1. Auf U gilt $d\omega = 0$.
- 2. Auf U gelten die Cauchy-Riemann Differentialgleichungen $\partial_y v = \partial_x u$ und $\partial_x v = -\partial_y u$, oder kurz: $(\partial_x + i\partial_y)(u + iv) = 0$.
- 3. Die Jacobimatrix Df(z) der Abbildung $f: U \to \mathbb{C} = \mathbb{R}^2$ hat für alle $z \in U$ die Gestalt

$$Df(z) = \begin{pmatrix} a(z) & b(z) \\ -b(z) & a(z) \end{pmatrix}.$$

Beweis. Dies folgt unmittelbar aus $d\omega = -(\partial_y u + \partial_x v)dx \wedge dy - i(\partial_y v - \partial_x u)dx \wedge dy$. \square

Definition 5.5. Eine komplexwertige Funktion $f: U \to \mathbb{C}$ der Gestalt f(z) = u(z) + iv(z) mit $u, v \in C^{\infty}(U)$ heißt **holomorph** auf U, wenn die drei äquivalenten Bedingungen des letzten Lemmas für f erfüllt sind.

Beispiel. Die Funktion f(z)=z ist offensichtlich holomorph auf ganz $\mathbb C$. Wegen u(z)=x und v(z)=y verifiziert man sofort die Cauchy-Riemann Differentialgleichungen.

Lemma 5.6. Die auf U holomorphen Funktionen bilden einen Unterring $\mathcal{O}(U)$ des Rings $C^{\infty}(U,\mathbb{C})$. Für $f,g\in\mathcal{O}(U)$ mit $g(z)\neq 0$ auf U ist auch f(z)/g(z) holomorph auf U.

Lemma 5.7. Sind $f: U \to V$ und $g: V \to W$ holomorphe Funktionen und U, V, W offene Teilmengen von \mathbb{C} , dann ist auch $g \circ f: U \to W$ holomorph.

Lemma 5.8. Ist $f: U \to \mathbb{C}$ holomorph, dann sind Realteil u(x,y) und Imaginärteil v(x,y) reelle **harmonische**¹ Funktionen auf U, ebenso log(|f(z)|) im Komplement der Nullstellen.

Das erste der drei letzten Lemmata folgt sofort aus der Produktregel mit Hilfe der Cauchy-Riemann Differentialgleichungen D(fg) = D(f)g + fD(g) = 0 für $D = \partial_x + i\partial_y$ und $f,g \in \mathcal{O}(U)$. Das zweite folgt aus der Kettenregel mit Hilfe von Lemma 5.4.3. Das dritte folgt aus $\Delta = \partial_x^2 + \partial_y^2 = (\partial_x - i\partial_y)(\partial_x + i\partial_y)$, d.h. $(\partial_x + i\partial_y)f = 0 \Rightarrow \Delta f = 0$.

5.3 Vektorfelder

Sei U eine offene Teilmenge $U \subseteq \mathbb{R}^n$. Ein Vektorfeld X auf U ist ein Differentialoperator

$$X = \sum_{i=1}^{n} a_i(x) \cdot \partial_i$$

mit Koeffizienten $a_i(x) \in C^\infty(U)$. Hierbei faßt man die ∂_i als Differentialoperatoren auf. Das heißt, man kann ein Vektorfeld X auf eine Funktion $f \in C^\infty(U)$ anwenden in der Form $(Xf)(x) = \sum_{i=1}^n a_i(x) \cdot \partial_i(f)(x)$, und erhält wieder eine Funktion $Xf \in C^\infty(U)$. Auf diese Weise definiert ein Vektorfeld X eine \mathbb{R} -lineare Abbildung

$$X: C^{\infty}(U) \to C^{\infty}(U)$$

mit der Derivationseigenschaft

$$X(f \cdot g) = X(f) \cdot g + f \cdot X(g)$$

die unmittelbar aus der Definition sich ergibt.

Sind $X=\sum_{i=1}^n a_i(x)\cdot\partial_i$ und $Y=\sum_{i=1}^n b_i(x)\cdot\partial_i$ Vektorfelder, dann ist auch der **Kommutator**

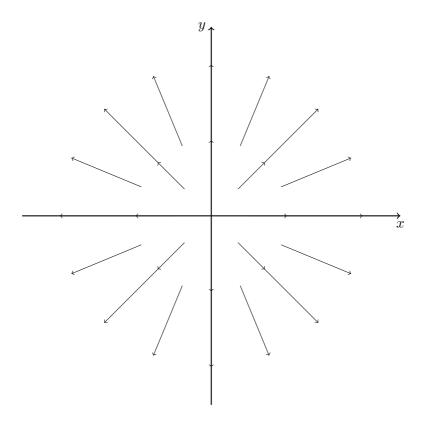
$$[X,Y] = X \circ Y - Y \circ X$$

wieder ein Vektorfeld. In der Tat ist [X,Y] a priori ein Differentialoperator zweiter Ordnung, aber die zweiten Ableitungen $\sum_{i,j} a_i(x)b_j(x) \left(\partial_i\partial_j - \partial_j\partial_i\right)$ kürzen sich weg wegen Satz 4.11. Die genaue Rechnung zeigt $(X \circ Y - Y \circ X)f(x) = \sum_{i=1}^n c_i(x) \cdot \partial_i(f)(x)$ mit den Koeffizienten $c_i(x) = a_i(x)\partial_i(b_i)(x) - b_i(x)\partial_i(a_i(x))$ in $C^{\infty}(U)$.

Ein Vektorfeld $X = \sum_{i=1}^{n} a_i(x) \cdot \partial_i$ lässt sich visualisieren, indem man an jedem Punkt $\xi \in U$ den Vektor $(a_1(\xi), ..., a_n(\xi))$ anfügt.

¹siehe Abschnitt 5.4.

Beispiel. Das Eulerfeld E



Eine nicht identisch verschwindende Funktion f(x) auf $\mathbb{R}^n \setminus \{0\}$ heisst **homogen** vom Grad α , wenn für reelles t > 0 gilt

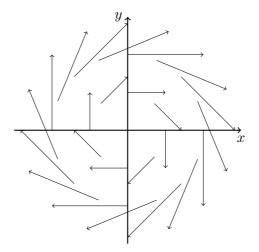
$$f(t \cdot x) = t^{\alpha} \cdot f(x) .$$

Der Grad $\alpha \in \mathbb{R}$ ist dann eindeutig bestimmt. Eine homogene Funktionen ist durch ihre Werte auf der Sphäre X vom Radius $\|x\|=1$ eindeutig bestimmt. Ist f(x) ein Polynom, dann ist $\alpha=l$ notwendiger Weise eine natürliche Zahl l=0,1,2,3,...

Lemma 5.9. Sei f(x) differenzierbar auf $\mathbb{R}^n \setminus \{0\}$. Dann ist f(x) homogen vom Grad α genau dann, wenn für den **Euler Operator** $E = \sum_i x_i \partial_i$ gilt $Ef = \alpha \cdot f$.

Beweis. Im Fall $Ef=\alpha f$ ist g(t)=f(tx) wegen $\alpha f(tx)=(Ef)(tx)=\sum_{\nu}x_{\nu}\partial_{\nu}f(tx)=t(\sum_{\nu}x_{\nu}(\partial_{\nu}f)(tx)=t\frac{d}{dt}f(tx)$ eine Lösung der Differentialgleichung $\frac{d}{dt}g(t)=\frac{\alpha}{t}\cdot g(t)$ mit g(1)=f(x). Also $g(t)=t^{\alpha}\cdot f(x)$ wegen Satz 4.18. Die Umkehrung ist trivial.

Ein anderes Beispiel liefert das **Drehfeld** $L_{21} = -L_{12} = y\partial_x - x\partial_y$



Ist f(x) homogen vom Grad α , dann sind die partiellen Ableitungen $\partial_{\nu}f$ homogen vom Grad $\alpha-1$. Die Differentialoperatoren $E=\sum_{\nu=1}x_{\nu}\partial_{\nu}$ und $L_{\nu\mu}=x_{\nu}\partial_{\mu}-x_{\mu}\partial_{\nu}$ erhalten daher sogar den Homogenitätsgrad. Beachte $L_{\nu\mu}=-L_{\mu\nu}$. Wir nehmen daher immer an $\nu\neq\mu$. Dann ist²

$$[L_{\alpha\beta}, L_{\beta\gamma}] = L_{\alpha\gamma}$$

für $\alpha \neq \gamma$ und Null sonst. Ebenso $[L_{\alpha\beta}, L_{\gamma,\delta}] = 0$ falls $\{\alpha, \beta\} \cap \{\gamma, \delta\} = \emptyset$. Also ist $\sum_{\nu < \mu} \mathbb{R} \cdot L_{\nu\mu}$ eine **Lie Algebra**, d.h. abgeschlossen unter Kommutatorbildung.

Lemma 5.10. Der Operator $L^2 := \sum_{\alpha < \beta} (L_{\alpha\beta})^2$ vertauscht mit allen $L_{\nu\mu}$

$$[L^2, L_{\nu\mu}] = 0.$$

Beweis. Sei obdA $L_{\nu\mu}=L_{12}$. Dann vertauscht L_{12} mit $L_{\alpha\beta}^2$ ausser wenn genau einer der beiden Indizes α,β in $\{1,2\}$ liegt. Es gilt $[L_{12},L_{1\alpha}^2]=(L_{12}L_{1\alpha}-L_{1\alpha}L_{12})L_{1\alpha}+L_{1\alpha}(L_{12}L_{1\alpha}-L_{1\alpha}L_{12})=[L_{12},L_{1\alpha}]L_{1\alpha}-L_{1\alpha}[L_{12},L_{1\alpha}]=-L_{2\alpha}L_{1\alpha}-L_{1\alpha}L_{2\alpha}$ für $\alpha \neq 1,2$. Analog $[L_{12},L_{2\alpha}^2]=[L_{12},L_{2\alpha}]L_{2\alpha}+L_{2\alpha}[L_{12},L_{2\alpha}]=L_{1\alpha}L_{2\alpha}+L_{2\alpha}L_{1\alpha}$. Aufsummation über alle $\alpha \geqslant 3$ gibt Null.

Es gilt $L_{\nu\mu}(r^2)=0$ für $r^2=\sum_{j=1}^n x_j^2$. Umgekehrt gilt: Jedes Polynom $P(x_1,..,x_n)$ mit $L_{\nu\mu}P=0$ für alle ν,μ ist ein Polynom in r^2 . [Benutze Induktion nach n.]

5.4 Harmonische Funktionen

Der Laplace Operator

$$\Delta = \sum_{i=1}^{n} \partial_i^2$$

 $[\]overline{{}^{2}L_{\alpha\beta}L_{\beta\gamma}-L_{\beta\gamma}L_{\alpha\beta}=(x_{\alpha}\partial_{\beta}-x_{\beta}\partial_{\alpha})(x_{\beta}\partial_{\gamma}-x_{\gamma}\partial_{\beta})-(x_{\beta}\partial_{\gamma}-x_{\gamma}\partial_{\beta})(x_{\alpha}\partial_{\beta}-x_{\beta}\partial_{\alpha})}=x_{\alpha}\partial_{\gamma}-x_{\gamma}\partial_{\alpha}=L_{\alpha\gamma}.$

bildet homogene Funktionen vom Grad α auf homogene Funktionen vom Grad $\alpha-2$ ab, und es gilt (Übungsaufgabe und obd An=2)

$$\left[\Delta, L_{\nu\mu}\right] = 0 \ .$$

Für $r^2=\sum_{i=1}^n x_i^2$ erhält der Operator $r^2\Delta$ den Grad α und man zeigt leicht $[r^2\Delta,E]=0$. Beispiel:

$$\Delta r^{\alpha} = \alpha(\alpha + n - 2) \cdot r^{\alpha - 2}.$$

[Aus $2r\partial_i(r)=2x_i$ folgt $\partial_i(r)=\frac{x_i}{r}$. Deshalb gilt $\Delta(r^\alpha)=\alpha\sum_i\partial_i(x_ir^{\alpha-2})=n\alpha r^{\alpha-2}+\alpha(\alpha-2)r^2r^{\alpha-4}$]. Analog zeigt man $\Delta log(r)=(n-2)r^{-2}$.

Sei $U \subset \mathbb{R}^n$ offen. Eine Funktion $f \in C^2(U)$ heisst **harmonisch**, wenn für den Laplace Operator Δ gilt

$$\Delta f = 0$$
.

Konstante Funktionen und lineare Polynome sind harmonische Funktionen. Wie wir oben gezeigt haben ist für $n \neq 2$ die homogene Funktion

$$f(x) = \frac{1}{r^{n-2}} \quad , \quad \kappa := n - 2$$

harmonisch. Diese Funktion besitzt eine Singularität³ im Ursprung in den Dimensionen $n \ge 3$. Der Fall n = 2 ist exzeptionell. Man hat hier nur die singuläre harmonische Funktion f(x) = log(r) auf $\mathbb{R}^2 \setminus 0$, welche aber nicht homogen vom Grad Null ist: Es gilt f(tx) = log(t) + f(x) mit einer Konstante log(t).

Inversion am Kreis. Sei $f^0(x)=f(\frac{x}{\|x\|^2})$ oder $f^0(x_1,...,x_n):=f(\frac{x_1}{r^2},...,\frac{x_n}{r^2})$ für eine Funktion f auf $\mathbb{R}^n\backslash 0$. Ist f homogen vom Grad α , so ist f^0 homogen vom Grad $-\alpha$.

Sei nun $U = \mathbb{R}^n \setminus 0$, und $\kappa = n - 2$. Wir betrachten die **Kelvin Transformation**

$$f^*(x) := r^{-\kappa} f(\frac{x}{\|x\|^2}).$$

Dann ist $f^*(x) \in C^2(U)$ falls $f \in C^2(U)$, und es gilt $f^{**} = f$. Ist f homogen vom Grad α , dann ist f^* homogen vom Grad $-\kappa - \alpha$.

Lemma 5.11 (Kelvin). Für $n \neq 2$ und $r^2 = \sum_{i=1}^n x_i^2$ gilt

$$\boxed{r^2\Delta(f^*(x)) = (r^2\Delta f)^*(x)}.$$

Insbesondere ist $f^*(x)$ harmonisch, wenn f(x) harmonisch ist.

 $^{^{3}}$ Im Fall n=3 ist dies bis auf eine Konstante das Coulomb Potential.

5.5 Taylor Koeffizienten

Sei U eine offene Kugel um $x_0 = 0 \in \mathbb{R}^n$ und $f \in C^r(U)$. Für $l \le r$ ist dann der l-te **Taylor** Koeffizient $T_l(f)(x)$ von f im Punkt $x_0 = 0$ definiert durch (für $t \in \mathbb{R}$ bei festem x)

$$T_l(f)(x) = \frac{\partial_t^m}{m!} f(tx)_{t=0} .$$

Die so definierte Funktion ist ein homogenes Polynom in x vom Grad l, dessen Koeffizienten bis auf universelle Konstanten⁶ die partielle Ableitungen von f im Punkt x_0 sind. Dies zeigt man leicht mit Hilfe der Kettenregel und Induktion nach l.

Beispiel 1. Ist f(x) ein homogenes Polynom vom Grad m, d.h. gilt $f(tx) = t^m f(x)$, dann ist $T_l(f)(x) = 0$ für $l \neq m$ und $T_l(f)(x) = f(x)$ für l = m.

Beispiel 2. Aus Beispiel 1 folgt für die Funktion $g(x) = f(x) - \sum_{l=0}^{r} T_l(f)(x)$ sofort $T_l(g)(x) = 0$ für l = 0, ..., r.

Beispiel 3. Ist $f(x) = \sum_{l=0}^{\infty} P_l(x)$ eine Potenzreihe mit homogenen Polynomen $P_l(x)$ vom Grad l und Konvergenzradius R > 0. Dann ist $f(tx) = \sum_{l=0}^{\infty} P_l(x) t^l$, und aus Lemma 4.38 folgt $T_l(f)(x) = P_l(x)$.

Beispiel 4. Ist f(x) eine harmonische Funktion, dann sind die $T_l(f)(x)$ harmonische Polynome, denn es gilt $\Delta T_l(f)(x) = \Delta \frac{\partial_t^m}{m!} f(tx)_{t=0} = \frac{\partial_t^m}{m!} t^2(\Delta f)(tx)_{t=0} = 0$. (Analog zeigt man: Ist f(z) holomorph, dann sind alle $T_l(f)(z)$ holomorph).

 $^4\text{Für }f^0(x) = f(\frac{x}{\|x\|^2}) \text{ gilt } \Delta(\frac{f^0}{r^\kappa}) = \Delta(\frac{1}{r^\kappa})f + 2\sum_i \partial_i(r^{-\kappa})\partial_i(f^0) + r^{-\kappa}\Delta(f^0) \text{ mit } \Delta(\frac{1}{r^\kappa}) = 0. \text{ Wegen Formel } 1 \text{ und } 4 \text{ ist der Term } 2\sum_i \partial_i(r^{-\kappa})\partial_i(f^0) \text{ gleich } 1 \text{ glei$

$$-\frac{2\kappa}{r^{\kappa+2}} \sum_{i} \sum_{j} x_i(f_j)^0 T_{ij} = \frac{2\kappa}{r^{\kappa+4}} \sum_{j} x_j(f_j)^0.$$

Wegen Formel 1 ist $r^{-\kappa}\Delta(f^0)$ gleich $\frac{1}{r^{\kappa}}\sum_i\sum_j\partial_i((f_j)^0T_{ij})$, und aus Formel 2 und 3 folgt daher die Behauptung $\Delta(f^*)=r^{-4}\Delta(f)^*$ vermöge

$$\frac{1}{r^{\kappa}} \sum_{i} \sum_{j} \sum_{k} (f_{kj})^{0} T_{ik} T_{ij} + \frac{1}{r^{\kappa}} \sum_{j} \sum_{i} (f_{j})^{0} \partial_{i} (T_{ij}) = \frac{(\Delta f)^{0}}{r^{\kappa+4}} - \frac{2\kappa}{r^{\kappa+4}} \sum_{j} x_{j} (f_{j})^{0}.$$

⁵Formeln. Beachte $\partial_i(r^{\alpha})=\alpha x_i r^{\alpha-2}$. Für $T_{ij}:=\partial_j(x_i r^{-2})=(\delta_{ij}r^2-2x_ix_j)r^{-4}$ und $f_j:=\partial_j f$ gilt

- 1. $\partial_i(f^0) = \sum_j (f_j)^0 T_{ij}$ (Kettenregel)
- $2. \qquad \sum_{i} T_{ij} T_{ik} = \delta_{jk} r^{-4}$
- 3. $\sum_{i} \partial_{i}(T_{ij}) = -2\kappa x_{j} r^{-4}$
- $4. \qquad \sum_{i} x_i T_{ij} = -x_j r^{-2}$

 $\text{wegen} \sum_i (\delta_{ij} r^2 - 2x_i x_j) (\delta_{ik} r^2 - 2x_i x_k) = \delta_{jk} r^4 - 2x_j x_k r^2 - 2x_j x_k r^2 + 4r^2 x_j x_k = \delta_{jk} r^4 \text{ und } \sum_i \partial_i (T_{ij}) = \partial_j (1/r^2) - 2n x_j / r^4 - 2E (x_j / r^4) = (-2 - 2n - 2(-3)) x_j / r^4 = -2\kappa x_j / r^4.$

 $^6\text{Mit Hilfe des Falls }f(x) = \prod_i x_i^{m_i} \text{ zeigt man } T_l(f)(x) \ = \ \sum_{m_1+\ldots+m_n=l} \frac{\underline{c_n^{m_1}}}{\underline{m_1!}} \cdots \frac{\underline{c_n^{m_n}}}{m_n!} f(0) \cdot \prod_{i=1}^n x_i^{m_i}.$

Die Funktion $H(x)=\frac{f(x)}{\|x\|^r}$ liegt in $C^r(U\setminus\{x_0\})$. Gilt $T_l(f)(x)=0$ für l=0,...,r, dann lässt sich H(x) zu einer stetigen Funktion auf U fortsetzen. [Beweis: Wie beim Beweis von Lemma 4.10 existiert für h(t)=f(tx) eine Folge $0<\theta_r<\cdots\theta_1< t$ mit $h(t)=t\cdot h'(\theta_1)=\cdots=t^rh^{(r)}(\theta_r)$. Es gilt $H(tx)=\frac{h^{(r)}(\theta_r)}{\|x\|^r}$. Wir können annehmen $\|x\|=const$ und damit $H(tx)=h^{(r)}(\theta_r)/const$. Wegen $T_l(f)(x)=0$ existiert für $\varepsilon>0$ ein $\delta>0$ so daß gilt

$$|h^{(r)}(\theta_r)| = |\frac{\partial_t^m}{m!} f(tx)_{t=\theta_r}| < \varepsilon \cdot const.$$

für alle $\|t\| < \delta$ (als Funktion von x ist das nämlich eine stetige Funktion mit Nullstelle bei x=0). Also $\|y\| < const \cdot \delta \Rightarrow |H(y)| = |h^{(r)}(\theta_r)|/const < \varepsilon$ für y=tx.] Zusammen mit Beispiel 2 folgt daraus die **Taylor Approximation**

Lemma 5.12. Für $f \in C^r(U)$ gibt es eine stetige Funktion $H: U \to \mathbb{R}$ mit H(0) = 0 und

$$f(x) = \sum_{l=0}^{r} T_l(f)(x) + ||x||^r \cdot H(x).$$

5.6 Harmonische Polynome

Sei $\mathcal{P}_l = \mathcal{P}_l(\mathbb{R}^n)$ der \mathbb{R} -Vektorraum aller Polynome P(x) in n Variablen, die homogen vom Grad l sind. Sei $\mathcal{H}_l = \mathcal{H}_l(\mathbb{R}^n) \subset \mathcal{P}_l(\mathbb{R}^n)$ der Unterraum der **harmonischen Polynome**.

Satz 5.13.
$$\dim_{\mathbb{R}}(\mathcal{H}_l) = \binom{n+l-1}{l} - \binom{n+l-3}{l-2}$$
 oder für $n \ge 3$ auch $\frac{n-2+2l}{n-2} \binom{n+l-3}{l}$.

Beispiel. Im Fall n=1 ist $\mathcal{H}_l=0$ für l>1. Im Fall n=2 gilt $\dim_{\mathbb{R}}(\mathcal{H}_l)=2$ für $l\geqslant 1$, und $\dim_{\mathbb{R}}(\mathcal{H}_0)=1$. Als Vektorraum wird \mathcal{H}_l von $Re(z^l)$ und $Im(z^l)$ aufgespannt $(z=x_1+ix_2)$.

Beispiel. Im Fall n=3 folgt $\dim_{\mathbb{R}}(\mathcal{H}_l)=2l+1$ für alle $l\geqslant 0$.

Lemma 5.14.
$$\dim_{\mathbb{R}}(\mathcal{P}_l) = \binom{n+l-1}{l}$$
.

Beweis. Induktion nach der Variablenzahl n. Ersetze die Variable x_n durch 1. Dies gibt genau die Polynome in $x_1, ..., x_{n-1}$ vom Grad $\leq l$. Also

$$\dim_{\mathbb{R}}(\mathcal{P}_{l}(\mathbb{R}^{n})) - \dim_{\mathbb{R}}(\mathcal{P}_{l-1}(\mathbb{R}^{n})) = \dim_{\mathbb{R}}(\mathcal{P}_{l}(\mathbb{R}^{n-1})),$$

wie die Rekursion
$$\binom{n+l-1}{l} - \binom{n+(l-1)-1}{(l-1)} = \binom{(n-1)+l-1}{l}$$
 der **Binomialkoeffizienten**.

Beispiel. Im Fall n=1 ist $\mathcal{P}_l=\mathbb{R}\cdot x^l$. Im Fall n=2 ist $\mathcal{P}_l=\mathbb{R}x^l+\mathbb{R}x^{l-1}y+\cdots+\mathbb{R}y^l$ von der Dimension l+1, und für n=3 gilt $\dim_{\mathbb{R}}(\mathcal{P}_l)=(l+1)(l+2)/2$.

Beweis von Satz 5.13: Sei $\Delta = \Delta_{n-1} + \partial_n^2$. Wir entwickeln $P \in \mathcal{H}_l(\mathbb{R}^n)$ nach der letzten Variable

$$P(x_1,..,x_n) = Q_l(x_1,..,x_{n-1}) + Q_{l-1}(x_1,..,x_{n-1})x_n + \cdots$$

Wegen $(\Delta_{n-1} + \partial_n^2)P = \Delta(P) = 0$ bestimmen die Polynome $Q_l \in \mathcal{P}_l(\mathbb{R}^{n-1})$ und $Q_{l-1} \in \mathcal{P}_{l-1}(\mathbb{R}^{n-1})$ das harmonische Polynome P eindeutig. Weiterhin können Q_l und Q_{l-1} vom Grad

 $\begin{array}{l} l \text{ resp } l-1 \text{ beliebig vorgegeben werden. Daraus folgt } \dim_{\mathbb{R}}(\mathcal{H}_{l}(\mathbb{R}^{n})) = \dim_{\mathbb{R}}(\mathcal{P}_{l}(\mathbb{R}^{n-1})) + \dim_{\mathbb{R}}(\mathcal{P}_{l-1}(\mathbb{R}^{n-1})) = \binom{n-1+l-1}{l} + \binom{n-1+l-2}{l-1} = \frac{n-2+2l}{n-2} \binom{n+l-3}{l} \text{ für } n \geqslant 3. \end{array}$

Die \mathbb{R} -wertige \mathbb{R} -bilineare Paarung auf \mathcal{P}_l definiert durch

$$\langle f, g \rangle = f(\partial)g(x)$$

ist symmetrisch und positiv definit wegen $\langle \prod_{\nu=1}^n x_{\nu}^{m_{\nu}}, \prod_{\nu=1}^n x_{\nu}^{k_{\nu}} \rangle = \prod_{\nu=1}^n (m_{\nu}! \delta_{m_{\nu},k_{\nu}})$. Sei $r^2 = x_1^2 + \dots + x_n^2$.

Lemma 5.15. Bezüglich der Paarung < ., . > existiert eine orthogonale Zerlegung

$$\boxed{\mathcal{P}_l = r^2 \cdot \mathcal{P}_{l-2} \oplus^{\perp} \mathcal{H}_l}.$$

Die Teilräume $r^2 \cdot \mathcal{P}_{l-2}$ und \mathcal{H}_l sind invariant unter den Operatoren $L_{\nu\mu}$.

Beweis. Nach Lemma 5.14 und Satz 5.13 gilt $\dim_{\mathbb{R}}(\mathcal{P}_l) = \dim_{\mathbb{R}}(r^2\mathcal{P}_{l-2}) + \dim_{\mathbb{R}}(\mathcal{H}_l)$. Es genügt also für $g(x) = r^2 \cdot f(x)$ im Durchschitt $r^2\mathcal{P}_{l-2} \cap \mathcal{H}_l$ zu zeigen g(x) = 0. Dies folgt wegen $\Delta g(x) = 0$ aus $\langle g(x), g(x) \rangle = \langle r^2 f(x), g(x) \rangle = \Delta f(\partial) g(x) = f(\partial) \Delta g(x) = \langle f(x), \Delta g(x) \rangle = 0$.

Wegen $L_{\nu\mu}(r^2) = x_{\nu} \cdot 2x_{\mu} - x_{\mu} \cdot 2x_{\nu} = 0$ gilt $L_{\nu\mu}(r^2g(x)) = L_{\nu\mu}(r^2)g(x) + r^2L_{\nu\mu}(g(x)) = r^2L_{\nu\mu}(g(x))$, also $L_{\nu\mu}(r^2\mathcal{P}_{l-2}) \subseteq (r^2\mathcal{P}_{l-2})$. Aus $\Delta L_{\nu\mu}f = L_{\nu\mu}\Delta f = 0$ für $f \in \mathcal{H}_l$ folgt $L_{\nu\mu}(\mathcal{H}_l) \subseteq \mathcal{H}_l$.

Das Bild des Monoms $(x_1)^l = x_1^l \in \mathcal{P}_l(\mathbb{R}^n)$ unter der harmonischen Projektion

$$\mathcal{P}_l(\mathbb{R}) = r^2 \cdot \mathcal{P}_l(\mathbb{R}^n) \oplus \mathcal{H}_l(\mathbb{R}^n) \xrightarrow{pr} \mathcal{H}_l(\mathbb{R}^n)$$

(die orthogonale Projektion des letzten Lemmas) ist das **zonal sphärische Polynom**

$$P_{l,0}(x) = pr(x_1^l).$$

Das Monom x_1^l , und damit auch $P_{l,0}(x)$, ist invariant unter orthogonalen Substitutionen, welche den Vektor (1,0,..,0) fest lassen. $P_{0,l}(x)$ wird von den $L_{\nu\mu}$ mit $\nu \neq 1, \mu \neq 1$ annuliert, und ist folglich (!) ein Polynom

$$P_{l,0}(x) = \sum_{i=0}^{l} a_i \cdot x_1^i r^{l-i}$$

nur der Variablen x_1 und r^2 mit $P_{l,0}(-x) = (-1)^l P_{l,0}(x)$.

Lemma 5.16 (Rodrigues Formel). Für $r^2 = 1$ und $n \ge 2$ gilt für eine Konstante⁷ const(l, n)

$$const(l,n) \cdot P_{l,0}(t) = (t^2 - 1)^{-\frac{n-3}{2}} \left(\frac{d}{dt}\right)^l (t^2 - 1)^{l + \frac{n-3}{2}}.$$

⁷Es gilt $const(l, n) = l!\binom{2l+n-3}{l}$.

Beweis. Nach Satz 4.18 ist der Lösungsraum der Gleichungen

$$(t^2 - 1)f''(t) + (n - 1)tf'(t) - l(l + n - 2)f(t) = 0$$

und $f(-x) = (-1)^l f(x)$ eindimensional. Die Funktion $f(t) = \sum_{i=0}^l a_i t^i$ erfüllt diese Bedingungen⁸ und die rechte Seite im Lemma ebenfalls (letzteres ist ein diffizile Übungsaufgabe).

Lemma 5.17. Der Operator L^2 ist auf $\mathcal{H}_l(\mathbb{R}^n)$ ein Vielfaches der Identität

$$\boxed{L^2 = -l(l+n-2) \cdot id_{\mathcal{H}_l(\mathbb{R}^n)}}.$$

Beweis. Polynome $P \in \mathcal{P}_l(\mathbb{R}^n)$, in denen die letzte Variable x_n höchstens linear vorkommt, bilden ein Komplement $V \cong \mathcal{P}_l(\mathbb{R}^{n-1}) \oplus x_n \cdot \mathcal{P}_{l-1}(\mathbb{R}^{n-1})$ von $W = r^2 \cdot \mathcal{P}_l(\mathbb{R}^n)$ in $\mathcal{P}_l(\mathbb{R}^n)$. $[V \cap W \text{ ist Null und } \dim(V) = \binom{n+l-2}{l} + \binom{n+l-3}{l-1} = \binom{n+l-1}{l} - \binom{n+l-3}{l-2} = \dim_{\mathbb{R}}(\mathcal{H}_l)$.] Also $\mathcal{H}_l = pr(V)$ nach Lemma 5.15. Aber jedes Monom in V lässt sich linear kombinieren durch Polynome, die durch sukzessives Anwenden von Operatoren $L_{\nu\mu}$ auf das Monom $P(x) = (x_1)^l$ entstehen (Übungsaufgabe). Wendet man daher sukzessive die Operatoren $L_{\nu,\mu}$ auf die Funktion $P_{l,0}$ an, erhält man ein Erzeugendensystem von \mathcal{H}_l .

Für $1<\alpha<\beta$ gilt $L_{\alpha\beta}x_1^l=0$. Wegen $L_{1\alpha}^2(x_1^l)=(x_1\partial_\alpha-x_\alpha\partial_1)(-x_\alpha lx_1^{l-1})=-lx_1^l+x_\alpha^2l(l-1)x_1^{l-2}$ liefert Summation über $\alpha\geqslant 2$ daher $L^2(x_1^l)=-l(n-1)x_1^l-l(l-1)x_1^l+l(l-1)r^2x_1^{l-2}=-l(l+n-2)x_1^l+l(l-1)r^2x_1^{l-2}$. Da L^2 mit der harmonischen Projektion vertauscht, folgt aus $pr(l(l-1)r^2x_1^{l-2})=0$ dann $L^2(P_{l,0})=-l(l+n-2)P_{l,0}$ für $P_{l,0}=pr(x_1^l)$. Da \mathcal{H}_l aus $P_{l,0}$ durch sukzessives Anwenden der $L_{\nu\mu}$ erzeugt wird, die Operatoren $L_{\nu\mu}$ aber mit L^2 vertauchen, folgt die Behauptung.

5.7 Drehimpuls Operatoren

Wir betrachten jetzt den dreidimensionalen Fall n=3 mit folgenden Abkürzungen: $L_1:=L_{32}=z\partial_y-y\partial_z,\,L_2:=L_{13}=x\partial_z-z\partial_x$ und $L_3:=L_{21}=y\partial_x-x\partial_y.$ Dann gilt

$$[L_1, L_2] = L_3$$
 , $[L_3, L_1] = L_2$, $[L_2, L_3] = L_1$.

Die Operatoren L_1, L_2, L_3 vertauschen mit dem Differentialoperator $L^2 = L_1^2 + L_2^2 + L_3^2$ und es gilt $L^2 = -l(l+1)$ auf \mathcal{H}_l .

Aus $L_1x^l=0$ und $L_1(r^2\mathcal{P}_{l-2})\subset r^2\mathcal{P}_{l-2}$ und $L_1\mathcal{H}_l\subset\mathcal{H}_l$ folgt $L_1P_{l,0}=0$. Die zonale Eigenfunktion $P_{l,0}$ von L_1 liefert neue Eigenfunktionen $P_{l,k}$ von L_1 . Setze dazu $L_\pm=L_2\mp i\cdot L_3$ für $i=\sqrt{-1}\in\mathbb{C}$. Sei $P_{l,k}:=(L_+)^kP_{l,0}$ für k>0 bzw. $P_{l,-k}=\overline{P_{l,k}}$ das konjugiert komplexe. Wegen $[L_1,L_\pm]=\pm iL_\pm$ gilt für Eigenvektoren $L_1v=mi\cdot v$ dann $L_1(L_\pm v)=L_\pm(L_1v)\pm iL_\pm v=(m\pm 1)i\cdot L_\pm v$. Also hat $L_\pm v$ den Eigenwert $(m\pm 1)\cdot i$, wenn $L_\pm v$ nicht verschwindet. Dies zeigt

$$\boxed{L_1 P_{l,k} = ki \cdot P_{l,k}} \quad (k \in \mathbb{Z}) .$$

Nun wollen wir untersuchen, wann $L_+(P)$ verschwindet. Wegen $L^2=(L_1)^2+(L_2)^2+(L_3)^2=-(iL_1)^2+(iL_1)+L_-L_+$ folgt aus $L_+(P)=0$ für einen Eigenvektor P von L_1 zum Eigenwert ki daher $L^2(P)=-k(k+1)\cdot P$. Andererseits ist L^2 gleich -l(l+1) auf \mathcal{H}_l . Aus $P_{l,k}\neq 0$ und $P_{l,k+1}=L_+P_{l,k}=0$ für $k\geqslant 0$ folgt daher l(l+1)=k(k+1), und damit k=l. Also sind die Funktionen $P_{l,k}$ für k=-l,...,0,...,l von Null verschieden

Korollar 5.18. Im Fall n=3 definieren die 2l+1 **Kugelflächenfunktionen** $P_{l,k}$ für k=-l,...,-1,0,1,...,l eine \mathbb{C} -Basis des Vektorraums \mathcal{H}_l der \mathbb{C} -wertigen harmonischen Polynome bestehend aus Eigenvektoren von L_1 und L^2 .

In der physikalischen Literatur werden L_1, L_2, L_3 (abgesehen von einem Normierungsfaktor) als **Drehimpuls Operatoren** bezeichnet. In der Quantenmechanik nennt man die Zahl l=0,1,2,... den **Spin**. In der Elektrodynamik spielen die Funktionen $P_{l,k}(x,y,z)$ eine Rolle bei Radialentwicklungen von Monopolen (l=0), Dipolen (l=1), Quadropolen (l=2), ... etc. Die Einschränkung $P_{l,k}(x,y,z)$ auf die Einheitssphäre im \mathbb{R}^3 nennt man **Kugelflächenfunktionen** $Y_{l,k}(x,y,z)$ vom Grad l. Man betrachtet diese oft in der Form der homogenen Funktionen $Y(x,y,z) = P(x,y,z)/r^l$ vom Grad Null (für $P \in \mathcal{H}_l$). Sie treten zum Beispiel bei der **Radialentwicklung von elektrostatischen Potentialen** auf Kugelschalen auf

$$U(x,y,z) = \sum_{l=0}^{\infty} \sum_{k=-l}^{l} (a_{lk}r^{l} + b_{lk}r^{-l-1}) \cdot Y_{l,k}(x,y,z) .$$

Hierbei sind a_{lk} , b_{lk} geeignete reelle Konstanten mit gleichmässiger Konvergenz auf kompakten Teilmengen (siehe Abschnitt 9.5). Die Polynome $r^l Y_{l,k} = P_{l,k}$ und ihre **Kelvin Transformierten** $r^{-l-1}Y_{l,k} = (P_{l,k})^*$ sind harmonisch. Die Funktionen $r^{-l-1}Y_{l,k} = (P_{l,k})^*$ erhält man auch durch partielles Ableiten der homogenen harmonischen Funktion $\frac{1}{r}$. Sie haben eine Singularität im Nullpunkt und klingen im Unendlichen ab, im Gegensatz zu den Polynomen $P_{l,k}$. Wir bemerken zum Abschluß, daß dies (ebenso wie das letzte Korollar) auf beliebige Dimensionen n verallgemeinert werden kann.

5.8 Maxwell Gleichungen

Im \mathbb{R}^n definiert man den Euklidischen *-Operator bis auf ein Vorzeichen durch * $dx_I=\pm dx_J$, wobei $J=I^c$ die Komplementärmenge von I in $\{1,..,n\}$ ist. Das verbleibende Vorzeichen wird bestimmt durch die Regel

$$dx_I \wedge *dx_I = \delta_{IJ} \cdot dx_1 \wedge ... \wedge dx_n$$
.

Ist $q_L(x) = \sum_{i=1}^n \lambda_i \cdot x_i^2$ eine quadratische Form⁹ mit $\lambda_i \neq 0$, dann definiert man den Operator $*_L dx_I$ mittels $dx_I \wedge *_L dx_I = \sqrt{\prod_{i=1}^n |\lambda_i|} (\prod_{i \in I} \lambda_i)^{-1} \delta_{IJ} \cdot dx_1 \wedge \ldots \wedge dx_n$.

Betrachte den Raum \mathbb{R}^4 mit den Koordinaten $v = (x, y, z, t) = (x_1, x_2, x_3, x_4)$. Notation: $dx_{13} = -dx_{31} = -dx_{31}$

⁹Diese definiert eine verallgemeinerte Metrik mit $g_{ij} = \delta_{ij} \cdot \lambda_i$.

 $dx_{23} \wedge dx_{14} = dx_{1234}$ sowie $dx_1 \wedge dx_{234} = dx_2 \wedge dx_{314} = dx_3 \wedge dx_{124} = dx_{1234}$, aber beachte $dx_4 \wedge dx_{123} = -dx_{1234}$. Ist die Lichtgeschwindigkeit c = 1, dann ist die **Lorentz Metrik** gegeben durch $q_L(x) = x^T Sx$ für die Matrix S = diag(-1, -1, -1, 1)

$$q_L(x, y, z, t) = -x^2 - y^2 - z^2 + t^2$$
.

Die **Strom- und Ladungsdichte** wird definiert durch eine 3-Form (mit $j_4 = -\rho$)

$$J = j_1 \cdot dx_{234} + j_2 \cdot dx_{314} + j_3 \cdot dx_{124} - \rho \cdot dx_{123}$$

(der Einfachheit halber haben wir angenommen, daß die Permeabilitätskonstante μ gleich 1 ist¹⁰). Die Einsform $j=*_LJ=-j_1dx_1-j_2dx_2-j_3dx_3+\rho dx_4$ ist der **Strom**. Der Erhaltungssatz für die Ladung besagt $dJ=(\partial_1j_1+\partial_2j_2+\partial_3j_3+\partial_4\rho)\cdot dx_{1234}=0$ (erste Maxwellgleichung)

$$dJ=0 \ .$$

Sei idealisiert $J \in C^{\infty}(\mathbb{R}^4)$, dann folgt aus dem Poincare Lemma die Existenz einer 2-Form $\omega \in A^2(\mathbb{R}^4)$ mit

$$d\omega = J \ .$$

Setze $\omega = -E_1 \cdot dx_{23} - E_2 \cdot dx_{31} - E_3 \cdot dx_{12} + B_1 \cdot dx_{14} + B_2 \cdot dx_{24} + B_3 \cdot dx_{34}$, dann ist $\omega = *_L F$ die sogenannte **Faraday 2-Form** F

$$F = B_1 \cdot dx_{23} + B_2 \cdot dx_{31} + B_3 \cdot dx_{12} + E_1 \cdot dx_{14} + E_2 \cdot dx_{24} + E_3 \cdot dx_{34} ,$$

die das **elektromagnetische Feld** $(E_1, E_2, E_3, B_1, B_2, B_3)$ definiert. Die zweite Maxwell Gleichung lautet dF = 0. Wegen des Poincare Lemmas (hier wird erneut benutzt, daß F eine C^{∞} -Form ist) gilt dann

$$F = dA$$

für eine 1-Form $A = \sum_i A_i dx_i$, das sogenannte **Vektorpotential**. Das Vektorpotential A ist nur eindeutig bestimmt bis auf eine exakte Form $d\varphi$ für ein $\varphi \in C^{\infty}(\mathbb{R}^4)$ (**Eichungsproblem**).

Der $*_L$ -Operator ist invariant unter der orthogonalen Symmetriegruppe $SO(q_L)$, und nimmt bei orthogonalen Spiegelungen ein Vorzeichen auf. Der Operator $\delta = *_L \circ d \circ *_L$ ist dagegen invariant unter der vollen **Lorentzgruppe** $O(q_L)$. Die **Maxwell Gleichungen** in der Form

$$dF = 0 \quad , \quad \delta F = j$$

sind daher invariant unter der vollen Lorentzgruppe. Die Maxwellgleichungen reduzieren sich letztlich auf die Bestimmung von A durch die Formel

$$\delta d A = j$$
,

also bei gegebenem J auf die vier Gleichungen $(-\partial_1^2 - \partial_2^2 - \partial_3^2 + \partial_4^2)A_i = \lambda_i j_i$ für i = 1, ..., 4 [unter Benutzung der **Lorentz-Eichung** $\delta A = 0$ der Form A]. Physiker Notation: $U := -A_4$.

 $^{^{10}}$ Im Vakuum ist μ eine Konstante und kann in der Maxwellgleichung ignoriert werden.

6 Lebesgue Integration

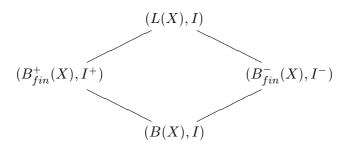
Für einen Verband B(X) und ein Daniel-Intergral I auf B(X) haben wir gezeigt, daß sich I zu Daniell-Integralen I^\pm der Halbverbände der monotonen Hüllen $B^\pm(X)\supset B(X)$ eindeutig fortsetzen lässt. Die Funktionen $f\in B^+(X)$ mit der Eigenschaft $I^+(f)\ \pm\ +\infty$ bilden einen Halbverband $B^+_{fin}(X)$ in $B^+(X)$. Analog bilden die Funktionen $f\in B^-(X)$ mit $I^-(f)\ \pm\ -\infty$ einen Halbverband $B^-_{fin}(X)$ in $B^-(X)$. Eine beliebige Funktion

$$f: X \to \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$$

nennt man **integrierbar** bezüglich (B(X), I), wenn es für alle reellen Zahlen $\varepsilon > 0$ geeignete Funktionen $h \in B^-(X)$ und $g \in B^+(X)$ gibt mit $h \le f \le g$ und $I^+(g) - I^-(g) < \varepsilon$. Für integrierbare Funktionen definieren wird das Lebesgue Integral $I(f) \in \mathbb{R}$.

Wir zeigen, daß die Teilmenge der Punkte $x \in X$, wo eine integrierbare Funktion die Werte $\pm \infty$ annimmt, eine Nullmenge ist, und man integrierbare Funktionen auf Nullmengen beliebig abändern kann ohne das Lebesgue Integral zu verändern.

Die integrierbaren $\mathbb R$ -wertigen Funktionen bilden einen Verband L(X) und das Lebesgue Integral definiert ein Daniell Integral auf L(X). Es ist das eindeutig bestimmte Daniel Integral auf L(X), das auf $B(X) \subset L(X)$ mit dem gegebenen Integral $I: B(X) \to \mathbb R$ übereinstimmt. Eine Funktion $f \in B^{\pm}(X)$ liegt im Verband L(X) genau dann, wenn gilt $f \in B^{\pm}_{fin}(X)$, und das Lebesgue Integral stimmt auf $B^{\pm}_{fin}(X)$ mit I^{\pm} überein.



Aus dem Satz von Beppo Levi folgt, daß die monotonen Hüllen $L_{fin}^\pm(X)$ von (L(X),I) mit L(X) übereinstimmen.

6.1 Das Lebesgue Integral

Sei X eine Menge und B=B(X) ein Verband von Funktionen auf X. Sei weiterhin $I:B(X)\to\mathbb{R}$ ein Daniell-Integral. Wir fixieren im folgenden (B,I). Seien $B^+=B^+(X)$ und $B^-=B^-(X)$ die beiden monotonen Hüllen von B(X).

Definition 6.1 (Integrierbarkeit). Eine Funktion

$$f: X \to \mathbb{R} \cup \infty \cup -\infty$$

heisst Lebesgue-integrierbar oder auch nur kurz integrierbar bezüglich (B, I), wenn gilt: Für alle reellen Zahlen $\varepsilon > 0$ existieren^I Funktionen $h \in B^-$ und $g \in B^+$ mit der Eigenschaft $h \le f \le g$ so dass gilt²

$$\boxed{I^+(g) - I^-(h) < \varepsilon} \ .$$

Für eine Funktion $f: X \to \mathbb{R} \cup \infty \cup -\infty$ definiert man ganz allgemein

$$I^{\sharp}(f) = \inf\{I^{+}(g) \mid g \in B^{+} \text{ mit } f \leqslant g\}$$

(ist diese Menge leer definieren wir das Infimum formal als ∞), beziehungsweise

$$I^{\flat}(f) = \sup\{I^{-}(h) \mid h \in B^{-} \text{ mit } h \leqslant f\}$$

(ist diese Menge leer definieren wir das Supremum formal als $-\infty$). Es gilt

$$I^{\flat}(f) \leqslant I^{\sharp}(f)$$
,

denn $I^{\flat}(f) := \sup_{h \in B^-, h \leqslant f} I^-(h) \leqslant I^+(g)$ wegen $I^-(h) \leqslant I^+(g)$ für $h \leqslant f \leqslant g$ (Lemma 3.10). Im Limes folgt aus $I^{\flat}(f) \leqslant I^+(g)$ dann $I^{\flat}(f) \leqslant \inf_{g \in B^+, f \leqslant g} I^+(g) = I^{\sharp}(f)$.

Lemma 6.2 (Lebesgue Integral). Ist $f: X \to \mathbb{R} \cup \infty \cup -\infty$ Lebesgue integrierbar bezüglich (B, I), dann gilt $I^{\flat}(f) = I^{\sharp}(f)$ und die so definierte reelle Zahl ist von $\pm \infty$ verschieden.

Definition 6.3. Die so definierte reelle Zahl wird das Lebesgue Integral I(f), bezüglich (B, I), der integrierbaren Funktion f genannt

$$\boxed{I(f) := I^{\flat}(f) \ = \ I^{\sharp}(f)} \ .$$

Beweis. Aus $I^+(g) - I^-(h) < \varepsilon$ folgt $I^+(g) < \infty$ sowie $I^-(h) > -\infty$, denn $I^+(g) \in \mathbb{R} \cup \infty$ und $I^-(h) \in \mathbb{R} \cup -\infty$. Also ist $\{I^-(h)|B^-\ni h\leqslant f\leqslant g \text{ nach oben durch }I^+(g)<\infty$ beschränkt (Lemma 3.10). Das Supremum $I^\flat(f)$ liegt daher in \mathbb{R} . Ditto für $I^\sharp(f)$. Wegen $0\leqslant I^\sharp(f)-I^\flat(f)\leqslant I^+(g)-I^-(h)<\varepsilon$ für alle $\varepsilon>0$ folgt $I^\flat(f)=I^\sharp(f)$.

 $^{^1}$ Man sieht dann auch sofort, dass es reicht wenn für alle $\varepsilon>0$ Lebesgue integrierbare Funktionen h und g existieren mit $h\leqslant f\leqslant g$ und $I(g)-I(h)<\varepsilon$. Denn für $g^+\in B^+$ mit $g\leqslant g^+,\ I(g)\leqslant I^+(g^+)$ sowie $I^+(g^+)-I(g)<\varepsilon/2$ und analog $h^-\leqslant h,h^-\in B^-$ mit $I^-(h^-)\leqslant I(h)$ und $I(h)-I^-(h^-)<\varepsilon/2$ gilt $h^-\leqslant f\leqslant g^+$ sowie $I^+(g^+)-I^-(h^-)<\varepsilon+I(g)-I(h)<2\varepsilon$.

²Nach Lemma 3.10 gilt ausserdem $0 \le I^+(g) - I^-(h)$.

Lemma 6.4. Funktionen f aus B^+ resp. B^- sind Lebesgue integrierbar bezüglich (B,I) genau dann wenn gilt $I^+(f) \neq \infty$ resp. $I^-(f) \neq -\infty$. In diesem Fall ist $I(f) = I^{\flat}(f) = I^{\sharp}(f)$ gleich $I^+(f)$ resp. $I^-(f)$.

Insbesondere sind die Funktionen aus $B \subset B^+$ Lebesgue integrierbar, und das Lebesgue Integral stimmt auf B mit dem ursprünglich gegebenen Integral $I: B \to \mathbb{R}$ überein.

Beweis. Sei $f \in B^+$. Aus $g \in B^+$ und $f \leq g$ folgt $I^+(f) \leq I^+(g)$ wegen der Monotonie von I^+ . Das Infimum $I^\sharp(f)$ der Werte $I^+(g)$, für $g \in B^+$ mit $f \leq g$, wird daher wegen $f \in B^+$ bei g = f angenommen. Also

$$I^{\sharp}(f) = I^{+}(f) < +\infty.$$

Es verbleibt $I^+(f) \leq I^{\flat}(f)$ für unser $f \in B^+$ zu zeigen. Wähle dazu Funktionen $f_n \in B$ mit $f_n \nearrow f$. Nach Definition von $I^+(f)$ gilt $(I^-(f_n) =)$ $I(f_n) \nearrow I^+(f)$. Es folgt

$$I^{+}(f) = \sup I(f_n) = \sup I^{-}(f_n) \leqslant \sup_{h \in B^{-}, h \leqslant f} I^{-}(h) = I^{\flat}(f)$$
.

Wegen $I^{\flat}(f) \leqslant I^{\sharp}(f)$ folgt daraus $I^{\flat}(f) = I^{\sharp}(f) = I^{+}(f) < \infty$.

6.2 Der Verband L(X)

Satz 6.5. Die \mathbb{R} -wertigen (!) bezüglich (B, I) Lebesgue integrierbaren Funktionen

$$f: X \to \mathbb{R}$$

bilden einen **Verband** $L(X) \supseteq B$.

Dies folgt aus

Satz 6.6 (Permanenzeigenschaften). Die Menge aller Lebesgue integrierbaren Funktionen ist unter reeller Skalarmultiplikation, Addition³ und den Bildungen min, max abgeschlossen.

Beweis. Schritt I. Wie man leicht sieht gilt $I^\sharp(f_1+f_2)\leqslant I^\sharp(f_1)+I^\sharp(f_2)$ und $I^\sharp(\lambda f)\leqslant \lambda I^\sharp(f)$ für $\lambda>0$. Entsprechendes gilt für I^\flat mit den umgekehrten Ungleichungen [wegen $I^\sharp(-f)=-I^\flat(f)$ und $I^\flat(-f)=-I^\sharp(f)$]. Daraus folgt $I^\flat(f_1)+I^\flat(f_2)\leqslant I^\flat(f_1+f_2)\leqslant I^\sharp(f_1)+I^\sharp(f_2)$. Sind f_1,f_2 Lebesgue integrierbar, folgt aus $I^\flat(f_i)=I^\sharp(f_i)$ dann

$$I(f_1 + f_2) = I(f_1) + I(f_2)$$

und ditto $I(\lambda \cdot f) = \lambda \cdot I(f)$ für Lebesgue integrierbare Funktionen f und $\lambda \ge 0$.

Schritt 2. Beachte, aus $h\leqslant f\leqslant g$ mit $h\in B^-, g\in B^+$ und $I^+(g)-I^-(h)<\varepsilon$, folgt sofort $-g\leqslant -f\leqslant -h$ mit $-g\in B^-, -h\in B^+$ und $I^+(-h)-I^-(-g)=I^+(g)-I^-(h)<\varepsilon$. Man zeigt dann analog $I^\sharp(-f)=-I^\flat(f)$ und $I^\flat(-f)=-I^\sharp(f)$, also I(-f)=-I(f). Dies

³Hierbei müssen wir annehmen, dass beide Funktionen Werte in \mathbb{R}^+ oder \mathbb{R}^- haben.

zeigt die Verbandseigenschaft $f \in L(X) \Rightarrow -f \in L(X)$ und I(-f) = -I(f). Zusammen mit Schritt 1 folgt daher für alle Lebesgue integrierbaren Funktionen f und alle $\lambda \in \mathbb{R}$

$$I(\lambda \cdot f) = \lambda \cdot I(f).$$

Schritt 3. Wegen $\min(f,\tilde{f}) = -\max(-f,-\tilde{f})$ genügt, dass für integrierbares f und \tilde{f} die Funktion $\max(f,\tilde{f})$ integrierbar ist. Wähle dazu $h\leqslant f\leqslant g$ resp. $\tilde{h}\leqslant \tilde{f}\leqslant \tilde{g}$ mit $I^+(g)-I^-(h)=I^+(g-h)<\varepsilon$ resp. $I^+(\tilde{g})-I^-(\tilde{h})=I^+(\tilde{g}-\tilde{h})<\varepsilon$. Dann gilt automatisch $I^+(\tilde{g})<\infty$ und $I^+(g)<\infty$ sowie $B^-\ni\max(h,\tilde{h})\leqslant\max(f,\tilde{f})\leqslant\max(g,\tilde{g})\in B^+$. Weiterhin gilt

 $I^+(\max(g,\tilde{g})) - I^-(\max(h,\tilde{h})) = I^+(\max(g,\tilde{g}) - \max(h,\tilde{h})) \leqslant I^+(g-h) + I^+(\tilde{g}-\tilde{h}) < 2\varepsilon$ unter Benutzung von $g-h \in B^-$ und $\tilde{g}-\tilde{h} \in B^+$ und⁴

$$\max(g, \tilde{g}) - \max(h, \tilde{h}) \leq (g - h) + (\tilde{g} - \tilde{h}).$$

Also ist $\max(f, \tilde{f})$ integrierbar.

Lemma 6.7. Auf dem Verband L(X) = L(X, B, I) definiert das Lebesgue Integral I ein Daniell Integral.

Beweis. Wir haben bereits gezeigt, dass I eine \mathbb{R} -lineare Abbildung ist. Für die Monotonie genügt es $I(f)\geqslant 0$ zu zeigen für integrierbare Funktionen $f\geqslant 0$. Beachte $I(f)=I^\sharp(f)=\inf I^+(g)$ für $g\geqslant f\geqslant 0$ mit $g\in B^+$. Wegen der Monotonie von I^+ gilt $I^+(g)\geqslant I^+(0)=0$. Daraus folgt $I(f)=\limsup I^+(g)\geqslant 0$, also die Monotonie des Lebesgue Integrals I. Die Halbstetigkeit: Für $f_n\nearrow f$ und $f_n,f\in L(X)$ existiert $g\in B^+$ mit $f_n\leqslant f\leqslant g$ und $I(g)<\infty$. Also gilt $I(f_n)\leqslant I(g)$ und damit $\sup I(f_n)\leqslant I(g)<\infty$. Aus dem nächsten Satz 6.8 folgt daher die Halbstetigkeit $I(f)=\sup I(f_n)$.

6.3 Vertauschungssätze

Satz 6.8 (Beppo Levi). Für eine <u>monotone</u> Folge $f_n \nearrow f$ von <u>integrierbaren</u> Funktionen f_n definiert $I(f_n)$ eine monoton wachsende Folge reeller Zahlen. Gilt

$$\kappa := \sup_{n} I(f_n) < \infty$$

dann ist die Grenzfunktion f integrierbar und es gilt

$$I(f) = I(\sup_n f_n) = \sup_n I(f_n) = \kappa$$
.

Bemerkung: Eine analoge Aussage gilt für monoton fallende Folgen integrierbarer Funktionen f_n im Fall $\inf_n I(f_n) > -\infty$.

⁴Ist $g(x) \ge \tilde{g}(x)$, dann ist $\max(g, \tilde{g}) - \max(h, \tilde{h}) \le g - h \le (g - h) + (\tilde{g} - \tilde{h})$ im Punkt x.

Beweis. Für $n \in \mathbb{N}$ wähle $h_n \in B^-$ sowie $g_n \in B^+$ mit $h_n \leqslant f_n \leqslant g_n$ und

$$I^{+}(g_n) - I^{-}(h_n) = I^{+}(g_n - h_n) < \frac{\varepsilon}{2^n}$$
.

Beachte, daß dann gilt $I^+(g_n) < \infty$.

Untere Abschätzung. Aus $h_n \in B^-$ und $h_n \leqslant f$ folgt $\sup_n I(h_n) \leqslant I^{\flat}(f)$. Wegen $I(f_n - h_n) \leqslant I(g_n - h_n) < \frac{\varepsilon}{2^n}$ gilt $I(f_n) - \frac{\varepsilon}{2^n} \leqslant I(h_n)$, im Limes $n \to \infty$ also

$$\kappa \leqslant I^{\flat}(f) \quad , \quad \kappa := \sup_{n} I(f_{n}) .$$

Obere Anschätzung. Beachte $\tilde{g}_n = \max_{i=1}^n g_i \in B^+$ sowie $f_n \leqslant \tilde{g}_n$. Die Folge \tilde{g}_n konvergiert monoton gegen eine Grenzfunktion $\tilde{g}_n \nearrow \tilde{g}$, welche nach Lemma 3.5 in $(B^+)^+ = B^+$ liegt. Die Abschätzung $\tilde{g}_n - f_n \leqslant \max_{i=1}^n (g_i - h_i) \leqslant \sum_{i=1}^n (g_i - h_i)$ liefert $I^+(\tilde{g}_n) < I(f_n) + \sum_{i=1}^n \frac{\varepsilon}{2^i} < I(f_n) + \varepsilon$. Im Limes $n \to \infty$ gibt dies $I^+(\tilde{g}) \leqslant \kappa + \varepsilon$. Wegen $f \leqslant \tilde{g} \in B^+$ gilt $I^\sharp(f) \leqslant I^+(\tilde{g})$. Daraus folgt

$$\kappa \leqslant I^{\flat}(f) \leqslant I^{\sharp}(f) \leqslant I(\tilde{g}) \leqslant \kappa + \varepsilon.$$

Da dies für alle $\varepsilon > 0$ richtig ist, ergibt sich wie behauptet $I^{\sharp}(f) = I^{\flat}(f) = \kappa < \infty$ und damit die Existenz eines $h \in B^-$ mit $h \leqslant f \leqslant \tilde{g}$ und $I^+(\tilde{g}) - I^-(h) < \varepsilon$.

Satz 6.9 (Satz von Lebesgue). Sei $f_n \to f$ eine <u>punktweise</u> konvergente Folge <u>integrierbarer</u> Funktionen f_n auf X, so dass eine <u>integrierbare</u> Funktion F existiert mit $|f_n| \le F$ für alle n. Dann ist f <u>integrierbar</u> und es gilt

$$\boxed{I(\lim_n f_n) = \lim_n I(f_n)}.$$

Man nennt diesen Satz auch den Satz von der dominierten Konvergenz, da die Funktionen f_n von der fixierten integrierbaren Funktion F dominiert werden.

Beweis. Schritt 1. Es gilt

$$\varphi_n(x) = \inf_{i > n} \left(f_i(x) \right) \nearrow f(x)$$
.

Für festes n gilt für die Funktionen $\varphi(x) = \varphi_n(x)$

$$\psi_m(x) := \inf_{m \ge i \ge n} \left(f_i(x) \right) \searrow \varphi(x) .$$

Beachte $\psi_m \in L(X)$. Wegen $-F \leqslant \psi_m$ gilt $-\infty < I(F) \leqslant \lim_n I(\psi_m)$, und somit ist die Grenzfunktion φ_n integrierbar nach Beppo Levi. Wegen $\varphi_n \leqslant F$ gilt $\lim_n I(\varphi_n) \leqslant I(F) < \infty$, und somit ist f (erneut nach Beppo Levi) integrierbar mit $I(\varphi_n(x)) \to I(f)$.

Schritt 2. Analog definiert man $\tilde{\varphi}_n(x) = \sup_{i \ge n} (f_i(x)) \setminus f(x)$ und zeigt die Konvergenz $I(\tilde{\varphi}_n(x)) \to I(f)$. Wegen

$$\varphi_n \leqslant f_n \leqslant \tilde{\varphi}_n$$

folgt dann wie behauptet die Konvergenz $I(f_n) \to I(f)$.

6.4 Anwendungen

Sei $Y = \mathbb{R}^n$ oder $Y = \mathbb{Z}$ oder ein Produkt $\mathbb{R}^n \times \mathbb{Z}^m$ etc.

Satz 6.10. Sei Z in metrischer Raum und $f: Y \times Z \to \mathbb{R}$ stetig in der Variable $z \in Z$ für jedes feste $y \in Y$. Gilt $|f(y,z)| \leq F(y)$ für ein $F \in L(Y)$ und alle $z \in Z$, und ist f(y,z) in L(Y) für festes $z \in Z$, dann ist $g(z) = \int_{Y} f(y,z) dy$ definiert und stetig in der Variable z.

Beweis. Für jede Folge $z_n \to z$ ist $f_n(y) := f(y, z_n) \in L(Y)$. Wegen $|f_n(y)| \le F(y)$ folgt aus dem Satz 6.9 von der dominierten Konvergenz

$$\lim_{n \to \infty} \int_{Y} f_n(y) dy = \int_{Y} \lim_{n \to \infty} f_n(y) dy.$$

Also $\lim_n \int_Y f(z_n, y) dy = \int_Y f(z, y) dy$.

Korollar 6.11 (Fubini). Für das Produkt $X=Y\times Z$ zweier Quader Y,Z wie in Beispiel 2.25 definiert daher $I(f)=\int_Z f(y,z)dz$ eine lineare Abbildung

$$I: B = C(X) \to \tilde{B} = C(Y)$$
.

Es gilt $\int_X f dy dz = \int_Y I(f) dy$ (da dies richtig ist für Treppenfunktionen f und da I, \int_Y und $\int_X \mathbb{R}$ -linear, monoton und halbstetig sind).

Eine reelle Folge $f: \mathbb{N} \to \mathbb{R}$ definiert eine sogenannte **absolut konvergente Reihe** $\sum_{n \in \mathbb{N}} f(n)$, wenn f in $L(\mathbb{N})$ liegt. In der Tat: Da $L(\mathbb{N})$ ein Verband ist, ist mit f auch die Folge |f(n)| der Absolutbeträge in $L(\mathbb{N})$, und aus Satz 6.9 folgt

$$\lim_{N \to \infty} \sum_{n=1}^{N} |f(n)| < \infty.$$

Die Umgekehrung gilt auch: Aus $\lim_{N\to\infty}\sum_{n=1}^N|f(n)|<\infty$ folgt $|f(n)|\in L(\mathbb{N})$ nach dem Satz von Beppo Levi oder Lemma 6.4, sowie dann die absolute Konvergenz im Sinne von $f\in L(\mathbb{N})$ wegen des Satzes 6.9 von der dominierten Konvergenz (mit der Majorante F=|f|). Mehr noch

Satz 6.12 (Umordnungssatz). *Ist eine Folge* $f : \mathbb{N} \to \mathbb{R}$ *in* $L(\mathbb{N})$ *(d.h. absolut konvergent), dann gilt für jede Bijektion* $\sigma : \mathbb{N} \to \mathbb{N}$

$$I(f) = \lim_{n \to \infty} \sum_{i=0}^{n} f(\sigma(i)).$$

Beweis. Sei F(x) = |f(x)|. Da $f_n := f(x)\chi_{[0,1,\dots,n]}(\sigma^{-1}(x))$ punktweise gegen f(x) konvergiert, konvergiert $I(f_n) = \sum_{i=0}^n f(\sigma(i))$ gegen I(f) nach Satz 6.9.

6.5 Nullmengen

Eine Teilmenge $Y \subseteq X$ heisst **endlich messbar**, wenn ihre charakteristische Funktion $\chi_Y(x)$ integrierbar ist. Man nennt die reelle Zahl $vol(Y) = I(\chi_Y) \geqslant 0$ das **Volumen** von Y. Sind Y_1, Y_2 endlich messbar, dann nach Korollar 6.5 auch $Y_1 \cap Y_2$ und $Y_1 \cup Y_2$ und

$$vol(Y_1) + vol(Y_2) = vol(Y_1 \cup Y_2) + vol(Y_1 \cap Y_2).$$

Dies folgt aus $\chi_{Y_1} + \chi_{Y_2} = \chi_{Y_1 \cup Y_2} + \chi_{Y_1 \cap Y_2}$ und $\max(\chi_{Y_1}, \chi_{Y_2}) = \chi_{Y_1 \cup Y_2}$ sowie analog $\min(\chi_{Y_1}, \chi_{Y_2}) = \chi_{Y_1 \cap Y_2}$. Insbesondere gilt $vol(Y_1 \cup Y_2) \leq vol(Y_1) + vol(Y_2)$.

Eine **Nullmenge** ist eine endlich messbare Menge vom Volumen Null.

Für eine Nullmenge Y gilt $I(n \cdot \chi_Y) = 0$ für alle natürlichen Zahlen n. Im Limes $n \to \infty$ folgt daher wegen Beppo Levi: Die Funktion, die $+\infty$ auf Y ist, und Null sonst, ist integrierbar mit Integral Null. Ditto für $-\infty$ anstelle von $+\infty$. Aus der Monotonie des Integrals folgt daher dann sogar

Jede Funktion mit Werten in $\mathbb{R} \cup \infty \cup -\infty$ und Träger in einer Nullmenge ist integrierbar mit Integral Null. Teilmengen von Nullmengen sind Nullmengen.

Lemma 6.13 (ε -Kriterium für Nullmengen). $Y \subseteq X$ ist eine Nullmenge, wenn für jedes $\varepsilon > 0$ eine abzählbare Überdeckung von Y durch endlich messbare Mengen U_i existiert mit $\sum_{i=1}^{\infty} vol(U_i) < \varepsilon$.

Beweis. Mit Beppo Levi zeigt man: $\bigcup_{i=1}^{\infty} U_i$ ist endlich messbar mit $vol(U) < \varepsilon$. Für $\varepsilon = 1/n$ sei U(n) diese Vereinigung. Dann bilden die Durchschnitte $Z_n := \bigcap_{i=1}^n U(n)$ eine absteigende Kette endlich messbarer Mengen mit $vol(Z_n) < \frac{1}{n}$. Daher ist $Z = \bigcap_{i=1}^{\infty} Z_n$ eine Nullmenge (mit Hilfe von Beppo Levi). Aus $Y \subseteq Z$ folgt die Behauptung.

Als Spezialfall erhält man

Eine abzählbare Vereinigung Y von Nullmengen Y_i ist eine Nullmenge.

Wir nennen X abzählbar im Unendlichen, wenn X eine abzählbare Vereinigung

$$X = \bigcup_{i=1}^{\infty} K_i$$

von kompakten endlich messbaren Mengen K_i ist. Die für uns interessanten metrischen Räume $\mathbb{R}^n \times \mathbb{Z}^m$ etc. mit dem Standardintegral sind abzählbar im Unendlichen.

Lemma 6.14. Sei X abzählbar im Unendlichen. Dann sind für integrierbares

$$f: X \to \mathbb{R} \cup \infty \cup -\infty$$

die beiden Mengen der Unendlichkeitsstellen $f^{-1}(\pm \infty)$ Nullmengen in X.

Beweis. Indem man f durch -f ersetzt genügt es die Menge Σ aller Punkte zu betrachten, wo f(x) gleich $+\infty$ ist. Ausserdem, kann man obdA annehmen $f\geqslant 0$, indem man f durch $\max(0,f))$ ersetzt. Es genügt zu zeigen, daß $\Sigma\cap K_i$ eine Nullmenge ist für alle i. Dies erlaubt es anzunehmen $X=K_i$, und damit also obdA $\chi_X\in L(X)$. Ist Σ_c die Menge der Punkte x, für die gilt f(x)>c, dann gilt $\chi_{\Sigma_n}\searrow \chi_{\Sigma}$. Es genügt daher zu zeigen $\chi_{\Sigma_n}\in L(X)$ und $I(\chi_{\Sigma_n})\leqslant I(f)/n$, da dann aus dem Satz von Beppo Levi unsere Behauptung folgt.

Sei dazu c>0 eine beliebige Konstante. Dann gilt $h:=\min(c\chi_X,f)\in L(X)$; damit auch $f-h\in L(X)$ (mit genauem Träger Y_c). Dann sind auch die $f_n=\min(\chi_X,n\cdot(f-h))$ integrierbar (mit Träger in Y_c), und es gilt $f_n\nearrow\chi_{\Sigma_c}$. Wie behauptet ist daher nach Beppo Levi Y_c endlich messbar wegen $0\leqslant f_n\leqslant\chi_{\Sigma_c}\leqslant\frac{f}{c}$ und $vol(\Sigma_c)\leqslant I(f)/c$.

6.6 Messbare Funktionen

Sei L(X)=L(X,B,I) der Verband der reellwertigen Lebesgue integrierbaren Funktionen. Wir gehen in diesem Abschnitt über zu den $\mathbb C$ -wertigen Räumen $L(X,\mathbb C)$ und $C_c(X,\mathbb C)$. Damit sei gemeint, dass sowohl Real- als auch Imaginärteil im entsprechenden Raum liegen. Setze I(u+iv)=I(u)+iI(v) für komplexes f=u+iv aus $L(X,\mathbb C)$. Wir nehmen im folgenden an $C_c(X,\mathbb C)\subset L(X,\mathbb C)$. Dann gilt

Definition 6.15. $f: X \to \mathbb{C}$ heisst **messbar**, wenn es eine Folge $f_n \in C_c(X, \mathbb{C})$ gibt, welche punktweise fast überall (d.h. ausserhalb einer Nullmenge) gegen f konvergiert

$$f_n \to f$$
 (fü).

Satz 6.16. Es gilt

- 1. Die messbaren reellwertigen Funktionen bilden einen Verband M(X).
- 2. $M(X, \mathbb{C})$ ist eine \mathbb{C} -Algebra.
- 3. $f \in M(X, \mathbb{C}) \Longrightarrow \overline{f} \text{ und } |f| \in M(X, \mathbb{C}).$
- 4. Aus $f_n \to f$ fast überall und $f_n \in M(X, \mathbb{C})$ folgt $f \in M(X, \mathbb{C})$.
- 5. M(X) ist abgeschlossen unter abzählbarer (Supremums-)Infimumsbildung.
- 6. Ist $|f| \leq g$ fast überall und $f \in M(X, \mathbb{C})$ sowie $g \in L(X)$, dann gilt $f \in L(X, \mathbb{C})$.

Beweis. 1.,2. und 3. folgt sofort aus den Permanenzsätzen der Konvergenz und der entsprechenden Eigenschaft von $C_c(X)$. 4. folgt ähnlich mittels des Diagonalfolgentricks. 5. folgt unmittelbar aus 4. und der Abgeschlossenheit 1. unter endlichen Suprema (Infima). Zur letzten Aussage. ObdA f reellwertig. Für $f = f_+ + f_-$ genügt es f_\pm zu betrachten. Das heisst obdA $f \geqslant 0$. Wähle $f_n \to f$ (fü) mit $f_n \in C_c(X)$. Dann gilt $\min(f_n, g) \to \min(f, g) = f$ (fü). Aus $|\min(f_n, g)| \leqslant g$ folgt dann $f \in L(X)$ wegen $\min(f_n, g) \in \min(L(X), L(X)) \subseteq L(X)$, dank des Satzes von der dominierten Konvergenz.

7 Hilberträume

7.1 Vorbemerkung

In der **Quantentheorie** betrachtet man (in der Regel unendliche dimensionale) \mathbb{C} -Vektorräume V, welche mit einer positiv definiten Hermiteschen Bilinearform versehen sind und vollständig sind: Das heisst, daß auf V eine \mathbb{R} -bilineare Form existiert

$$\langle , \rangle : V \times V \to \mathbb{C}$$

 $\operatorname{mit} \langle \lambda v, \mu w \rangle = \overline{\lambda} \mu \langle v, w \rangle \text{ für } \lambda, \mu \in \mathbb{C} \text{ und } v, w \in V \text{ sowie weiterhin}$

$$\langle v, w \rangle = \overline{\langle w, v \rangle}$$
,

so daß $\langle v,v \rangle$ reell ist und >0 für alle $v \neq 0$. Es wird außerdem angenommen, daß V vollständig ist bezüglich der Metrik $d(v,w) = \|v-w\|$ auf V definiert durch $\|v\|^2 = \langle v,v \rangle$. Einen solchen Vektorraum V nennt man einen **Hilbertraum**.

Physikalisch betrachtet definiert V einen sogenannten **Zustandsraum**: Zustände sind dabei die komplexen Geraden $\mathbb{C} \cdot v$ (komplex lineare Unterräume der Dimension 1 in V) mit $v \neq 0$. Da sich der Beweis der Schwarz Ungleichung überträgt, erfüllt die reelle Zahl

$$W(v,w) = \frac{|\langle v,w \rangle|}{\|v\| \|w\|}$$

die Ungleichungen

$$0 \leqslant W(v, w) \leqslant 1$$
.

Diese Zahl hängt nur von den Zuständen $\mathbb{C}v$ und $\mathbb{C}w$ ab. Physikalisch wird W(v,w) gedeutet als Wahrscheinlichkeit dafür, daß der Zustand $\mathbb{C}v$ in den Zustand $\mathbb{C}w$ übergeht. Eine Bijektion der Menge aller Zuständen, welche alle Übergangswahrscheinlichkeiten erhält, nennt man einen Automorphismus des Zustandsraumes. Jede **unitäre** lineare Abbildung $L:V\to V$ liefert einen solchen Automorphismus, wobei einen \mathbb{C} -lineare Abbildung L unitär genannt wird wenn $\langle L(v), L(w) \rangle = \langle v, w \rangle$ für alle Vektoren v, w aus V gilt.

Von besonderer Bedeutung sind die **anti-hermiteschen** \mathbb{C} -linearen Abbildungen $X:V\to V$, d.h. Abbildungen mit der Eigenschaft $\langle X(v),w\rangle=-\langle v,X(w)\rangle$, welche eine **Lie Algebra** definieren: Sind X und Y anti-hermitsch, dann ist auch der Kommutator [X,Y]:=XY-YX anti-hermitesch. Einem solchem Operator ist ein infinitesimaler Automorphismus zugeordnet,

der physikalisch als eine **Messung** gedeutet wird. Der zugeordnete **hermitesche** Operator $\frac{X}{2\pi i}$ erhält dadurch eine **physikalische Bedeutung** (etwa als Impuls, Ort, Energie etc.). Ein Zustand $\mathbb{C}v$, welcher einen Eigenraum des Operators X definiert, besitzt einen festen Impuls, Ort, Energie etc. Ganz allgemein ist der **Erwartungswert** der Messung die automatisch (!) reelle Zahl

$$E(X,v) = \frac{\langle \frac{X}{2\pi i}v,v\rangle}{\|v\|^2}.$$

Ist dagegen v kein Eigenvektor, dann ist die **Varianz**, also die ungefähre Abweichung vom Erwartungswert E(X, v) der Messung, gegeben durch

$$V(X,v) = \frac{\|\frac{\tilde{X}}{2\pi i}v\|}{\|v\|}$$

für den normierten Operator definiert durch

$$\tilde{X} := X - 2\pi i E(X, v) \cdot i d_V .$$

Beachte $[\tilde{X}, \tilde{Y}] = [X, Y]$. Ein System von Messungen X_{ν} für $\nu = 1, ..., n$ heisst kohärent, wenn alle Operatoren X_{ν} und damit auch alle normalisierten Operatoren \tilde{X}_{ν} miteinander kommutieren. Ist dies nicht der Fall, hat man die **Heisenbergschen Unschärferelation**. Um dies zu erläutern seien X und Y zwei Messungen. Wir nehmen an X und Y kommutieren nicht, und erfüllen sogar die Kommutatorrelation

$$[X,Y] = 2\pi i h \cdot i d_V$$

für eine Konstante h (das **Wirkungsquantum**). Das relevante Beispiel liefern

$$X(f) = h \cdot \frac{d}{dx} f(x)$$

$$Y(f) = 2\pi i x \cdot f(x) ,$$

wobei $\frac{X}{2\pi i}$ und $\frac{Y}{2\pi i}$ zu Impuls resp. Ort korrespondieren. Sei $\hbar=h/2\pi$.

Unter dieser Annahme gilt für jeden Zustand $\mathbb{C}v$ (obdA mit ||v|| = 1) die Unschärferelation

$$V(X,v) \cdot V(Y,v) \geqslant \frac{1}{2}\hbar$$
.

Beweis. Durch Übergang zu den normalisierten Operatoren kann man obdA annehmen $X = \tilde{X}$ und $Y = \tilde{Y}$. Es folgt $2\pi h = |\langle 2\pi i h v, v \rangle| = |\langle (XY - YX)v, v \rangle| = |-\langle Y(v), X(v) \rangle + \langle X(v), Y(v) \rangle| \le \|Y(v)\| \|X(v)\| + \|X(v)\| \|Y(v)\| = 2\|X(v)\| \|Y(v)\| = 2(2\pi)^2 V(X, v) V(Y, v)$.

7.2 L^2 -Räume

Für Funktionen f, g mit Werten in \mathbb{C} gelten die trivialen Abschätzungen

- 1. $|\overline{f} \cdot g| \leq \sup(|f|, |g|)^2 = \sup(|f|^2, |g|^2)$
- 2. $|f+g|^2 \le (|f|+|g|)^2 \le 4 \cdot \sup(|f|,|g|)^2 = 4 \cdot \sup(|f|^2,|g|^2)$

Wir nehmen an, X sei ein metrischer Raum und $C_c(X,\mathbb{C}) \subset L(X,\mathbb{C})$ für ein Daniell-Integral I auf B(X), und definieren $\mathcal{L}^2(X,I) = \mathcal{L}^2$ als Teilraum der messbaren Funktionen $M(X,\mathbb{C})$

$$\boxed{ \mathcal{L}^2(X,I) \ = \ \Big\{ f \in M(X,\mathbb{C}) \ \Big| \ |f|^2 \in L(X) \Big\} \ }.$$

Lemma 7.1. \mathcal{L}^2 ist ein \mathbb{C} -Vektorraum.

Beweis. $M(X, \mathbb{C})$ ist ein \mathbb{C} -Vektorraum. Daher folgt die Behauptung aus der zweiten obigen Abschätzung mit Hilfe der Eigenschaften 6.6.6 und 6.6.2.

Analog zeigt dieses Argument mit Hilfe der ersten trivialen Abschätzung die Aussage : $f\overline{g} \in L(X)$ für $f, g \in \mathcal{L}^2$. Somit definiert

$$\langle f, g \rangle = I(\overline{f} \cdot g)$$

für $f, g \in \mathcal{L}^2$ eine positiv semidefinite hermitesche Bilinearform

$$\langle .,. \rangle : \mathcal{L}^2 \times \mathcal{L}^2 \to \mathbb{C}$$
.

Wie in Satz 1.7 folgt daraus das nächste Lemma für

$$||f|| := \sqrt{\langle f, f \rangle}$$

Lemma 7.2. $||f|| = 0 \iff Tr \ddot{a}ger \ von \ f \ ist \ eine \ Nullmenge.$

Beweis. \Leftarrow klar. \Rightarrow : Für alle n gilt $vol\{x \in X \mid |f|^2 \geqslant 1/n\} = 0$ wegen der Abschätzung $\frac{1}{n} \cdot vol(..) \leqslant \|f\|^2$ und $\|f\| = 0$. Nach Beppo Levi folgt im Limes $vol\{x \in X | |f| > 0\} = 0$. \square

Die Nullfunktionen (Funktionen in \mathcal{L}^2 mit Träger in einer Nullmenge) bilden einen \mathbb{C} -linearen Untervektorraum von \mathcal{L}^2 . Der Quotientenraum sei $L^2=\mathcal{L}^2/$ Nullfunktionen. Die Werte $\|f\|=\|f\|_{L^2}$ und < f,g> hängen offensichtlich nur von der Äquivalenzklasse von f und g in L^2 ab. Aus dem letzten Lemma und dem nächsten Paragraphen folgt daher

Korollar 7.3. *Ist* X *abzählbar im Unendlichen, dann ist* $(L^2(X,I), \|.\|_{L^2})$ *ein Hilbertraum.*

Lemma 7.4. Es gilt die Schwarzungleichung und die Dreiecksungleichung. Gleichheit wird nur für proportionale Vektoren angenommen.

7.3 Satz von Fischer-Riesz

Ist X lokalkompakt und abzählbar im Unendlichen, dann ist $(L^2(X,I), \|.\|_{L^2})$ vollständig.

Beweis. Sei f_n eine Cauchyfolge in $L^2(X,I)$. Also $\|f_n-f_m\|_{L^2}<\varepsilon$ für $n,m>C(\varepsilon)$. Schritt 1. Durch Übergang zu einer Teilfolge – etwa $\tilde{f}_i=f_{n_i}$ mit $n_i>C(\frac{1}{2^i})$ – gilt obdA

$$||f_n - f_m||_{L^2} \leqslant \frac{1}{2^{\min(n,m)}}$$
.

Gilt für diese Teilfolge $\lim_{m\to\infty} \|f-f_m\|_{L^2}=0$, für ein $f\in L^2(X,I)$, dann gilt dies auch für die ursprüngliche Folge.

Schritt 2. $X=\bigcup_{i=1}^\infty K_i$ für Kompakta K_i (X ist abzählbar in unendlich nach Annahme). Wir zeigen $f_n\to f$ punktweise (fü). Dazu genügt $f_n|_K\to f|_K$ punktweise (fü) für jedes $K=K_i$. Nach Beispiel 2.25 liegt die charakteristische Funktion χ_K in M(X) und wie in Lemma 6.14 in L(X), definiert also wegen $\chi_K=|\chi_K|^2$ eine Funktion in $L^2(X)$. Andererseits ist $|f_n-f_{n+1}|$ messbar mit $|f_n-f_{n+1}|^2\in L(X)$, d.h. es gilt $|f_n-f_{n+1}|\in L^2(X)$. Wie auf Seite 103 ist daher

$$F_N(x) = \sum_{\nu=0}^{N-1} \chi_K(x) \cdot |f_{\nu}(x) - f_{\nu+1}(x)| \in L(X)$$

und $\lim_N I(F_N) = \sum_{\nu=0}^\infty \langle \chi_K, |f_\nu - f_{\nu+1}| \rangle$. Es gilt $F_N(x) \nearrow F(x) \in \mathbb{R}^+$. Die Schwarzsche Ungleichung gibt als obere Schranke $\|\chi_K\|_{L^2} \cdot \sum_{\nu=0}^\infty \|f_\nu - f_{\nu+1}\|_{L^2} \leqslant \|\chi_K\|_{L^2} \cdot \sum_{\nu=0}^\infty 2^{-\nu} < \infty$. Nach B. Levi ist daher $F: X \to \mathbb{R}^+$ integrierbar und $M = \{x \in K \mid F(x) = +\infty\}$ ist eine Nullmenge nach Lemma 6.14. Für $x \in K \backslash M$ konvergiert $F_N(x)$ in \mathbb{R} , und aus dem Cauchy-kriterium und der Dreiecksungleichung folgt $|f_n(x) - f_m(x)| \leqslant \sum_{\nu=n}^{m-1} |f_\nu(x) - f_{\nu+1}(x)| = |F_m(x) - F_n(x)| < \varepsilon$ für alle $m \geqslant n > N(x, \varepsilon)$. Für $x \in K \backslash M$ ist daher $f_n(x)$ eine komplexe Cauchyfolge, also konvergent. Auf $K \backslash M$ konvergiert somit $f_n(x)$ punktweise gegen eine Grenzfunktion f. Durch Variation von K gilt damit $f_n \to f$ (fü) auf ganz X. Aus $f_n \in M(X, \mathbb{C})$ und Satz 6.16.4 folgt $f \in M(X, \mathbb{C})$. Aus $f_n \to f$ (fü) folgt schliesslich $|f_n|^2 \to |f|^2$ (fü).

Schritt 3. Also $h_n=\inf(|f_n|^2,|f_{n+1}|^2,\cdots)\nearrow |f|^2$ (fü) und h_n ist wegen Satz 6.16.5 messbar. Aus Satz 6.16.6 und $|h_n|\leqslant |f_n|^2$ sowie $|f_n|^2\in L(X)$ folgt dann $h_n\in L(X)$. Wegen $h_n\nearrow |f|^2$ ist daher $|f|^2$ integrierbar (Beppo Levi), falls $\sup I(h_n)<\infty$. Aber nun ist $I(h_n)\leqslant I(|f_n|^2)=\|f_n\|_{L^2}^2$ beschränkt (f_n ist eine Cauchyfolge !). Also kann Beppo Levi angewendet werden und man erhält (nach Abändern von f auf einer Nullmenge)

$$f \in \mathcal{L}^2(X, I)$$

sowie $I(|f|^2)=\lim_n I(h_n)$. Aus $I(h_n)\leqslant \|f_n\|_{L^2}^2$ folgt daher die Ungleichung (*),

$$I(|f|^2) \leqslant \sup_{n} ||f_n||_{L^2}^2$$
.

Schritt 4. Durch Übergang von $f_n \to f$ zur Folge $f_n - f_m \to f - f_m$ (für $n \ge m$ und festes m) zeigt man wie in Schritt 3) vollkommen analog zur letzten Ungleichung (*) dann $I(|f - f_m|^2) \le \sup_{n \ge m} \|f_n - f_m\|_{L^2}^2 \le 2^{-2m}$. Das heisst

$$||f - f_m||_{L^2} \leqslant 2^{-m}$$
.

7.4 $C_c(X,\mathbb{C})$ liegt dicht

X sei ein lokal kompakter metrischer Raum und abzählbar im Unendlichen. Sei $C_c(X) \subset L(X) = L(X,B,I)$, und für jede Funktion $h \in B(X)$ und jedes $\varepsilon > 0$ existiere $g \in C_c(X)$ mit $I(|h-g|) < \varepsilon$. In den uns interessierenden Fällen ist dies immer richtig. Dann folgt

$$C_c(X,\mathbb{C})$$
 liegt dicht in $(L^2(X,I),\|.\|_{L^2})$.

Beweis. Für jedes $f \in L^2(X,\mathbb{C})$ und jedes $\varepsilon > 0$ müssen wir ein $g \in C_c(X,\mathbb{C})$ finden mit $I(|g-f|^2) < \varepsilon$. ObdA ist f reell. Wegen $\chi_{K_i} \cdot f \to f$ (in der L^2 -Norm) hat f obdA kompakten Träger. Beachte $\lim_n inf(n,f) \to f$ in $L^2(X,I)$. Somit ist obdA f durch eine Konstante C nach oben beschränkt. Analog dann auch nach unten. Also f durch solche Abschneidungen \tilde{f} in der L^2 -Norm beliebig gut approximieren. Wir konstruieren uns jetzt ein $g \in C_c(X)$ so dass gilt $I(|\tilde{f}-g|) \leqslant I(|\tilde{f}-h^+|) + I(|h^+-h|) + I(|h-g|) \leqslant \varepsilon/2C$; das erste Integral $I(|\tilde{f}-h^+|)$ kann durch eine Funktion $h^+ \in B^+_{fin}(X)$ beliebig klein gemacht werden, der zweite dann durch geeignete Funktion $h^+ \in B(X)$, und das dritte durch Wahl einer Funktion $g \in C_c(X)$. Beachte $|\tilde{f}-g|$ ist messbar, beschränkt mit kompaktem Träger, also integrierbar nach 6.6.6.

Es gilt $|\tilde{f}| \leq C = n$. Analog kann man $g \in C_c(X)$ nach oben und unten durch C resp -C abschneiden, und erhält dadurch wieder eine stetige Funktion $\tilde{g} \in C_c(X)$. Es folgt

$$\|\tilde{f} - \tilde{g}\|^2 \leqslant 2C \cdot I(|\tilde{f} - \tilde{g}|) \leqslant 2C \cdot I(|\tilde{f} - \tilde{g}|) < \varepsilon.$$

7.5 Der Folgenraum $L^2(\mathbb{Z})$

Wir betrachten nun den diskreten metrischen Raum $X = \mathbb{Z}$ (versehen mit der Einschränkung der Metrik von \mathbb{R}). Eine Teilmenge von \mathbb{Z} ist genau dann kompakt, wenn sie endlich ist. Somit gilt

$$C_c(X, \mathbb{C}) = \{a : \mathbb{Z} \to \mathbb{C} \mid a(n) = 0 \text{ für fast alle } n\}.$$

Das Integral

$$I(a) = \sum_{n \in \mathbb{Z}} a(n)$$

auf $C_c(\mathbb{Z})$ ist ein Daniell-Integral. Der Raum $M(X,\mathbb{C})$ ist der Raum aller Folgen $a:\mathbb{Z}\to\mathbb{C}$, der Raum $L(X,\mathbb{C})$ ist der Unterraum aller absolut konvergenten Folgen und

$$L^2(X,I) \ = \ \left\{ a: \mathbb{Z} \to \mathbb{C} \ \big| \ \sum_{n \in \mathbb{Z}} |a(n)|^2 < \infty \right\}$$

sowie

$$\langle a, b \rangle = \sum_{n \in \mathbb{Z}} \overline{a(n)} \cdot b(n) .$$

Für $\nu \in \mathbb{Z}$ definieren wir die Funktionen $f_{\nu} \in C_c(\mathbb{Z})$ durch

$$f_{\nu}(n) = \delta_{\nu n}$$
 (Kronecker-Delta).

Diese haben die Eigenschaften

- $\langle f_{\nu}, f_{\mu} \rangle = \delta_{\nu\mu}$ (Orthogonalität).
- Für alle $f \in L^2(\mathbb{Z})$ und für alle $\varepsilon > 0$ existiert eine endliche \mathbb{C} -Linearkombination g der f_{ν} mit $||f g||_{L^2} < \varepsilon$ (Dichtigkeit).

7.6 Orthonormalbasen

Zur Erinnerung: Ein **Hilbertraum** $(H,\langle.,.\rangle)$ ist ein <u>vollständiger metrischer</u> Raum. Die Metrik $d(v,w) = \|v-w\|$ ist durch ein <u>positiv definites</u> hermitesches Skalarprodukt $\langle.,.\rangle: H \times H \to \mathbb{C}$ gegeben

$$\boxed{\|v\|^2 = \langle v, v \rangle} \ .$$

Definition 7.5. Eine (abzählbare) **Hilbertraum-Basis** I v_{n} $(n \in \mathbb{Z})$ eines Hilbert-Raums H ist per Definition eine Folge von Vektoren $v_{n} \in H$ mit der Eigenschaft

- Orthonormalität: $\langle v_{\nu}, v_{\mu} \rangle = \delta_{\nu,\mu}$ (Kronecker Delta)
- **Dichtigkeit**: Für alle $f \in H$ und für alle $\varepsilon > 0$ existiert eine endliche \mathbb{C} -lineare Kombination g der v_{ν} so dass gilt $||f g|| < \varepsilon$.

Die erste Eigenschaft impliziert die <u>lineare Unabhängigkeit</u> der Vektoren v_{ν} : Verschwindet $g = \sum_n a(n)v_n$ (endliche Summe), dann folgt $a(m) = \langle g, v_m \rangle = 0$ für alle m.

Satz 7.6. Ist v_{ν} eine abzählbare Hilbertraum-Basis eines Hilbertraumes $(H, \langle ., . \rangle)$, dann induziert $L^2(\mathbb{Z}) \ni a \mapsto \sum_n a(n) \cdot v_n$ einen isometrischen Isomorphismus von Hilberträumen

$$\boxed{i: L^2(\mathbb{Z}) \cong H} \quad , \quad \boxed{\langle a, b \rangle_{L^2(Z)} = \langle i(a), i(b) \rangle}.$$

Die Umkehrabbildung ordnet einem Vektor $v \in H$ die Folge $a(n) = \langle v_n, v \rangle$ in $L^2(\mathbb{Z})$ zu.

Beweis. Wegen der linearen Unabhängigkeit der v_n ist die Abbildung i auf dem Teilraum $C_c(\mathbb{Z}) \subseteq L^2(\mathbb{Z})$ wohldefiniert (fast alle a(n) sind Null) und es gilt wegen der <u>Orthonormalität</u>

$$||i(a)||^2 = \langle \sum_n a(n) \cdot v_n, \sum_m a(m) \cdot v_m \rangle = \sum_n |a(n)|^2 = ||a||_{L^2(\mathbb{Z})}.$$

¹Es handelt sich dabei nicht um eine Basis im Sinne der linearen Algebra.

 $C_c(\mathbb{Z})$ liegt dicht in $L^2(\mathbb{Z})$. Wegen der Isometrieeigenschaft lässt sich daher die Abbildung i durch Limesbildung auf ganz $L^2(\mathbb{Z})$ wohldefiniert fortsetzen: Für $a \in L^2(\mathbb{Z})$ wähle $a_n \to a$ im L^2 -Sinn mit $a_n \in C_c(\mathbb{Z})$. Dann ist $i(a_n)$ eine Cauchyfolge in H wegen $\|i(a_n) - i(a_m)\| = \|i(a_n - a_m)\| = \|a_n - a_m\|$. Ihr Grenzwert sei i(a). Man sieht aus der Definition sofort, dass i linear ist $[i(a+b) := \lim_n i(a_n+b_n) = \lim_n i(a_n) + \lim_n i(b_n) = i(a) + i(b)$ für L^2 -konverente Folgen $a_n \to a$ und $b_n \to b$.] Es gilt $\|i(a)\| = \lim_n \|i(a_n)\| = \lim_n \|a_n\| = \|a\|$. Daraus folgt, daß das Bild $B = i(L^2(\mathbb{Z}))$ abgeschlossen in H ist. [Ist $B \ni v_n \to v$ eine konvergente Folge und sei $v_n = i(w_n)$. Dann definiert w_n wegen $\|v_n - v_m\| = \|i(w_n) - i(w_m)\| = \|i(w_n - w_m)\| = \|w_n - w_m\|$ eine Cauchy Folge, welche wegen der Vollständigkeit konvergiert: $w_n \to w$. Es folgt sofort dann mittels des Diagonalfolgentricks i(w) = v.] Außerdem ist i injektiv: Aus i(a) = 0 folgt $\|a\| = \|i(a)\| = 0$, also a = 0.

Aus der Dichtigkeits-Annahme folgt, dass das Bild B einen dichten Teilraum enthält. Das heisst für $f \in H$ existiert ein $g \in B$ mit $||f - g|| < \varepsilon$. Somit gibt es eine Folge von $g_n \in B$ welche gegeben f konvergiert. Da B abgeschlossen ist, folgt $f \in B$. Daher ist i surjektiv. \square

Korollar 7.7. Ist $\{v_n\}_{n\in I}$ eine (abzählbare) Hilbertraum-Basis eines Hilbertraumes V, dann gilt für jedes $v\in V$ im Sinne der Hilbertraum-Konvergenz

$$v = \sum_{n \in I} v_n \cdot \langle v_n, v \rangle.$$

Bemerkung. Physiker schreiben dies gerne in der Form $|v\rangle = \sum_{n \in I} |v_n\rangle \cdot \langle v_n|v\rangle$.

7.7 Fourier Reihen

Mittels der Parameterisierung $t\mapsto \exp(2\pi it)$ entsprechen Funktionen g auf dem Einheitskreis $X=S^1$ periodischen Funktionen $f(t)=g(\exp(2\pi it))$ auf $\mathbb R$ mit der Periode 1 und umgekehrt. Der Raum $C_c(X,\mathbb C)=C(X,\mathbb C)$ kann dabei mit dem Raum der **periodischen** stetigen Funktionen $f:\mathbb R\to\mathbb C$ mit Periode f(t+1)=f(t) identifiziert werden. Das Integral

$$I(f) = \int_0^1 f(t)dt$$

definiert ein Daniell-Integral auf $C_c(X)$. Sei I das zugehörige Lebesgue Integral. In diesem Sinne gilt

$$L^2(S^1, I) \cong L^2([0, 1], \mathbb{C}) \cong L^2_{periodisch}(\mathbb{R}, \mathbb{C})$$
.

Satz 7.8. Die Funktionen $\chi_n(t) = \exp(2\pi i n t)$ definieren eine Hilbertraum-Basis von $L^2(S^1, I)$. Das heisst: Jede Funktion $f \in L^2(S^1)$ schreibt sich als L^2 -Limes

$$f(t) = \sum_{n \in \mathbb{Z}} a(n) \exp(2\pi i n t)$$

mit den Fourierkoeffizienten

$$a(n) = \int_0^1 f(t) \exp(-2\pi i n t) dt$$

und es gilt die Plancherel Formel

Die Fourierreihe $\sum_{n\in\mathbb{Z}}a(n)\exp(2\pi int)$ konvergiert punktweise gegen f(t) für alle Funktionen $f\in C^2([0,1],\mathbb{C})$ mit der Eigenschaft f(0)=f(1) und f'(0)=f'(1).

Beweis. Nach 7.6 genügt es zu zeigen, dass die $\chi_n(t) = \exp(2\pi i n t)$ eine Hilbertraumbasis von $L^2(S^1,I)$ bilden. Der Rest (insbesondere die Plancherel Formel) folgt dann aus der Existenz des isometrischen Isomorphismus $i:L^2(\mathbb{Z})\cong L^2(S^1,I)$ nach Satz 7.6.

Orthonormalität.

$$\langle \chi_n, \chi_m \rangle = \int_0^1 \exp(2\pi i k t) dt$$

für k=m-n. Für k=0 ist das Integral 1, und für $k\neq 0$ gleich $(2\pi i k)^{-1}\exp(2\pi i k t)|_0^1=0$.

Dichtigkeit. Der von den endlichen Linearkombinationen g(t) der Funktionen $\chi_n(t)$ aufgespannte \mathbb{C} -Untervektorraum definiert eine \mathbb{C} -Algebra A in $C(X,\mathbb{C})$. Offensichtlich trennt die Funktion $\chi_1(t) = \exp(2\pi i t)$ die Punkte von S^1 . Also gibt es für jede Funktion $f \in C(X,\mathbb{C})$ und jedes $\varepsilon > 0$ ein $g(t) \in A$ mit

$$||f - g||_{L^2}^2 \le vol(S^1) \cdot \sup_{t \in S^1} |f(t) - g(t)|^2 < \varepsilon$$

wegen des Satzes von Stone-Weierstrass (nächster Paragraph). Andererseits liegt $C(X, \mathbb{C})$ dicht in $L^2(X, \mathbb{C})$ nach 7.4, und damit auch bereits A.

Punktweise Konvergenz. Beachte $|\exp(2\pi i n t)| = 1$ für $t \in [0, 1]$. Aus $f \in C^2([0, 1], \mathbb{C})$ und f(0) = f(1) sowie f'(0) = f'(1) folgt durch zweimalige partielle Integration

$$a(n) = \int_0^1 f(t) \exp(-2\pi i n t) dt = \frac{1}{-4\pi^2 n^2} \int_0^1 f''(t) \exp(-2\pi i n t) dt.$$

Es folgt $|a(n)| \leqslant \frac{C}{n^2}$, da die stetige Funktion f''(t) auf dem Kompaktum [0,1] beschränkt ist. Wegen $\sum_{n=1}^{\infty} \frac{1}{n^2} \leqslant 1 + \int_1^{\infty} \frac{dt}{t^2} < +\infty$ konvergiert $g(x) := \sum_{n \in \mathbb{Z}} a_n \exp(2\pi i n t)$ absolut und gleichmässig auf [0,1], definiert also nach Satz 2.24 eine stetige Funktion auf [0,1]. Aus dem Beweis des Satzes von Fischer-Riesz folgt, daß die Fourier Reihe (nach Übergang zu einer Teilreihe!) punktweise (fü.) gegen f(x) konvergiert. Daher sind f(x) und g(x) fast überall gleich. Da beide stetig sind, folgt aus dem nächsten Lemma f(x) = g(x)

Lemma 7.9. Ist h stetig und gilt $||h||_{L^2}^2 = \int_0^1 |h(t)|^2 dt = 0$, dann ist h = 0.

Beweis. Wäre $h(t_0) \neq 0$, gäbe es ein $\delta > 0$ mit $|h(t)| > |h(t_0)| - \varepsilon > \frac{1}{2}|h(t_0)|$ für $|t - t_0| < \delta$. Die gibt den Widerspruch $I(|h|^2) \geq \frac{1}{4}|h(t_0)|^2 \cdot I(\chi_{[-\delta + t_0, t_0 + \delta]} > 0$.

Beispiel. Für $f(x)=x-\frac{1}{2}$ und $a_{\nu}=\int_{0}^{1}(x-\frac{1}{2})\exp(2\pi i\nu t)dt$ gilt $a_{0}=0$ und mittels partieller Integration zeigt man $a_{\nu}=(t-\frac{1}{2})\frac{\exp(2\pi i\nu t)}{2\pi i\nu}|_{0}^{1}=\frac{1}{2\pi i\nu}$. Es folgt

$$\sum_{\nu=1}^{N} \frac{\sin(2\pi\nu x)}{\pi\nu} \longrightarrow f(x) = x - \frac{1}{2}$$

für $N \to \infty$ im L^2 -Sinn wegen $f \in L^2([0,1],\mathbb{C})$. Beachte $f(0) \neq f(1)$. Tatsächlich konvergiert die Reihe nicht punktweise. Im Punkt x = 0 ist die Fourierreihe Null, aber es gilt f(0) = -1/2.

7.8 Stone-Weierstrass

Sei X ein folgenkompakter metrischer Raum und $C(X,\mathbb{C})$ der Raum der stetigen \mathbb{C} -wertigen Funktionen mit der Supremumsnorms $\|.\| = \|.\|_{\infty}$ (siehe Satz 2.24). Betrachte $A \subseteq C(X)$ (oder $\subseteq C(X,\mathbb{C})$) mit

- A ist eine \mathbb{R} (oder \mathbb{C})-Unteralgebra von C(X) (oder $C(X,\mathbb{C})$), insbesondere $1 \in A$
- $f \in A \Longrightarrow \overline{f} \in A$ (entfällt im reellen Fall)
- Für $x \neq y$ in X existiert $f \in A$ mit $f(x) \neq f(y)$ (Punktetrennung)

Wir betrachten nun obdA den reellen Fall. Der Abschluß \overline{A} von A in C(X) sei die Menge aller Limiten von konvergenten Folgen f_n in X bezüglich der Norm $\|.\|_{\infty}$ mit $f_n \in A$; trivialerweise gilt $A \subseteq \overline{A}$. Mittels des Diagonalfolgentricks zeigt man, daß \overline{A} eine abgeschlossene Teilmenge von C(X) ist; dies erklärt den Namen Abschluß.

Die oben geforderten Eigenschaften von A vererben sich auf den Abschluss \overline{A} von A. Dies folgt aus den uns bekannten Sätzen über (punktweise) Limesbildung. Nach Definition gilt ausserdem

$$\boxed{g \in \overline{A} \quad \Longleftrightarrow \quad \forall \varepsilon > 0 \quad \exists f \in A \ \operatorname{mit} \ \|g - f\|_{\infty} < \varepsilon} \ .$$

Satz 7.10 (Stone-Weierstraß). Erfüllt A obige Eigenschaften und ist X <u>kompakt</u>, dann gilt $\overline{A} = C(X)$ und A liegt dicht in C(X).

Zum Beweis dieses Satzes benutzen wir den folgenden nichtrivialen Satz (ohne Beweis)

Satz 7.11. Ein folgenkompakter metrischer Raum X ist überdeckungskompakt, d.h. für jede Überdeckung $X = \bigcup_{i \in I} U_i$ durch offene Teilmenge U_i von X existiert einen endliche Teilmenge I der Indexmenge I derart, daß gilt $X = \bigcup_{i \in I} U_i$.

Beweis. Schritt 1. \overline{A} ist ein Verband. Dazu genügt $f \in \overline{A} \Longrightarrow |f| \in \overline{A}$. Dazu genügt es aus $0 \leqslant h = f \cdot \overline{f} \in \overline{A}$ eine positive Wurzel $+\sqrt{h} \in \overline{A}$ ziehen zu können. Gilt $0 < c_1 \leqslant h \leqslant c_2 < 1$, dann schreibt sich h = 1 - g mit $\|g\|_{\infty} < 1$ und die Taylorentwicklung $\sqrt{h} = 1 - \frac{1}{2}g + \cdots$ konvergiert in C(X) nach 4.39. Ersetzt man ein beliebiges nichtnegatives $h \in \overline{A}$ durch $c \cdot (h+d)$ mit kleinem positiven Konstanten c,d, kann man daher aus h die Wurzel in \overline{A} ziehen. Da man aus c die Wurzel ziehen kann, existiert $\sqrt{h+d} \in \overline{A}$. Im Limes $d \to 0$ folgt $\sqrt{h} \in \overline{A}$. Wir haben dabei mehrfach benutzt, dass \overline{A} in C(X) unter Limesbildung abgeschlossen ist!

Schritt 2. Gegeben $g \in C(X)$ und $\varepsilon > 0$. Da \overline{A} Punkte trennt und die konstanten Funktionen enthält enthält, findet man für je zwei Punkte $x,y \in X$ eine Hilfsfunktion $f = f_{x,y} \in \overline{A}$ mit f(x) = g(x) und f(y) = g(y). Bei festem x gibt es dann zu jedem y eine offene Umgebung V(y) von y mit $\sup_{y' \in V(y)} |f(y') - g(y')| < \varepsilon$. Endlich viele $V(y_1), ..., V(y_m)$ der V(y)

überdecken X. Also gilt

$$F_x(x) = g(x)$$
 , $F_x(y) < g(y) + \varepsilon \ (\forall y \in X)$

für $F_x=\inf(f_{x,y_1},\cdots,f_{x,y_m})$ in \overline{A} (Verbandseigenschaft). Für jedes x gibt es eine offene Umgebung U(x) mit $\sup_{x'\in U(x)}|g(x')-F_x(x')|<\varepsilon$. Endlich viele $U(x_1),..,U(x_n)$ überdecken X. Es folgt

$$f(x) > q(x) - \varepsilon$$
 , $f(y) < q(y) + \varepsilon$ $(\forall x, y \in X)$

für $f = \sup(F_{x_1}, \dots, F_{x_n}) \in \overline{A}$. Das heisst

$$||g - f||_{\infty} < \varepsilon$$
 , $f \in \overline{A}$.

Für $\varepsilon=\frac{1}{n}$ folgt, für jedes $g\in C(X)$ existiert eine Folge von Funktion $f_n\in \overline{A}$, welche gegen f gleichmässig konvergiert. Da \overline{A} abgeschlossen ist, folgt $g\in \overline{A}$. Daher gilt $C(X)=\overline{A}$.

7.9 Reelle Fourier Transformation

Eine **Schwartz-Funktion** $f: \mathbb{R} \to \mathbb{C}$ ist eine unendlich oft differenzbare Funktion auf \mathbb{R} , so daß für jede Ableitung $f^{(n)}(x)$ von f(x) und jedes Polynom P(x) für eine von n und P(x) abhängige Konstante C = C(n, P(x)) gilt

$$|P(x) \cdot f^{(n)}(x)| \leqslant C.$$

Sei S der Raum der Schwartz-Funktionen.

Beispiel 7.12. Die Gauß-Funktionen $f(x) = \exp(-ax^2 - bx - c)$ für $a, b, c \in \mathbb{R}$ und a > 0 liegen in S.

Der Raum der Schwartz-Funktionen \mathcal{S} ist ein \mathbb{C} -Untervektorraum von $L^2(\mathbb{R})$. Für Schwartz-Funktionen $f \in \mathcal{S}$ ist die **Fourier Transformation** $\mathcal{F}f$ für $y \in \mathbb{R}$ erklärt durch

$$\boxed{(\mathcal{F}f)(y) = \int_{\mathbb{R}^N} f(x) \cdot \exp(2\pi i x y) \ dx}.$$

Da $f(x) \cdot \exp(2\pi i x y)$ stetig in x und damit messbar ist, existiert das Integral nach Satz 6.16.6 auf Grund der Existenz einer auf $\mathbb R$ integrierbaren Majorante, denn $|f(x) \cdot \exp(2\pi i x y)| = |f(x)| \le g(x) = \min(c_0, \frac{c_1}{x^2})$ mit $g \in L(\mathbb R)$. [Setze $c_0 = C(0,1)$ und $c_1 = C(0,x^2)$.] Insbesondere ist daher $\mathcal F(y)$ eine durch $const := \int_{\mathbb R} g(x) dx < +\infty$ beschränkte Funktion der Variable y.

Lemma 7.13. 1. \mathcal{F} ist eine \mathbb{C} -lineare Abbildung $\mathcal{F}: \mathcal{S} \to \mathcal{S}$.

- 2. \mathcal{F} bildet dabei $x^n \cdot f(x)$ auf $(\frac{\partial_y}{2\pi i})^n (\mathcal{F}f)(y)$ ab für $f \in \mathcal{S}$.
- 3. \mathcal{F} bildet $(\frac{\partial_x}{2\pi i})^n f(x)$ auf $(-y)^n \cdot (\mathcal{F}f)(y)$ ab für $f \in \mathcal{S}$.
- 4. Es gilt $\mathcal{F}f = f \text{ für } f(x) = \exp(-\pi x^2)$.

Beweis. Beachte $\mathcal{F}(x^nf(x))(y)=\int x^nf(x)exp(2\pi ixy)dx=\int (\frac{\partial_y}{2\pi i})^nf(x)exp(2\pi ixy)dx$. Aussage 2 folgt nun aus Satz 4.32 [verifiziere die Voraussetzungen !]. Partielle Integration liefert Aussage 3. Es folgt $|P(-y)(\frac{\partial_y}{2\pi i})^n\mathcal{F}f(y)|=|\mathcal{F}(P(\frac{\partial_x}{2\pi i})x^nf(x))(y)|\leqslant const.$ Dies zeigt $\mathcal{F}(f)\in\mathcal{S}$ für $f\in\mathcal{S}$ und damit Aussage 1.

Aussage 4 ist am schwierigsten: Mit Hilfe des Hauptsatzes und Satz 4.32 zeigt man zuerst, daß $c(y) = \exp(\pi y^2) \cdot \mathcal{F} f(y) = \int_{\mathbb{R}} \exp(-\pi (x-iy)^2) dx$ konstant ist, denn

$$\frac{d}{dy}c(y) = \frac{d}{dy} \int_{\mathbb{R}} e^{-\pi(x-iy)^2} dx = \int_{\mathbb{R}} \frac{d}{dy} e^{-\pi(x-iy)^2} dx = 2\pi i \int_{\mathbb{R}} (x-iy)e^{-\pi(x-iy)^2} dx$$
$$= -i \int_{\mathbb{R}} \frac{d}{dx} e^{-\pi(x-iy)^2} dx = \lim_{n \to \infty} -ie^{-\pi(x-iy)^2} \Big|_{-n}^{+n} = 0.$$

Aus der Substitutionsregel und dem Satz von Fubini folgt dann für c = c(0)

$$c^{2} = \int_{\mathbb{R}^{2}} e^{-\pi(x_{1}^{2} + x_{2}^{2})} dx_{1} dx_{2} = \lim_{N \to \infty} \lim_{\varepsilon \to 0} \int_{[\varepsilon, N]} \int_{0}^{2\pi} e^{-\pi r^{2}} r dr d\theta = \frac{-e^{-x}}{2\pi} \Big|_{0}^{\infty} \cdot 2\pi = 1.$$

Wegen $c \ge 0$ gilt daher c = 1. Also

$$\int_{\mathbb{R}} e^{-\pi x^2} dx = 1 \, .$$

Die Gauß-Funktionen $\exp(-ax^2 - bx - c)$ für $a, b, c \in \mathbb{R}$ mit Exponent $a \ge \pi$ spannen einen \mathbb{C} -Untervektorraum \mathcal{G} von \mathcal{S} auf.

Lemma 7.14. \mathcal{G} liegt dicht in $L^2(\mathbb{R})$.

Beweis. $C_c^2(\mathbb{R},\mathbb{C}) \subset L^2(\mathbb{R})$ liegt dicht in $L^2(\mathbb{R})$ wegen Abschnitt 7.4, Satz 7.10 sowie Lemma 8.1. Es genügt daher, daß jede Funktion $\tilde{f}(x) \in C_c^2(\mathbb{R},\mathbb{C})$ durch Funktionen $\tilde{g}_m \in \mathcal{G}$ in $L^2(\mathbb{R})$ approximiert werden kann. Für jedes $\tilde{f}(x) \in C_c^2(\mathbb{R},\mathbb{C})$ existiert ein $t_0 \geqslant 1$ und ein x_0 mit $|x_0| < \frac{1}{2}$, so daß $f(x) = \tilde{f}(t_0x)$ Träger in $[-x_0, x_0] \subset [-\frac{1}{2}, \frac{1}{2}]$ hat. Approximationen von $\tilde{f}(x)$ durch Gaußfunktionen $\tilde{g}_m(x)$ in \mathcal{G} (d.h. mit Exponent $\geqslant \pi$) entsprechen Approximationen von f(x) durch Gaußfunktionen $g_m(x) = \tilde{g}_m(t_0x)$ mit Exponent $\geqslant t_0^2 \cdot \pi$. Für die Hilfsfunktion

$$h(x) = e^{tx^2} \cdot f(x)$$
 , $t \geqslant t_0^2 \cdot \pi$

gilt $supp(h)\subseteq [-x_0,x_0]$ und $h(x)\in C^2(\mathbb{R},\mathbb{C})$. Wegen $h^{(\nu)}(-1/2)=h^{(\nu)}(1/2)=0$ für $\nu\leqslant 1$ folgt aus Satz 7.8 die gleichmässige Konvergenz $\sum_{n\in\mathbb{Z}}a(n)e^{2\pi inx}\longrightarrow h(x)$ der Fourierreihe auf $[-\frac{1}{2},\frac{1}{2}]$. Wegen $\exp(-tx^2)\leqslant 1$ konvergieren daher die Gaußfunktionen $g_m(x)$

$$g_m(x) = \sum_{|n| \le m} a(n)e^{-tx^2 + 2\pi inx} \longrightarrow f(x) = e^{-tx^2} \cdot h(x)$$

gleichmässig auf $\left[-\frac{1}{2},\frac{1}{2}\right]$ gegen f(x). Es folgt für $m\geqslant m_0(\varepsilon)$ und gegebenes $\varepsilon>0$

$$\int_{|x| \leqslant \frac{1}{2}} |f(x) - g_m(x)|^2 dx < \varepsilon^2 / 2.$$

 $\begin{array}{l} \text{Für } \frac{1}{2} \leqslant |x| \text{ ist } f(x) = 0 \text{ und } \int_{\frac{1}{2} \leqslant |x|} |f - g_m|^2 dx = \int_{\frac{1}{2} \leqslant |x|} |g_m(x)|^2 dx \text{ lässt sich dann durch } \\ \int_{\frac{1}{2} \leqslant |x|} \sum_{|n| \leqslant m} |a(n)|^2 e^{-2tx^2} dx \leqslant \|h\|^2 \int_{\frac{1}{2} \leqslant |x|} e^{-2tx^2} dx \leqslant const \cdot e^{2tx_0^2} \cdot e^{-t/2} \text{ abschätzen mittels } \\ \text{der Plancherel Formel } \sum_{n} |a(n)|^2 = \|h\|_{L^2([-\frac{1}{2},\frac{1}{2}])}^2 \leqslant Ce^{2tx_0^2} \text{ und } \int_{\frac{1}{2} \leqslant |x|} e^{-2tx^2} \leqslant \frac{2}{t}e^{-t/2}. \text{ Also } \end{array}$

$$\int_{\frac{1}{2} \le |x|} |f(x) - g_m(x)|^2 dx \le const \cdot e^{2t(x_0^2 - \frac{1}{4})} < \varepsilon^2 / 2$$

für $t \ge t_0(\varepsilon)$ und obd $A \ge t_0^2 \cdot \pi$. Zusammen mit der Abschätzung im Bereich $|x| \le \frac{1}{2}$ folgt daher bei geeigneter Wahl von t für die Gaußfunktionen $g_m(x)$

$$||f - g_m||_{L^2(\mathbb{R})} < \varepsilon$$
 , $m \ge m_0(\varepsilon)$.

Die reskalierten Funktionen \tilde{g}_m , definiert durch $g_m(x) = \tilde{g}_m(t_0x)$, liegen nach Konstruktion in \mathcal{G} und approximieren $\tilde{f}(x)$ in der L^2 -Metrik.

Lemma 7.15. Der von den \mathbb{C} -linar unabhängigen Funktionen $x^n \cdot \exp(-\pi x^2)$ für natürliches $n \in \mathbb{N}_0$ aufgespannte \mathbb{C} -Vektorraum \mathcal{H} liegt dicht in $L^2(\mathbb{R})$.

Beweis. Punktweise Konvergenz $f_n(x) \to f(x)$, bzw. $f(x) - f_n(x) \to 0$, auf $\mathbb R$ sowie $|f - f_n|^2 \le F$ für ein $F \in L(\mathbb R)$ liefert nach Satz 6.9

$$\lim_{n \to \infty} \|f - f_n\|_{L^2}^2 = \lim_{n \to \infty} \int_{\mathbb{R}} |f(x) - f_n(x)|^2 dx \to 0.$$

 $f_n(x) := \sum_{m=0}^{m=n} \frac{(-1)^m}{m!} (\rho x^2 + bx + c)^m P(x) \cdot \exp(-\alpha x^2) = Q_n(x) \cdot \exp(-\alpha x^2) \text{ konvergient punktweise gegen } f(x) := P(x) \exp(-ax^2 - bx - c) \text{ auf } \mathbb{R} \text{ wegen Satz } 4.41. \text{ Für } a = \alpha + \rho \text{ mit } 0 \leqslant \rho < \frac{\pi}{2} \text{ und } \pi \leqslant a \text{ gilt } |f - f_n|^2 \leqslant |P(x)|^2 \exp(-2\alpha x^2) \exp(2\rho x^2 + 2|b||x| + 2|c|) \leqslant F(x) = |P(x)^2| \exp(-\lambda x^2 + 2|b||x| + 2|c|) \text{ mit } \lambda = 2(a - 2\rho) > 0. \text{ Also } F(x) \in L(\mathbb{R}) \text{ für jedes Polynom } P(x). \text{ Für geeignete Polynome } Q_n(x) \text{ approximieren daher die Funktionen } f_n(x) = Q_n(x) \cdot \exp(-\alpha x^2) \text{ die Funktion } f(x) = P(x) \cdot \exp(-ax^2 - bx - c) \text{ im } L^2\text{-Sinn}$

$$||f - f_n||_{L^2}^2 < \varepsilon^2$$
 , $n \ge n_0(\varepsilon)$.

Nach Lemma 7.14 liegt der Aufspann der Funktionen e^{-ax^2-bx-c} mit Exponent $\pi \leq a$ dicht in $L^2(\mathbb{R})$. Wendet man obige Approximation nun sukzessive an um den Exponent a zu verkleinern, folgt nach endlich vielen Schritten: Für alle $\varepsilon > 0$ existieren komplexe Polynome $P_n(x)$ mit

$$||e^{-ax^2-bx-c} - P_n(x) \cdot e^{-\pi x^2}||_{L^2} < \varepsilon \quad , \quad n \ge n_0(\varepsilon) .$$

Die $x^n e^{-x^2}$ sind $\mathbb C$ -linear unabhängig, da Monome $\mathbb C$ -linear unabhängig sind (Lemma 4.38). $\ \square$

Fourier Transformation erhält die Teilräume $V_N = \bigoplus_{n=0}^N \mathbb{C} x^n \cdot e^{-\pi x^2}$ wegen Lemma 7.13. Mittels Induktion nach n zeigt man daher nach **Gram-Schmidt**: Es gibt eindeutig bestimmte Polynome $H_n(x)$ vom Grad n mit der Eigenschaft: 1) Die Funktionen $f_n(x) = H_n(x)e^{-\pi x^2}$ bilden eine ON-Basis des Hilbertraums. 2) Die $f_n(x)$ für n = 0, ..., N definieren eine Basis von

$$V_N = \bigoplus_{n=0}^N \mathbb{C} \cdot x^n e^{-\pi x^2} .$$

Die dadurch eindeutig bestimmten Polynome $H_n(x)$ sind die sogenannten **Hermite Polynome**. Tatsächlich gilt² bis auf geeignete Normierungskonstanten c(n)

$$H_n(x) = c(n) \cdot e^{2\pi x^2} \partial_x^n (e^{-2\pi x^2}),$$

 $\text{denn } \int_{\mathbb{R}} P(x) \exp(-\pi x^2) H_n(x) \exp(-\pi x^2) dx = \int_{\mathbb{R}} P(x) c(n) (\partial_x^n \exp(-2\pi x^2)) dx = 0 \text{ für alle Polynome } P(x) \text{ vom Grad } < n \text{ (benutze partielle Integration !). Aus der Formel für } H_n(x) \text{ folgt sofort } H_n(-x) = (-1)^n H_n(x).$

Satz 7.16. Die Funktionen $f_n(x) = H_n(x) \exp(-\pi x^2) \in \mathcal{S}$ sind Eigenfunktionen der Fourier Transformation $\mathcal{F}: \mathcal{S} \to \mathcal{S}$ zu den Eigenwerten i^n , und definieren eine ON-Basis des Hilbertraumes $L^2(\mathbb{R})$. Die Fourier Transformation lässt sich daher eindeutig fortsetzen zu einer **unitären** \mathbb{C} -linearen Transformation des Hilbertraumes $L^2(\mathbb{R})$

$$\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$$

Beweis. $(\mathcal{F}f_n)(y)=c(n)\int e^{\pi x^2+2\pi ixy}\partial_x^n e^{-2\pi x^2}dx=c(n)e^{\pi y^2}\int e^{\pi(x+iy)^2}\partial_x^n e^{-2\pi x^2}dx$ ist wegen partieller Integration dasselbe wie $c(n)e^{\pi y^2}(-1)^n i^{-n}(\partial_y)^n\int e^{-2\pi x^2}e^{\pi(x+iy)^2}dx$, oder wie $i^nc(n)e^{\pi y^2}\partial_y^n e^{-\pi y^2}(\mathcal{F}f_0)(y)=i^nf_n(y)$. Daher ist $\mathcal{F}:\mathcal{H}\to\mathcal{H}$ eine \mathbb{C} -lineare Isometrie. Diese kann man auf ganz $L^2(\mathbb{R})$ fortsetzen: Für $v\in L^2(\mathbb{R})$ existiert eine Folge v_n aus \mathcal{H} , welche gegen v konvergiert. Da v_n eine Cauchyfolge in $\mathcal{H}\subseteq\mathcal{S}$ ist, ist $\mathcal{F}(v_n)$ eine Cauchyfolge in \mathcal{H} , denn \mathcal{F} ist auf $\mathcal{H}\subseteq\mathcal{S}$ definiert und eine Isometrie! Setze $\mathcal{F}(v):=\lim_n\mathcal{F}(v_n)$. Man zeigt, dies ist wohldefiniert, \mathbb{C} -linear und eine Isometrie.

Korollar 7.17 (Fourier Inversion). Für alle f in $L^2(\mathbb{R})$ gilt

$$\boxed{(\mathcal{F}\mathcal{F}f)(x) = f(-x)}.$$

Wir bemerken $(\mathcal{F}\mathcal{F}f)(x)=f(-x)$ gilt auf den Basisfunktionen $H_n(x)e^{-\pi x^2}$ von \mathcal{H} und damit für beliebiges $f\in L^2(\mathbb{R})$, d.h. fast überall auf $X=\mathbb{R}$. Ist aber zum Beispiel f – und damit auch $(\mathcal{F}\mathcal{F}f)(x)$ – in \mathcal{S} , dann stimmen f(-x) und $(\mathcal{F}\mathcal{F}f)(x)$ als stetige Funktionen in allen Punkten $x\in\mathbb{R}$ überein. Es folgt

Korollar 7.18 (Fourier Inversion). Für alle $f \in S$ gilt

$$\boxed{f(x) = \int_{\mathbb{R}} g(y)e^{-2\pi iyx}dy} \qquad \boxed{g(y) = (\mathcal{F}f)(y) = \int_{\mathbb{R}} f(x)e^{2\pi iyx}dx}.$$

Oder $H_n(x)e^{-\pi x^2}=c(n)\cdot A_+^n(e^{-\pi x^2})$ für $A_+=X+iY=\partial_x-2\pi x=e^{\pi x^2}\partial_x e^{-\pi x^2}$ mit den Abkürzungen $X=\partial_x$ und $Y=2\pi ix$. Beachte $A_-=X-iY$ annuliert $e^{-\pi x^2}$ und die Differentialgleichung $A_-(f(x))=0$ bestimmt $f(x)=c\cdot e^{-\pi x^2}$ bis auf eine Normierungskonstante c.

Physikalische Interpretation

Nach Satz 7.16 ist die Fourier Transformation unitär, definiert also einen Automorphismus des Zustandsraumes $L^2(\mathbb{R})$. Das Lemma 7.13 2) lässt sich so deuten, daß die Fourier Transformation die physikalischen Operatoren von Impuls $\tilde{X} = \frac{1}{2\pi i} \frac{d}{dx}$ und Ort $\tilde{Y} = x$ vertauscht; also als Transformation von der (kohärenten) **Ortsraumdarstellung** in die (kohärente) **Impulsraumdarstellung**. Das Wirkungsquantum wurde hierzu der Einfachheit halber zu 1 normiert. Man hat die unitären Transformationen

$$U_t(f): f(x) \mapsto f(x+t)$$
 , $V_s(f): f(x) \mapsto e^{2\pi i x s} \cdot f(x)$
 $W_r(f): f(x) \mapsto e^{2\pi i r} \cdot f(x)$

des Hilbertraumes $L^2(\mathbb{R})$ in sich, welche man (für uns nur symbolisch) auch in der Form $\exp(2\pi i t \tilde{X})$ und $\exp(2\pi i s \tilde{Y})$ schreibt. Der Grund ist der folgende: Es gelten die Funktionalgleichungen $U_t \circ U_{t'} = U_{t+t'}$ und $V_s \circ V_{s'} = V_{s+s'}$.

$$\frac{d}{dt}U_{t}(f)|_{t=0}(x) = \frac{d}{dt}f(x+t)|_{t=0} = \partial_{x}f(x) = (Xf)(x)$$

$$\frac{d}{ds}V_{s}(f)|_{s=0}(x) = 2\pi i x \cdot f(x) = (Yf)(x) ,$$

$$\frac{d}{dr}W_{r}(f)|_{r=0}(x) = 2\pi i \cdot f(x) = 2\pi i d_{L^{2}(\mathbb{R})} \cdot f(x) .$$

Die Operatoren U_t, V_s und W_r (für $r, s, t \in \mathbb{R}$) erzeugen eine Gruppe unitärer Operatoren, die sogenannte **Heisenberggruppe**. Es gilt

$$U_t \circ V_s = W_{st} \circ V_s \circ U_t = e^{2\pi i st} \cdot V_s \circ U_t$$
.

Bis auf einen **Phasenfaktor** $W_{st} = \exp(2\pi i s t)$ vertauschen also U_t und V_s . Die Operatoren W_s induzieren die identische Abbildung auf dem Zustandsraum aller Geraden $\mathbb{C} \cdot v$ im Hilbertraum. In der Tat bildet W_s die Gerade $\mathbb{C} \cdot v$ auf $\mathbb{C} \cdot \exp(2\pi i r) \cdot v = \mathbb{C} \cdot v$ ab.

Die Heisenberggruppe kann auch als die Matrixgruppe aller Matrizen der Gestalt

$$\left\{ \begin{pmatrix} 1 & t & r \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

beschrieben werden, mit

$$u_t = \begin{pmatrix} 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad v_s = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix} \quad w_r = \begin{pmatrix} 1 & 0 & r \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Man prüft leicht nach

$$u_t \circ v_s = w_{st} \circ v_s \circ u_t .$$

8 Integration auf Mannigfaltigkeiten

8.1 Partitionen der Eins

Sei f(x) eine reellwertige Funktion auf dem Intervall $[0, \infty)$, welche r-mal stetig partiell differenzierbar mit

$$f^{(\nu)}(0) = 0$$
 , $\forall \nu = 0, 1, ..., r - 1$.

Wir nehmen an $f(x) \ge 0$ mit f(x) > 0 für x > 0.

Beispiel. $f(x) = x^r \text{ für } r < \infty \text{ und } f(x) = \exp(-\frac{1}{x}) \text{ für } r = \infty.$ Sei daher obdA $r = \infty$.

Man kann für x < 0 die Funktion f(x) durch Null auf ganz \mathbb{R} zu einer Funktion in $C^{r-1}(\mathbb{R})$ fortsetzen; wir nennen diese Null-Fortsetzung wieder f(x).

Für $x_0 > 0$ ist dann $g(x) = f(x)f(x_0 - x)$ eine Funktion in $C^{r-1}(\mathbb{R})$, und g(x) > 0 genau dann wenn $x \in (0, x_0)$ gilt, und g(x) ist Null sonst.

Nach dem Hauptsatz ist $h(x) = \int_0^x g(t)dt$ eine Funktion in $C^r(\mathbb{R})$. Es gilt h(x) = 0 für $x \leq 0$, und 0 < h(x) < const für $0 < x < x_0$ sowie h(x) = const für $x \geq x_0$. Hierbei ist $const = \int_0^{x_0} g(t)dt$, und obdA const = 1 bei geeigneter Wahl von f.

Die Funktion $\psi(x)=h(x-a)h(a-x)$ erfüllt für $a>x_0$ (zum Beispiel $x_0=a/2$) wieder $\psi(x)\in C^r(\mathbb{R})$. Es gilt $\psi(x)=0$ genau dann, wenn $x\notin (-a,a)$, und $\psi(x)=1$ genau dann, wenn $x\in [-a+x_0,a-x_0]$, und es gilt $0<\psi(x)<1$ sonst. Aus der Existenz dieser Funktionen folgt bei geeigneter Wahl von a und x_0 sofort

Lemma 8.1. Die Funktionen in $C^{\infty}(\mathbb{R}^n)$ trennen Punkte in \mathbb{R} .

Beweis. In der Tat hat die C^{∞} -Funktion

$$\varphi(x) = \varphi_{\xi,a}(x) = \psi(d_{\mathbb{R}^n}(x,\xi))$$

Träger in einer Kugel $K_a(\xi)$ vom Radius a um den Punkt $\xi \in \mathbb{R}^n$, und 'trennt' daher ξ von jedem Punkt $x \in \mathbb{R}^n$, der weiter als a von ξ entfernt ist.

Sei nun M eine beliebige kompakte Teilmenge von \mathbb{R}^n und sei $M = \bigcup_{\xi \in I} K_r(\xi)$ eine endliche Überdeckung von M durch offene Kugeln um endlich viele Punkte $\xi \in M$. Die Radien r = a/2 > 0 mögen hierbei von den Punkten ξ abhängen: $r = r(\xi)$. Sei N die offene Menge

$$N = \bigcup_{\xi \in I} K_{2r}(\xi) .$$

Es gilt $M \subset N$. Für eine gegebene offene Menge im \mathbb{R}^n , welche M enthält, kann obdA durch geeignete Wahl der Radien $r=r(\xi)$ angenommen werden, daß N in dieser offenen Menge liegt. Für $x \in N$ ist dann

$$\varphi_{\xi}(x) = \frac{\varphi_{\xi,a(\xi)}(x)}{\sum_{\xi \in I} \varphi_{\xi,a(\xi)}(x)}$$

eine wohldefinierte C^{∞} -Funktion und es gilt

$$\sum_{\xi \in I} \varphi_{\xi}(x) = 1$$

auf der offenen Teilmenge $\tilde{N}=\bigcup_{\xi\in I}K_r(\xi)$ von N, welche M enthält. Man nennt die so konstruierte Funktionenschar φ_ξ (für $\xi\in I$) dann eine **Partition der Eins** auf \tilde{N} (oder M), welche der gegebenen Überdeckung von M zugeordnet ist.

8.2 Untermannigfaltigkeiten mit Rand

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine C^{∞} -Funktion mit den Eigenschaften

- $f(\xi) = 0 \Longrightarrow df(\xi) \neq 0$
- $M = \{x \in \mathbb{R}^n \mid f(x) \leq 0\}$ sei kompakt.

Man nennt dann $\partial M = \{x \in \mathbb{R}^n \mid f(x) = 0\}$ den **Rand** von M, und M eine **kompakte** Untermannigfaltigkeit von \mathbb{R}^n mit Rand ∂M .

Beispiel. Für $f(x) = -1 + \sum_{i=1}^{n} x_i^2$ ist M die abgeschlossene Einheitskugel E im \mathbb{R}^n und ∂M ist die Einheitssphäre S der Dimension n-1 im \mathbb{R}^n .

Lokale Beschreibung des Randes. Für jeden Randpunkt $\xi \in \partial M$ ist $\partial_{\nu} f(\xi) \neq 0$ für ein $\nu = 1,...,n$ nach Annahme. Durch Umbenennen sei obdA $\nu = 1$. Dann ist $\partial_1 f(\xi) \neq 0$. Damit ist aus Stetigkeitsgründen die Determinante der Jacobi Matrix

$$\begin{pmatrix} \partial_1 f(x) & 0 \\ * & E \end{pmatrix}$$

der Abbildung

$$(x_1,\cdots,x_n)\mapsto (f(x),x_2,\cdots,x_n)$$

[Beachte: Die Jacobimatrix ist eine Dreiecksmatrix und hat daher die Determinante $\partial_1 f(x)$] von Null verschieden für alle $x \in K_{2r}(\xi)$ nahe bei ξ bei geeigneter Wahl von $r = r(\xi) > 0$. Für spätere Zwecke bezeichne

$$\varepsilon_{\xi} = sign(\partial_1 f(\xi))$$

das **Vorzeichen** dieser Determinante im Punkt ξ . Aus dem Satz von der Umkehrfunktion 4.24 folgt dann die Existenz einer lokale Umkehrfunktion ψ . Diese lokale Umkehrfunktion hat dann notwendiger Weise die Gestalt

$$\psi(y) = \psi(y_1, \cdots, y_n) = (g(y), y_2, \cdots, y_n).$$

und ψ stiftet eine bijektive Abbildung zwischen den offenen Mengen

$$U := \psi^{-1}(K_{2r}(\xi)) \cong K_{2r}(\xi);$$

somit definiert ψ definiert Bijektionen

$$U \cap (\mathbb{R}_{\leq 0} \times \mathbb{R}^{n-1}) \cong K_{2r}(\xi) \cap M$$
,

$$V := U \cap (\{0\} \times \mathbb{R}^{n-1}) \cong K_{2r}(\xi) \cap \partial M$$
.

Die Gleichung $y_1=0$ beschreibt daher in $U=\psi^{-1}\big(K_{2r}(\xi)\big)$ den Rand ∂M von M. Wegen $x_2=y_2,\cdots,x_n=y_n$ (für dies Abbildung ψ und ihr Inverses) ist daher

$$\lambda: \mathbb{R}^{n-1} \supset V \ni (y_2, \cdots, y_n) \mapsto (g(0, y_2, \cdots, y_n), y_2, \cdots, y_n)$$

eine **lokale Parametrisierung** des Randes ∂M von M in der Nähe des Punktes $\xi \in \partial M$.

Für Punkte $\xi \in M \backslash \partial M$ findet man ein $r = r(\xi) > 0$ derart, daß gilt $K_{2r}(\xi) \subseteq M \backslash \partial M$. In der Tat ist $M \backslash \partial M$ einen offene Teilmenge des \mathbb{R}^n , denn das Komplement $\{x \in \mathbb{R}^n \mid f(x) \geqslant 0\}$ ist einen abgeschlossene Teilmenge des \mathbb{R}^n . Da M kompakt ist, überdecken bereits endliche viele der Kugeln $K_r(\xi), \xi \in M$ die Menge M (Satz 7.11). Sei I die endliche Menge der zugehörigen Mittelpunkte $\xi \in M$.

8.3 Randintegrale

Wir definieren nun für eine Differentialform $\eta \in A^{n-1}(U)$ das Randintegral $\int_{\partial M} \eta$.

Warnung. Dieses ist kein Integral im \mathbb{R}^n , denn dort ist ∂M einen Menge vom Maß Null! Wir machen hierfür folgende

Annahmen. Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine C^{∞} -Funktion mit den Eigenschaften $f(\xi) = 0 \Longrightarrow df(\xi) \neq 0$ sowie $\partial M = \{x \in \mathbb{R}^n \mid f(x) = 0\}$ sei kompakt. Sei U offen und $\partial M \subseteq U$.

Für endliche viele $\xi \in I$ auf dem Rand ∂M überdecken die Kugeln $K_r(\xi)$ die Randmenge ∂M . ObdA gilt $K_r(\xi) \subset U$. Für jedes $\xi \in I$ haben wir eine **lokale Parametrisierung** λ_{ξ} durch eine offene Teilmenge $V = V_{\xi}$ des \mathbb{R}^{n-1} gefunden

$$\lambda_{\xi}: \mathbb{R}^{n-1} \supseteq V_{\xi} \longrightarrow \partial M \cap K_{2r}(\xi) \subseteq K_{2r}(\xi) \subseteq \mathbb{R}^n$$

mit Hilfe einer C^{∞} -Abbildung $\lambda = \lambda_{\xi}$. Sei φ_{ξ} für $\xi \in I$ eine **zugeordnete Partition der Eins** auf der in Abschnitt 8.1 definierten offenen Teilmenge $\tilde{N} = \bigcup_{\xi \in I} K_r(\xi) \subseteq U$ von \mathbb{R}^n .

Definition. Sei $\eta \in A^{n-1}(\tilde{N})$ und damit $\varphi_{\xi}(x) \cdot \eta \in A_c^{n-1}(V_{\xi})$. Dann setzen wir

$$\int_{\partial M} \eta := \sum_{\xi \in I} \varepsilon_{\xi} \cdot \int_{V_{\xi}} \lambda_{\xi}^{*} \left(\varphi_{\xi}(x) \cdot \eta \right) \quad \varepsilon_{\xi} \in \{\pm 1\}.$$

Obwohl dies auf den ersten Blick hochgradig von der Wahl der Stützpunkte $\xi \in I$, der Wahl der lokalen Parametrisierungen (V_{ξ}, λ_{ξ}) von ∂M und der Wahl einer Partition der Eins φ_{ξ} abzuhängen scheint, gilt erstaunlicherweise

Lemma 8.2. Das so definierte Randintegral ist unabhängig von allen hierbei getroffenen Wahlen.

Beweis. Zur Unabhängigkeit von der Wahl der Partition der Eins, der Stützpunkte $\xi \in I$ und der Radien $r = r(\xi)$. Für eine andere Wahl bekommt man eine neue Partition der Eins $\varphi'_{\xi'}$ (für endlich viele neue Stützpunkte $\xi' \in I'$). Man betrachtet zum Vergleich die neue Partition der Eins $\varphi_{\xi}(x) \cdot \varphi_{\xi'}(x)$ für $(\xi, \xi') \in J = I \times I'$ mit Trägern in $K_{2r}(\xi) \cap K_{2r'}(\xi')$ (Übungsaufgabe !). Zur Unabhängigkeit von der Parametrisierung. Hierzu beachte, daß nach unserer Konstruktion für zwei verschiedene Parametrisierungen die Zusammensetzung $h = \lambda' \circ \lambda^{-1}$

$$V \xrightarrow{\lambda} \partial M \cap K_{2r}(\xi) \xleftarrow{\lambda'} V'$$

sowie die Umkehrung h^{-1} beide C^{∞} -Abbildungen sind; insbesondere daher $det(D(h)(x)) \neq 0$. Die Behauptung folgt dann aus der Substitutionsregel 4.27, denn den Übergang vom Integral über V

$$\int_{V} \varepsilon_{\xi} \cdot \lambda_{\xi}^{*}(\eta)$$

zum Integral über V'

$$\int_{V'} \varepsilon_{\xi'} \cdot \lambda_{\xi'}^*(\eta)$$

erhält man durch eine Substitution mittels der Abbildung h, wenn man

$$h^*(\lambda_{\xi}^*(\eta)) = \lambda_{\xi}^{\prime *}(\eta)$$

berücksichtigt sowie $sign(\det(Dh(x))) \cdot \varepsilon_{\xi'} = \varepsilon_{\xi}$. Letztere Aussage über Vorzeichen folgt aus einer der Übungsaufgaben auf den Übungsblättern und wird benötigt aus folgendem Grund: In der Substitutionsregel für mehrdimensionale Integrale tritt der Absolutbetrag der Determinante der Jacobimatrix D(h(x)) auf, beim Pullback dagegen nur die Determinate der Jacobimatrix D(h(x)) selbst. Siehe dazu Seite 69.

8.4 Der Satz von Stokes

Satz 8.3. Sei M eine kompakte Untermannigfaltigkeit des \mathbb{R}^n mit Rand ∂M und $\eta \in A^{n-1}(\tilde{N})$ eine Differentialform auf einer offenen Menge $\tilde{N} \subseteq \mathbb{R}^n$, welche M enthält. Dann gilt

$$\int_M d\eta = \int_{\partial M} \eta \ .$$

Beweis. Sei $\varphi_{\xi}(x)$ für $\xi \in I$ eine Partition der Eins zu einer Überdeckung von M durch offene Kugeln $K_{2r}(\xi)$. Dann gilt für das Integral $\int_M d\eta := \int_{\mathbb{R}^n} \chi_M(x) \cdot d\eta$ wegen der \mathbb{R} -Linearität sowohl des Lebesgue Integrals auf \mathbb{R}^n als auch der Cartan Ableitung d

$$\int_{M} d\eta = \int_{M} d\left(\sum_{\xi \in I} \varphi_{\xi}(x) \cdot \eta\right) = \sum_{\xi \in I} \int_{M} d\left(\varphi_{\xi}(\xi) \cdot \eta\right).$$

Es genügt daher $\int_M d(\varphi_\xi(\xi) \cdot \eta) = \varepsilon_\xi \cdot \int_{V_\xi} \lambda_\xi^* \left(\varphi_\xi(x) \cdot \eta \right)$ für jeden Summanden zu zeigen; Summation über die $\xi \in I$ liefert dann den Satz von Stokes. Jetzt ist $\rho = \varphi_\xi(\xi) \cdot \eta \in A_c^{n-1}(K_{2r}(\xi))$ eine Differentialform mit kompaktem Träger in einer lokalen Kartenmenge $K_{2r}(\xi)$ von M. Zu zeigen bleibt dafür

$$\int_{M} d\rho = \varepsilon_{\xi} \cdot \int_{V_{\xi}} \lambda_{\xi}^{*}(\rho) .$$

Die Substitutionsregel für die Substitution $\psi = \psi_{\xi}$ (siehe Abschnitt 8.2) sowie Trägergründe implizieren für die linke Seite und die offene Menge $U_{\xi} := \psi^{-1}(K_{2r}(\xi)) \subseteq \mathbb{R}^n$

$$\int_{M} d\rho := \int_{K_{2r}(\xi)} \chi_{M}(x) \cdot d\rho = \varepsilon_{\xi} \cdot \int_{U_{\xi}} \psi^{*}(\chi_{M}(x) \cdot d\rho) = \varepsilon_{\xi} \cdot \int_{U_{\xi}} \chi_{y_{1} \leqslant 0} \cdot d(\psi^{*}(\rho)) ,$$

denn es gilt $\psi^*(\chi_M(x)) = \chi_{y_1 \leq 0}(y)$. Setze $\omega := \psi^*(\rho) \in A_c^{n-1}(U_\xi)$.

Zur Berechnung der rechten Seite, beachte $i^*(\omega)=i^*(\psi^*(\rho))=\lambda_\xi^*(\rho)$ für die Inklusion $i:V_\xi\hookrightarrow U_\xi$ und den Pullback von ω auf $V_\xi=U_\xi\cap\{y_1=0\}$ wegen $\lambda_\xi=\psi\circ i$. Es verbleibt daher für $\omega=\psi^*(\rho)\in A_c^{n-1}(U_\xi)$ und die Inklusion $i:V_\xi\hookrightarrow U_\xi$ zu zeigen

$$\int_{U_\xi} \chi_{y_1\leqslant 0} \cdot d\omega \; = \; \int_{V_\xi} i^*(\omega) \quad \text{ für } \quad V_\xi = U_\xi \cap \{y_1 = 0\} \; ,$$

Legt man $U_{\xi} \cap (\mathbb{R}_{\leq 0} \times \mathbb{R}^{n-1})$ in einen genügend grossen Quader $Q \subseteq \mathbb{R}^n$, dessen eine Wand durch die Hyperebene $y_1 = 0$ gegeben ist, und setzt die Form ω durch Null auf den Quader Q fort [möglich, da ω kompaktem Träger in $U_{\xi} \cap (\mathbb{R}_{\leq 0} \times \mathbb{R}^{n-1})$ besitzt], dann folgt diese letzte verbliebene Aussage unmittelbar aus dem Satz von Stokes für Quader (Satz 4.34).

8.5 Drehinvarianz

Für \mathbb{R} -lineare Abbildungen M gilt $M^*(dx_i) = \sum_{\nu} M_{i\nu} dx_{\nu}$, daher für alle i, j

$$dx_i \wedge *(M^*(dx_j)) = dx_i \wedge *(\sum_{\nu} M_{j\nu} dx_{\nu}) = dx_i \wedge \sum_{\nu} M_{j\nu} * dx_{\nu} = \sum_{\nu} M_{j\nu} \delta_{i\nu} \omega_n = M_{ji} \omega_n \; .$$

Diese Gleichungen bestimmen $*(M^*(dx_i)) \in A^{n-1}(\mathbb{R}^n)$ eindeutig. Analog gilt

$$(^TM)^*(dx_i) \wedge *dx_j = (\sum_{\nu} M_{\nu i} dx_{\nu}) \wedge *dx_j = \sum_{\nu} M_{\nu i} \delta_{\nu j} \omega_n = M_{ji} \omega_n.$$

Sei nun ${}^TM \circ M = id$ mit det(M) = 1, d.h. M sei aus der orthogonalen Gruppe $SO(m, \mathbb{R})$. Dann gilt $M^*(\omega_n) = det(M)\omega_n = \omega_n$ sowie $M^*({}^TM)^*(dx_i) = dx_i$. Dann folgt aus der zweiten Gleichung

$$dx_{i} \wedge M^{*}(*dx_{j}) = M^{*}(^{T}M)^{*}(dx_{i}) \wedge M^{*}(*dx_{j})$$
$$= M^{*}((^{T}M)^{*}(dx_{i}) \wedge *dx_{j}) = M^{*}(M_{ji}\omega_{n}) = M_{ji}\omega_{n}.$$

Ein Vergleich mit der ersten Gleichung zeigt daher $M^*(*dx_i) = *(M^*(dx_i))$ für alle j. Also

Lemma 8.4. Für Einsformen η und Substitutionen M aus $SO(n,\mathbb{R})$ gilt $M^*(*\eta) = *(M^*(\eta))$.

Berücksichtigt man $M^*(r^2) = r^2 \iff^T MM = id$, folgt

Korollar 8.5. Die Formen $\sigma_0 = \frac{1}{2}r^2$ sowie $\sigma_1 = d\sigma_0$ und $\sigma_{n-1} = *\sigma_1$ sind drehinvariant unter Pullbacks mit Abbildungen $M \in SO(n, \mathbb{R})$, d.h. es gilt $M^*(\sigma_i) = \sigma_i$.

8.6 Standardintegral auf der Kugeloberfläche

In diesem Abschnitt betrachten wir den Fall der Kugeloberfläche $\partial M=S^{n-1}$ im \mathbb{R}^n . In den letzten Abschnitten haben wir erklärt, wie für eine beliebige (n-1)-Form $\eta\in A^{n-1}(\mathbb{R}^n)$ das Randintegral $\int_{S^{n-1}}\eta$ definiert ist, wobei S^{n-1} als Rand der abgeschlossenen Einheitskugel $E^n\subset\mathbb{R}^n$ aufgefasst wird.

Im Fall der Kugeloberfläche würden wir aber gerne etwas wie die Gesamtfläche definieren. Wie soll man das machen ? Hierauf gibt es eine sehr befriedigende Antwort: Betrachte die drehinvariante Differentialform $\sigma_{n-1} \in A^{n-1}(\mathbb{R}^n)$

$$\sigma_{n-1} = \sum_{i=1}^{n} x_i * dx_i = *d(\frac{1}{2}r^2).$$

Zum Beispiel $\sigma_2 = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$ im Fall n=3 und $\sigma_1 = xdy - ydx$ für n=2. Für $\omega_n = dx_1 \wedge \cdots \wedge dx_n$ gilt

$$d\sigma_{n-1} = n \cdot \omega_n \ .$$

Mit Hilfe der Kugelfoberlächenform σ_{n-1} definieren wir für beliebige stetige Funktionen f(x) auf der Sphäre $S = S^{n-1}$ ein Integral

$$I: C(S^{n-1}) \to \mathbb{R}$$
,

das sogenannte **Standard Integral**. Wir erklären dies zuerst für $f(x) \in A$ auf dem Unterraum $A \subset C(S^{n-1})$,

$$I(f) := \int_{S^{n-1}} f(x) \cdot \sigma_{n-1} , \quad f(x) \cdot \sigma_{n-1} \in A^{n-1}(\mathbb{R}^n) ,$$

welcher durch Einschränkungen von Funktionen in $f \in C^\infty(\mathbb{R}^n)$ erklärt ist (es würde sogar genügen den Raum der Einschränkungen aller Polynome im \mathbb{R}^n auf S^{n-1} zu betrachten). Dieser Unterraum A ist eine Algebra und liegt nach Lemma 8.1 und dem Satz von Stone-Weierstraß dicht in $C(S^{n-1})$ bezüglich der Supremums-Norm. Auf Grund von Lemma 8.7 und Korollar 8.8 (weiter unten) kann man I wie in Abschnitt 3.5 eindeutig zu einem Daniell-Integral auf $C(S^{n-1})$ fortsetzen.

Lemma 8.6. Das Standardintegral I(f) ist ein Integral auf dem Verband A und ist invariant unter Drehungen¹ aus der Gruppe $SO(n, \mathbb{R})$, d.h.

$$I(f(x)) = I(f(Mx))$$
 , $M \in SO(n, \mathbb{R})$.

Eine \mathbb{R} -lineare Abbildung $M: \mathbb{R}^n \to \mathbb{R}^n$ ist in der Gruppe $SO(\mathbb{R}^n)$ und erhält damit die Sphäre S^{n-1} , wenn gilt $M = {}^T M^{-1}$ sowie det(M) = 1.

Beweis. Die Abbildung $I:A\to\mathbb{R}$ ist per Definition \mathbb{R} -linear; die Drehinvarianz folgt aus der Drehinvarianz der Oberflächenform σ_{n-1} . Es verbleibt daher nur noch für $f(x)\geqslant 0$ zu zeigen $I(f)\geqslant 0$. Mittels einer Partition der Eins kann man sich auf den Fall beschränken, daß der Träger von f(x) in einer Karte enthalten ist. Durch eine Drehung kann man dann annehmen, der Träger von f(x) sei enthalten in der rechten 'Hemisphäre' $S^{n-1}_+:=\{x\in S^{n-1}\mid x_1>0\}$. Eine Kartenabbildung

$$\lambda: \left\{ x = (x_2, ..., x_n) \subset \mathbb{R}^{n-1} \mid r^2 := \sum_{i=2}^n x_i^2 < 1 \right\} \longrightarrow S_+^{n-1}$$

für die rechte Hemisphäre S^{n-1}_+ ist für $r^2:=\|x\|_{R^{n-1}}^2=\sum_{i=2}^n x_i^2$ gegeben durch die lokale Parametrisierung

$$\lambda(x_2,\cdots,x_n) = (\sqrt{1-r^2},x_2,\cdots,x_n).$$

Die Behauptung $I(f) \ge 0$ für $f \ge 0$ folgt daher aus dem nächsten Lemma.

Lemma 8.7. Für Funktionen f mit kompaktem Träger in der rechten Hemisphäre S^{n-1}_+ gilt

$$\int_{S_{+}^{n-1}} f(x) \cdot \sigma_{n-1} = \int_{\|x\| < 1} \frac{f(\lambda(x_{2}, \dots, x_{n}))}{\sqrt{1 - r^{2}}} dx_{2} \cdots dx_{n}.$$

Beweis. Bis auf $dx_2 \wedge \cdots \wedge dx_n$ ist der Pullback $\lambda^*(\sigma_{n-1})$ gleich

$$\sqrt{1-r^2} + \sum_{i=2}^n x_i \frac{\partial \sqrt{1-r^2}}{\partial x_i} = \frac{1}{\sqrt{1-r^2}} \cdot \left(1-r^2 + \sum_{i=2}^n x_i^2\right) = \frac{1}{\sqrt{1-r^2}}.$$

Korollar 8.8. Das Standard Integral I auf $C(S^{n-1})$ ist ein Daniell Integral.

Beweis. Für monotone Folgen $f_n \nearrow f$ stetiger Funktionen $f_n \in C(S^{n-1})$ mit stetiger Grenzfunktion $f \in C(S^{n-1})$ ist zu zeigen $I(f_n) \nearrow I(f)$. Durch eine Partition der Eins kann man obdA annehmen, daß alle f, f_n kompakten Träger in der rechten Hemisphäre S^{n-1}_+ besitzen. In diesem Fall folgt die Aussage sofort aus dem letzten Lemma und dem Satz von Beppo Levi angewendet auf das reelle Integral $\int_{\|x\| < 1}$.

Lemma 8.9.
$$\int_{\|x\| < r} f(x) \omega_n = \int_0^r \left(\int_S f(t\xi) \sigma_{n-1}(\xi) \right) t^{n-1} dt$$
.

Beweis. ObdA hat f Träger in der rechten Hemisphäre. Die Abbildung $\psi:\{\|\xi\|<1\}\times (0,r)\to S(r)$ sei definiert durch $\psi(\xi_2,...,\xi_n)=(t\sqrt{1-r^2},t\xi_2,\cdots,t\xi_n)$. Sie hat dann die Eigenschaft $det(D\psi)(\xi)=\frac{t^{n-1}}{\sqrt{1-r^2}}$ (Laplace Entwicklungssatz). Die Aussage folgt daher aus der Substitutionsformel Satz 4.27, sowie dem Satz von Fubini und Lemma 8.7.

8.7 Die Greensche Formel

Der Satz von Stokes für die abgeschlossenen Kugeln vom Radius R resp. r zeigt dann durch Subtraktion für die **Kugelschale** $X = \{x \in \mathbb{R}^n \mid r \leqslant \|x\| \leqslant R\}$ das folgende Resultat: Für

 $\eta \in A^{n-1}(U)$ und U offen in \mathbb{R}^n mit $X \subset U$ gilt

$$\int_X d\eta = \int_{S^{n-1}(R)} \eta - \int_{S^{n-1}(r)} \eta.$$

Hierbei bezeichen $S^{n-1}(R)$ resp. $S^{n-1}(r)$ die Sphären vom Radius R resp. r. Wir schreiben die rechte Seite dieser Formel symbolisch wieder $\int_{\partial X}$, wobei der Rand ∂X jetzt aus den beiden Sphären (mit unterschiedlicher Orientierung) besteht

$$\int_X d\eta = \int_{\partial X} \eta .$$

Greensche Formel. Der Laplace Operator $\Delta = \sum_{i=1}^n \partial_i^2$ operiert auf Funktionen $f,g \in C^\infty(U)$. Für das Skalarprodukt $\langle f,g \rangle_{L^2(X)} = \int_X \overline{f}(x)g(x)dx$ im Hilbertraum $L^2(X)$ gilt

$$\langle f, \Delta(g) \rangle_{L^2(X)} - \langle \Delta(f), g \rangle_{L^2(X)} = \int_X (f \Delta(g) - g \Delta(f)) \omega_n$$

und man hat die folgende Greensche Formel

Lemma 8.10. Für Kugelschalen X gilt

$$\int_X (f\Delta(g) - g\Delta(f))\omega_n = \int_{\partial X} f \sum_{i=1}^n \partial_i(g) * dx_i - \int_{\partial X} g \sum_{i=1}^n \partial_i(f) * dx_i.$$

Beweis. Benutze $d(\sum_i f \partial_i(g) * dx_i) = \sum_{i=1}^n (\partial_i f)(\partial g_i) \omega_n + f \Delta(g) \omega_n$. Vertauscht man f und g und bildet die Differenz, folgt daraus sofort das Lemma mit Hilfe des Satzes von Stokes.

9 Harmonische Analysis

9.1 Der Hilbertraum $L^2(S)$

Das Standard Integral $I(f) = I_S(f)$ auf der **Einheitsphäre** $S = S^{n-1} \subset \mathbb{R}^n$ ist nach Korollar 8.8 ein Daniell Integral. Daher kann man einen Hilbertraum $L^2(S)$ definieren mit dem Skalarprodukt $\langle f,g\rangle = I_S(\overline{f}\cdot g)$, d.h.

$$\langle f, g \rangle = \int_{S} \overline{f}(x)g(x)\sigma_{n-1}$$

gebildet zu der Form $\sigma_{n-1} = \sum_{i=1}^n x_i * dx_i$. Wir nehmen dabei an $n \geqslant 2$.

Der \mathbb{C} -Vektorraum aller Polynome auf \mathbb{R}^n ist eine Algebra. Diese Algebra ist punktetrennend auf $\mathbb{R}^n\setminus\{0\}$ (bereits die linearen Funktionen trennen Punkte). Nach dem Satz von Stone-Weierstraß ist daher der Raum A der Einschränkungen aller Polynome auf S einer dichter Unterraum von C(S), da S kompakt ist. Wir wissen außerdem, daß A von der Einschränkungen der harmonischen Polynome auf \mathbb{R}^n aufgespannt wird (Lemma 5.15). Also

Lemma 9.1. Die harmonischen Polynome liegen dicht in $L^2(S)$.

Wir werden in einem nächsten Abschnitt zeigen (Lemma 9.6.4), daß harmonische Polynome verschiedenen Grades orthogonal zueinander sind bezüglich des Skalarproduktes von $L^2(S)$. Wir beschränken uns daher für den Moment auf Funktionen in $\mathcal{H}_l(\mathbb{R}^n)$ für festes l. Das Skalarprodukt $\langle P,Q\rangle$ von $L^2(S)$ liefert eine positiv definite symmetrische \mathbb{R} -Bilinearform auf $\mathcal{H}_l(\mathbb{R}^n)$. Sei $P_{l,k}(x) \in \mathcal{H}_l(\mathbb{R}^n)$ eine **reelle ON-Basis** $P_{l,k}(x)$ dieser Bilinearform auf $\mathcal{H}_l(\mathbb{R}^n)$. Verschwindet ein Polynom in $\mathcal{H}_l(\mathbb{R}^n)$ auf der Sphäre S, dann ist es wegen der Homogenität das Nullpolynom. Die Einschränkung $\mathcal{H}_l(\mathbb{R}^n) \to C(S)$ ist also eine injektive Abbildung. Wir setzen

$$Z_l(x,\xi) = \sum_{k=1}^{\dim(\mathcal{H}_l(\mathbb{R}^n))} P_{l,k}(x) P_{l,k}(\xi) .$$

Für festes ξ ist die Funktion $Z_l(x,\xi)$ ein harmonisches Polynom der Variable x vom Grad l, und umgekehrt. Per Definition gilt

$$Z_l(x,\xi) = Z_l(\xi,x)$$
 , $Z_l(\lambda x, \lambda \xi) = \lambda^{2l} Z_l(x,\xi)$.

 $Z_l(x,\xi)$ ist **eindeutig bestimmt** durch die folgende Eigenschaft

$$\langle Z_l(x,\xi), P(x) \rangle = P(\xi)$$
.

[Dies folgt unmittelbar aus $\langle \sum_k a_k P_{l,k}(x), P_{l,j}(x) \rangle = a_j$.] Aus der Drehinvarianz des Standard Integrals auf S folgt $\langle Z_l(Mx, M\xi), P(x) \rangle = \langle Z_l(x, M\xi), P(M^{-1}x) \rangle$ für $M \in SO(n, \mathbb{R})$. Aber $\langle Z_l(x, M\xi), P(M^{-1}x) \rangle = P(M^{-1}M\xi) = P(\xi)$. Also $\langle Z_l(Mx, M\xi), P(x) \rangle = P(\xi)$]. Aus der Eindeutigkeitsaussage folgt daher

$$Z_l(Mx, M\xi) = Z_l(x, \xi)$$
 , $M \in SO(n, \mathbb{R})$.

Insbesondere ist $Z_l(x,\xi)$ als Funktion von $x \in S$ (bei festem $\xi \in S$) damit invariant unter dem Stabilisator $SO(n-1,\mathbb{R})$ des Punktes ξ . Im Spezialfall $\xi=(1,0,...,0)$ hängt daher $Z_l(x,\xi)$ nur von $x_1 = x \cdot \xi$ und r = ||x|| ab, ist daher proportional zu dem **zonalen harmonischen Polynom** $P_{l,0}(x)$ vom Grad l (siehe Abschnitt 5.6), d.h. man erhält die **Additionsformel**

$$Z_l(x,\xi) = const(l) \cdot P_{l,0}(x)$$

 $\boxed{Z_l(x,\xi) \ = \ const(l) \cdot P_{l,0}(x)} \,.$ Lemma 9.2. Es gilt $|Z_l(x,\xi)| \leqslant \ Z_l(x,x) = \frac{dim(\mathcal{H}_l(\mathbb{R}^n))}{vol(S)}$ für alle $x,\xi \in S$.

Beweis. Wegen $Z_l(x,x) = \sum_k P_{l,k}(x)^2$ und der $SO(n,\mathbb{R})$ -Invarianz ist $Z_l(x,x) = c$ eine konstante Funktion auf S. Also $vol(S)c = \int_S Z_l(x,x)\sigma_{n-1} = \sum_k \langle P_{l,k}, P_{l,k} \rangle = \dim_{\mathbb{R}}(\mathcal{H}_l(\mathbb{R}^n))$. Die Schwarz Ungleichung gibt $|Z_l(x,\xi)| = |\sum_k P_{l,k}(x) P_{l,k}(\xi)| \le |Z_l(x,x)|^{1/2} |Z_l(\xi,\xi)|^{1/2} =$ $Z_l(x,x)$. Die letzte Gleichheit folgt aus der Konstanz von $Z_l(x,x)$ auf S.

9.2 Poisson Kern

Sei U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ eine harmonische Funktion. Ist $x_0=0$ in U, dann sind die Taylor Koeffizienten

$$c_l(x) = \frac{1}{l!} \left(\frac{d}{dt}\right)^l f(tx)_{t=0}$$

harmonisch Polynome in $\mathcal{H}_l(\mathbb{R}^n)$ (siehe Abschnitt 5.5). Wir betrachten den Fall, wo sich f(tx)in eine Potenzreihe $\sum_{l=0}^{\infty}c_l(x)t^l$ mit positivem Konvergenzradius entwickeln lässt.

Wir wenden dies an auf den **Poisson Kern** im Bereich $||x|| < ||\xi||$, d.h. die Funktion

$$P(x,\xi) = \frac{1}{vol(S)} \frac{\|\xi\|^2 - \|x\|^2}{\|\xi - x\|^n} \quad , \quad x \neq \xi \ .$$

Beachte $\|x\|^2 - \|\xi\|^2 = \|x - \xi\|^2 + 2(x - \xi, \xi)$. Also $-vol(S)P(x, \xi) = \|x - \xi\|^{-\kappa} + \frac{2(x - \xi, \xi)}{\|x - \xi\|^{\kappa + 2}} = 0$ $P_0^*(x-\xi) + P_1^*(x-\xi)$ für die harmonischen Polynome $P_0(x) = 1$ und $P_1(x) = 2(x,\xi)$. D.h $P(x,\xi)$ ist eine harmonische Funktion in $x-\xi$ und ist damit auch harmonisch in x, und wegen $P(x,\xi) = -P(\xi,x)$ damit auch harmonisch in ξ . Offensichtlich gilt $P(Mx,M\xi) = P(x,\xi)$ für alle $M \in SO(n,\mathbb{R})$. Die Taylor Koeffizienten $c_l(x,\xi) = T_l(P(x,\xi))(x)$ haben sind daher harmonische Polynome mit der selben Drehsymmetrie. Somit sind $c_l(x,\xi)$ und $Z_l(x,\xi)$ zonale **harmonische Polynome** vom Grad l und daher proportional zu $P_{l,0}(x)$ (siehe Abschnitt 5.6). [Wegen der Drehsymmetrie ist obdA $x=\xi_0=(1,\cdots,0)$. Dann hängt $vol(S)P(x,\xi_0)=0$ $\frac{1-r^2}{(1-2x_1+r^2)^{n/2}}$ als Funktion nur von der ersten Koordinate $x_1=(x,\xi_0)/2$ und dem Radius $r=(x,\xi_0)/2$ ||x|| ab. Dasselbe gilt dann auch für Tayor Koeffizienten $c_l(x) = c_l(x, \xi_0)$].

Satz 9.3. Es gilt $c_l(x,\xi) = Z_l(x,\xi)$ für alle l, und für alle x mit $||x|| < ||\xi||$ gilt

$$P(x,\xi) = \sum_{l=0}^{\infty} Z_l(x, \frac{\xi}{\|\xi\|^2}) \|\xi\|^{-\kappa}.$$

Die Reihe konvergiert auf jedem Kompaktum der Kugel $\{x \mid ||x|| < ||\xi||\}$ absolut und gleichmässig.

Bemerkung. Für $x, \xi \in S$ sind alle Koeffizienten $Z_l(x, \xi)$ symmetrisch in x und ξ und denoch ist die Summe $P(x, \xi)$ antisymmetrisch in x und ξ . Zur Illustration dazu im eindimensionalen Fall: $\frac{1}{\xi - x} = \sum_{l=0}^{\infty} z_l(x, \frac{\xi}{\xi^2}) \xi^{-1}$ für $z_l(x, \xi) = x^l \xi^l$ im Bereich $|x| < |\xi|$ (geometrische Reihe).

Beweis. Durch Reskalierung $(x,\xi)\mapsto (tx,t\xi)$ ist wegen $P(tx,t\xi)=t^{-\kappa}P(x,\xi)$ und der analogen Reskalierungseigenschaft der rechten Seite obdA $\xi\in S$ und $\|x\|<1$. Auf Grund der Drehinvarianz beider Seiten ist dann obdA $\xi=\xi_0=(1,0,\cdots,0)$. Wir zeigen nun, daß die Funktion $\sum_{l=0}^\infty Z_l(x,\xi_0)$ auf der rechten Seite für $t=\|x\|<1$ absolut konvergiert, und in diesem Bereich damit eine drehinvariante harmonische Funktion f(x) darstellt. Dazu benützen wir die Abschätzung $|Z_l(x,\xi_0)|\leqslant t^lZ_l(\xi_0,\xi_0)$, welche aus Lemma 9.2 folgt. Daher ist für die absolute Konvergenz obdA $x=t\xi_0$. Aus $vol(S)Z_l(t\xi_0,\xi_0)=\dim(\mathcal{H}_l(\mathbb{R}^n))\cdot t^l$ (Lemma 9.2) und $\kappa\cdot dim(\mathcal{H}_l)=(\kappa+2l)\binom{n+l-3}{l}$ obdA für $\kappa=n-2\geqslant 1$ (Satz 5.13), sowie

$$\sum_{l} (1 + \frac{2l}{\kappa}) \binom{n+l-3}{l} t^{l} = \frac{1}{(1-t)^{\kappa}} + \frac{2t}{\kappa} \frac{d}{dt} \frac{1}{(1-t)^{\kappa}} = \frac{1-t^{2}}{(1-t)^{n}} = \frac{\|\xi_{0}\|^{2} - \|t\xi_{0}\|^{2}}{\|\xi_{0} - t\xi_{0}\|^{n}},$$

folgt $f(t\xi_0) = P(t\xi_0, \xi_0)$. Wir haben dabei benutzt $\frac{1}{l!}(\frac{d}{dt})^l(1-t)^{-\kappa}|_{t=0} = {\kappa+l-1 \choose l}$ für $\kappa > 0$. Im Fall n=2 genügt $-1 + 2/(1-t) = (1-t^2)/(1-t)^2$.

Wegen der Proportionalität der zonalen harmonische Polynome $c_l(x,\xi) = const(l) \cdot Z_l(x,\xi)$ genügt wegen $Z_l(\xi_0,\xi_0) > 0$ für const(l) = 1 die gezeigte Gleichheit in den Punkten $x = t \cdot \xi_0$. Dies zeigt, daß alle Taylor Koeffizienten der harmonischen C^{∞} -Funktion $f(x) - P(x,\xi_0)$ im Mittelpunkt $x_0 = 0$ der Kugel $U = \{x \mid \|x\| < 1\}$ verschwinden. Aus Lemma 9.8 im nächsten Abschnitt folgt daher $f(x) = P(x,\xi_0)$ auf U.

Eine geringfügige Modifikation des Beweises zeigt analog

Satz 9.4. Für $n \ge 3$ und $\kappa = n - 2$ sei $U(x, \xi)$ das Coulomb oder Newton Potential

$$U(x,\xi) = \frac{1}{\kappa vol(S)} \frac{1}{\|x-\xi\|^{\kappa}}.$$

Für alle x mit $||x|| < ||\xi||$ gilt dann

$$U(x,\xi) = \sum_{l=0}^{\infty} \frac{1}{2l+\kappa} \cdot Z_l(x, \frac{\xi}{\|\xi\|^2}) \|\xi\|^{-\kappa}.$$

Die Reihe konvergiert auf jedem Kompaktum der Kugel $\{x \mid ||x|| < ||\xi||\}$ absolut und gleichmässig.

9.3 Orthogonalität

In diesem Abschnitt sei $n \geqslant 2$. Für reelle Zahlen $0 < \rho < R$ und $r \in [\rho, R]$ sei X = X[r, R] die abgeschlossene **Kugelschale** im \mathbb{R}^n mit den Radien ρ und R um $x_0 = 0$. Sei $V \subseteq \mathbb{R}^n$ eine offene Teilmenge, welche X für alle $r \in [\rho, R]$ enthält. Für harmonische Funktion $f(x), g(x) \in C^{\infty}(V)$ liefert die Greensche Formel folgende **Vertauschungsformel**: Die linke Seite der Greenschen Formel verschwindet wegen $\Delta(f) = \Delta(g) = 0$ und man erhält

Daraus leiten wir das nächste Lemma ab. Beachte dazu, ∂X ist die Vereinigung der beiden Sphären S(R), S(r) vom Radius R und r, aber jeweils mit unterschiedlicher Orientierung

$$\partial X = S(R) - S(r) .$$

Die Vertauschungsformel zeigt daher, daß $\int_{S(r)} f \sum_i \partial_i(g) * dx_i - \int_{S(r)} g \sum_i \partial_i(f) * dx_i$ unabhängig vom Radius $r \in [\rho, R]$ ist.

Definition. Für harmonisches $f(x) \in C^{\infty}(V)$ und $P(x) \in \mathcal{H}_l(\mathbb{R}^n)$ und $r \in [\rho, R]$ setzen wir

$$\langle f, P \rangle_r := r^{-n-2l} \int_{S(r)} f(x) P(x) \sigma_{n-1}(x) .$$

Lemma 9.5. Ist g(x) = P(x) ein harmonisches Polynom auf \mathbb{R}^n und f(x) eine harmonische Funktion auf einer offenen Menge $V \subseteq \mathbb{R}^n$, welche $\bigcup_{r \in [\rho, R]} S(r)$ enthält, dann existieren Konstanten $\alpha = \alpha(P, f)$ und $\beta = \beta(P, f)$, welche nicht von $r \in [\rho, R]$ abhängen so da β für $\kappa = n - 2$ gilt

$$(\kappa + 2l) \cdot \langle f, P \rangle_r = \alpha + \beta \cdot r^{-\kappa - 2l}$$
.

Beweis. Die **Kelvin Transformierte** $g(x) = P^*(x) = P(x) \|x\|^{-\kappa-2l}$ des harmonischen Polynoms P(x) hat eine *Singularität* im Punkt $x_0 = 0$ [im Fall (n,l) = (2,0) setze g(x) = log(r)], ist aber harmonisch auf der offenen Menge $V \setminus \{x_0\}$, welche X = X(r,R) enthält. Wir wenden nun die oben angegebene **Vertauschungsformel** an für $g = P^*$ und f. Wegen

$$\partial_i g(x) = -(\kappa + 2l) \frac{P(x)x_i}{\|x\|^{n+2l}} + \frac{\partial_i P(x)}{\|x\|^{\kappa+2l}}$$

gilt

$$f(x) \sum_{i} \partial_{i}(g) * dx_{i} = -(\kappa + 2l) \frac{f(x)P(x)\sigma_{n-1}(x)}{\|x\|^{n+2l}} + \frac{f(x) \sum_{i} \partial_{i}(P) * dx_{i}}{\|x\|^{\kappa+2l}}.$$

Die Nenner sind Potenzen von r und damit konstant auf der Randsphäre S(r). Nach der Vertauschungsformel ist daher $\int_{S(r)} f \sum_i \partial_i(g) * dx_i - \int_{S(r)} g \sum_i \partial_i(f) * dx_i$, also

$$-\alpha := -(\kappa + 2l)\langle f, P \rangle_r + \frac{1}{r^{\kappa + 2l}} \int_{S(r)} f(x) \sum_i \partial_i(P) * dx_i - \frac{1}{r^{\kappa + 2l}} \int_{S(r)} P(x) \sum_i \partial_i(f) * dx_i,$$

unabhängig von $r \in [\rho, R]$. Analog zeigt die Vertauschungsformel angewendet für g = P und f die r-Unabhängigkeit von

$$\beta := \int_{S(r)} f(x) \sum_{i} \partial_{i}(P) * dx_{i} - \int_{S(r)} P(x) \sum_{i} \partial_{i}(f) * dx_{i} .$$

Für (n,l)=(2,0) überlassen wir es dem Leser $\langle f,1\rangle_r=\frac{1}{r^2}\int_{S(r)}f(x)\sigma_1(x)=a+b\cdot log(r)$ zu zeigen mit einem analogen Argument.

Lemma 9.6. Sei U eine offene Kugel vom Radius > R um x_0 . Wir nehmen an 1 < R. Dann gilt für harmonisches $f(x) \in C^{\infty}(U)$ und harmonisches $P(x) \in \mathcal{H}_l(\mathbb{R}^n)$

- 1. $\langle f, P \rangle_1 = \langle f, P \rangle$.
- 2. $\langle f, P \rangle_r$ hängt nicht ab von der Wahl von r.
- 3. Verschwinden die Taylor Koeffizienten $T_{\nu}(f)(x)$ für $\nu \leqslant l$, dann gilt $\lim_{r\to 0} \langle f, P \rangle_r = 0$.
- 4. $\langle \mathcal{H}_m(\mathbb{R}^n), \mathcal{H}_l(\mathbb{R}^n) \rangle = 0$ für $m \neq l$.
- 5. Es gilt $\langle f, P \rangle = \lim_{r \to 0} \langle f, P \rangle_r = \langle T_l(f), P \rangle$.

Beweis. Behauptung 1 ist trivial. Behauptung 2 folgt aus Lemma 9.5, da f(x) nach Annahme stetig im Punkt $x_0=0$ ist und deshalb für $r\to 0$ das Integral $\langle f,P\rangle_r$ beschränkt bleibt. Daraus folgt b=0 und $(\kappa+2l)\cdot\langle f,P\rangle_r=a$ in Lemma 9.5. Beachte $\kappa+2l>0$ ausser im Fall (n,l)=(2,0); dieser geht aber analog. Für Behauptung 3 betrachten wir die Taylor Koeffizienten $T_\nu(f)$ von f(x) im Punkt $x_0=0$ (siehe Abschnitt 5.5). Aus $T_\nu(f)=0$ für alle $\nu\leqslant l$ und Lemma 5.12 folgt $f(x)=\|x\|^l\cdot H(x)$ für eine stetige Funktion H auf U mit H(0)=0. Wegen $f(rx)P(rx)\sigma_{n-1}(rx)=r^{2l+n}\cdot H(rx)\|x\|^mf(x)\sigma_{n-1}(x)$ für $x\in S=S(1)$ folgt Behauptung 3 aus $\lim_{r\to 0} H(rx)=0$. Behauptung 4 folgt aus den Behauptungen 1,2,3, denn wegen $\langle f,g\rangle=\overline{\langle g,f\rangle}$ ist obdA m>l. Für die harmonische Funktion $h(x)=f(x)-\sum_{\nu=0}^l T_\nu(f)(x)$ folgt $\lim_{r\to 0} \langle h,P\rangle_r=0$ aus Behauptung 3 und Abschnitt 5.5. Wegen Behauptung 1 und 2 ist daher $\langle h,P\rangle=0$ und damit $\langle f,P\rangle=\sum_{m=0}^l \langle T_m(f),P\rangle$, wegen Behauptung 4 also $\langle f,P\rangle=\langle T_l(f),P\rangle$. Dies zeigt Behauptung 5.

Lemma 9.6.5 und Lemma 9.1 zusammen ergeben

Satz 9.7. Die Funktionen $P_{l,k}(x)$ bilden eine Hilbertraum-Basis von $L^2(S)$.

Aus Lemma 9.6.3 folgt

Lemma 9.8. Verschwinden alle Taylor Koeffizienten einer harmonischen Funktion $f \in C^{\infty}(U)$ im Mittelpunkt x_0 einer offenen Kugel U, dann verschwindet f auf U.

9.4 Harmonische Funktionen sind analytisch

Sei $U \subset \mathbb{R}^n$ eine offene Menge und

$$f:U\to\mathbb{R}$$

eine harmonische Funktion auf U. Sei die abgeschlossene Kugel vom Radius R um x_0 in U enthalten

$$\{x \mid ||x - x_0|| \le R\} \subset U$$
.

Für die Sphäre $S(R, x_0)$ mit Mittelpunkt x_0 und Radius R gilt dann im Fall $x_0 = 0$

Satz 9.9 (Poisson Formel). Unter obigen Voraussetzungen gilt für alle x in der Kugel B definiert durch $||x - x_0|| < R$

$$f(x) = \frac{1}{R^2 vol(S)} \int_{S(R,x_0)} f(\xi) \frac{\|\xi\|^2 - \|x\|^2}{\|\xi - x\|^n} \sigma_{n-1}(\xi) \, .$$

Im Spezialfall $x = x_0$ gibt dies die folgende **Mittelpunktsformel**

Satz 9.10. Sei U offen im \mathbb{R}^n und $f \in C^{\infty}(U)$ eine harmonische Funktion. Für jede abgeschlosse Kugel vom Radius r in U mit Mittelpunkt x_0 gilt

$$f(x_0) = \frac{1}{vol(S(r))} \cdot \int_{S(r)} f(x+x_0) \sigma_{n-1}(x) .$$

Beweis. Zum Beweis der Poisson Formel sei obdA $x_0=0$ und R=1. Das Integral auf der rechten Seite definiert eine Funktion g(x) auf B. Wegen Lemma 9.8 genügt es, daß alle (höheren) Ableitungen von f und g in x_0 übereinstimmen. Zum Beweis entwickeln wir g auf B mittels Satz 9.4 in eine konvergente Potenzreihe¹. Vertauschen von Summation und Integration (Lemma 3.8) liefert

$$g(x) = \int_{S} f(\xi)P(x,\xi)\sigma_{n-1}(\xi) = \sum_{l=0}^{\infty} \int_{S} f(\xi)Z_{l}(x,\xi)\sigma_{n-1}(\xi) .$$

Die Summanden $\int_S f(\xi) Z_l(x,\xi) \sigma_{n-1}(\xi) = \langle Z_l(\xi,x),f(\xi) \rangle$ sind homogen vom Grad l in x, also die Taylor Koeffizienten $T_l(g)(x)$. Wegen Lemma 9.6.5 ist $\langle Z_l(\xi,x),f(\xi) \rangle = \langle Z_l(\xi,x),T_l(f)(\xi) \rangle$, und nach Abschnitt 9.1 dann gleich $T_l(f)(x)$. Also gilt $T_l(f)(x) = T_l(f)(x)$ für alle l.

Die selbe Argumentation zeigt unter gleichen Voraussetzungen

Satz 9.11. Die harmonische Funktion f(x) lässt sich um x_0 (hier obdA $x_0 = 0$) in eine konvergente Potenzreihe vom Konvergenradius $\ge R$ entwickeln

$$f(x) = \sum_{l=0}^{\infty} P_l(x).$$

¹Die Konvergenz ist gleichmässig für festes $\xi \in S$ und alle x aus dem kompakten Kreisring. Wegen der $SO(n, \mathbb{R})$ Invarianz von $P(x, \xi)$ ist sie daher auch gleichmässig für alle solchen x und alle $\xi \in S$.

Die Funktionen $P_l(x) \in \mathcal{H}_l(\mathbb{R}^n)$ harmonische Polynome auf \mathbb{R}^n homogen vom Grad l, und gegeben durch

$$P_l(x) = \frac{1}{R^2} \int_S f(\xi) Z_l(x,\xi) \sigma_{n-1}(\xi) .$$

Bemerkung. Der Konvergenzradius der Potenzreihenentwicklung ist daher mindestens (!) so groß wie der Radius jeder Vollkugel um x_0 , die vollkommen im Definitionsbereich U von f enthalten ist.

Aus der Mittelpunktsformel kann man ohne Mühe das sogenannte **Maximumsprinzip** folgern: Nimmt eine harmonische Funktion $f:U\to\mathbb{R}$ auf einer offenen Menge $U\subset\mathbb{R}^n$ ihr Maximum (Minimum) in einem Punkt $x_0\in U$ an, dann ist f konstant auf jeder offenen Kugel in U mit Mittelpunkt x_0 .

9.5 Entwicklung auf Kugelschalen

Sei $X=X[\rho,R]$ eine abgeschlossene Kugelschale und $V\subseteq\mathbb{R}^n$ eine offene Menge, die X enthält. ObdA sei $0<\rho< R$ und

$$f: V \to \mathbb{R}$$
 harmonisch.

Für das Eulerfeld E gilt $r^2\Delta(Ef)=E(r^2\Delta(f))=0$. Deshalb ist auch Ef harmonisch auf V, und damit auch E^mf für alle $m\in\mathbb{N}$. Aus der Kettenregel folgt $r\frac{d}{dr}f(r\xi)=(Ef)(r\xi)$.

Satz 9.12. Eine auf V harmonische Funktion f(x) lässt sich auf Kugelschalen $X[\rho, R] \subset V$ in eine <u>absolut</u> und <u>gleichmässig</u> konvergente Reihe entwickeln der Gestalt (siehe Abschnitt 5.7)

$$f(y) = \sum_{l=0}^{\infty} \sum_{k=1}^{\dim(\mathcal{H}_l(\mathbb{R}^n))} \left(a_{lk} \cdot P_{l,k}(y) + b_{lk} \cdot P_{l,k}^*(y) \right).$$

Im Fall (n, l) = (2, 0) wird hierbei $P_{0,1}^*(x)$ formal durch log(r) ersetzt.

Beweis. Wir wollen f auf $X[\rho,R]$ in eine Potenzreihe entwickeln. Die Einschränkung von f auf jede Sphäre S(r), für $r \in [\rho,R]$, definiert eine stetige Funktion auf S(r) und ist somit in $L^2(S(r))$ enthalten. Für harmonische Polynome $P \in \mathcal{H}_l(\mathbb{R}^n)$ gilt daher durch Transformation auf die Einheitsspäre S, mittels $y = r\xi$ und der Notation $f_r(\xi) = f(r\xi)$,

$$\int_{S} f_{r}(\xi) P(\xi) \sigma_{n-1}(\xi) = r^{-n-l} \int_{S(r)} f(y) P(y) \sigma_{n-1}(y) = ar^{l} + br^{-l-\kappa}$$

für gewisse Konstanten a,b, welche nur von f,P abhängen, aber nicht von r. Letzteres folgt aus Lemma 9.5, wobei wir der Einfachheit halber $(n,l) \neq (2,0)$ angenommen haben! Anwenden von $r\frac{d}{dr}$ liefert auf Grund des Vertauschungssatzes 4.32

$$\int_{S} (Ef)_{r}(\xi)P(\xi)\sigma_{n-1}(\xi) = l \cdot ar^{l} - (l + \kappa) \cdot br^{-l-\kappa},$$

und damit $\frac{2l+\kappa}{l+\kappa} \cdot ar^l = \langle f_r + \frac{1}{l+\kappa} (Ef)_r, P \rangle$, beziehungsweise wegen $(r\frac{d}{dr})^m f_r = (E^m f)_r$

$$\frac{(2l+\kappa)l^m}{l+\kappa} \cdot ar^l = \langle (E^m f)_r + \frac{1}{l+\kappa} (E^{m+1} f)_r, P \rangle.$$

Das Skalarprodukt rechts kann durch $c_1 \cdot \max_{\xi \in S} |P(\xi)|$ abgeschätzt werden für eine Konstante c_1 , welche nur von f und m abhängt aber nicht von l. Für $P = P_{l,k}, a = a_{lk}$ liefert dies die Abschätzungen $|a_{lk}r^l| \leqslant C_1 \cdot l^{-m} \max_{\xi \in S} |P_{l,k}(\xi)|$ für eine Konstante C_1 , welche nur von f abhängt. Für festes l ist daher der Ausdruck $\sum_{k=1}^{\dim(\mathcal{H}_l(\mathbb{R}^n))} |a_{lk} \cdot P_{l,k}(r\xi)|$ durch $C_1 l^{-m} \cdot \sum_{k=1}^{\dim(\mathcal{H}_l(\mathbb{R}^n))} \max_{\xi \in S} (P_{l,k}(\xi)^2)$ abschätzbar. Aus Lemma 9.2 und $\frac{\dim(\mathcal{H}_l(\mathbb{R}^n))}{vol(S)} \leqslant C_2 \cdot l^n$ folgt

$$\sum_{k=1}^{\dim(\mathcal{H}_{l}(\mathbb{R}^{n}))} |a_{lk} \cdot P_{l,k}(r\xi)| \leq C_{1}C_{2} l^{n-m}.$$

Wir können hier obd $m \ge n+2$ wählen. Ähnlich kann man $\sum_k b_{lk} P_{l,k}^*(r\xi)$ abschätzen. Gilt $x \in S$ und $r \in [\rho, R]$, folgt daraus für $y = r \cdot x \in X[\rho, R]$ die absolute und gleichmässige Konvergenz der Reihe

$$f_r(x) = \sum_{l=0}^{\infty} \sum_{k=1}^{\dim(\mathcal{H}_l(\mathbb{R}^n))} (a_{lk}r^l + b_{lk}r^{-l-\kappa}) \cdot P_{l,k}(x) .$$

Damit ist die rechte Seite der Formel in Satz 9.12 wohldefiniert und harmonisch auf ihrem Definitionsbereich $X[\rho,R]$. Weiterhin haben die linke und die rechte Seite der Formel in Satz 9.12 die selben Skalarprodukte mit allen Funktionen der Hilbertraum-Basis $P_{l,k}(x)$ (Satz 9.7) von $L^2(S)$. Deshalb sind beide Seiten f.ü. gleich als Funktion auf S (Korollar 7.7) bei festem r. Damit sind beide Seiten gleich auf ganz S aus Stetigkeitsgründen (Satz 2.24 und Lemma 7.9). Aus $P_{k,l}(y) = r^l P_{k,l}(x)$ resp. $P_{k,l}^*(y) = r^{-l-\kappa} P_{k,l}(x)$ resp. $f(y) = f_r(x)$ folgt daher die Behauptung.

Satz 9.13 (**Hebbarkeitssatz**). Sei $B = \{x \in \mathbb{R}^n \mid ||x - x_0|| < R\}$ eine offene Kugel und $f : B \setminus \{x_0\} \to \mathbb{R}$ eine harmonische Funktion. Ist f beschränkt auf $\{x \neq x_0 \in \mathbb{R}^n \mid ||x - x_0|| \leq r\}$ für ein 0 < r < R, dann lässt sich f zu einer harmonischen Funktion auf ganz B fortsetzen.

Aus Lemma 9.5 folgt wie im Beweis von Lemma 9.6.1 aus der Beschränktheit von f das Verschwinden der Koeffizienten $b = b_{kl}$. Damit folgt das Resultat leicht aus Satz 9.12.

9.6 Die Potential Gleichung $\Delta \varphi = \rho$

Für eine gegebene C^{∞} -Funktion $\rho:\mathbb{R}^n\to\mathbb{R}$ suchen wir Lösungen $\varphi:\mathbb{R}^n\to\mathbb{R}$ der **Potential Gleichung**

$$\Delta \varphi(x) = \rho(x) .$$

Hat man eine Lösung $\varphi(x)$ gefunden, dann ist jede andere Lösung von der Gestalt $\varphi(x) + f(x)$ für eine harmonische Funktion $f: \mathbb{R}^n \to \mathbb{R}$. Unter geeigneten Bedingungen an das Abklingen

der Lösungen im Unendlichen ist die Lösung der Poisson Gleichung eindeutig, d.h. f(x)=0. Dazu benutzt man

Satz 9.14. Beschränkte harmonische Funktionen $f: \mathbb{R}^n \to \mathbb{R}$ sind konstant.

Beweis. (Im Prinzip ist das Satz 9.13). Wir zeigen $df(x_0) = 0$ für alle $x_0 \in \mathbb{R}^n$. Dann folgt die Aussage aus dem Mittelwertsatz. Zum Beweis von $df(x_0) = 0$ ist obdA $x_0 = 0$. Satz 9.9 und Satz 4.32 zeigen

$$\partial_i f(0) = \frac{1}{R^2} \int_{S(R)} f(\xi) \partial_i P(x,\xi)_{x=0} \sigma_{n-1}(\xi) .$$

Aus $|vol(S)\partial_i P(x,\xi)_{x=0}| = n|\xi_i| \|\xi\|^{-n} \leqslant nR^{1-n}$ folgt $|vol(S)\partial_i f(0)| \leqslant R^{-2} \cdot vol(S)R^n \cdot nR^{1-n} = \frac{nvol(S)}{R}$, also $\partial_i f(0) = 0$ im Limes $R \to \infty$.

Satz 9.15 (Existenz). Für $\rho(x) \in C_c^{\infty}(\mathbb{R}^n)$ und $\kappa = n - 2 > 0$ ist

$$\varphi(y) = \lim_{R \to \infty, r \to 0} \int_{X(r,R)} \frac{\rho(x+y)}{\|x\|^{\kappa}} dx_1 \cdots dx_n$$

in $C^{\infty}(\mathbb{R}^n)$ eine wohldefinierte Lösung der Potential Gleichung

$$\Delta\left(\frac{\varphi(x)}{\kappa vol(S)}\right) = \rho(x) .$$

Bemerkung. Nicht ganz korrekt, dafür aber intuitiver vom physikalischen Standpunkt aus, kann man das Integral $\varphi(y)$ auch in der Form $\varphi(y) = \int_{\mathbb{R}^n} \frac{\rho(x)}{\|x-y\|^\kappa} \omega_n$ schreiben. Auf diese Weise lässt sich die gefundene Lösung $\frac{\varphi(x)}{\kappa vol(S)}$ der Poisson Gleichung deuten als eine Verschmierung des **Coulomb** oder **Newton Potentials** U(x,y) im Punkt y

$$\boxed{U(x,y) \ = \ \frac{1}{\kappa vol(S)\|x-y\|^\kappa}} \quad , \quad \kappa = n-2 > 0 \; .$$

Beweis. Der Limes $R \to \infty$ des Integrals existiert, da $\varphi(x)$ kompakten Träger hat. Der Limes $r \to 0$ existiert, wie man sofort durch Übergang zu Polarkoordinaten sieht

$$\varphi(y) = \int_0^\infty \left(\int_{\xi \in S} \rho(r\xi + y) \sigma_{n-1}(\xi) \right) r dr$$

Für $y \in K$, K kompakt kann man das Integral obdA über einen kompakten Bereich $r \in [0, r_0]$ erstrecken. Dann zeigt Satz 4.32, daß Differentiation nach y mit der Integration vertauscht. Also ist $\varphi(y)$ unendlich oft partiell differenzierbar und es gilt

$$\Delta_y \varphi(y) = \int_0^\infty \int_{\xi \in S} \Delta_y \rho(r\xi + y) r dr \sigma_{n-1}(\xi) = \lim_{R \to \infty, r \to 0} \int_{X(r,R)} \frac{\Delta_y \rho(x+y)}{\|x\|^{\kappa}} dx_1 \cdots dx_n.$$

Wegen $\Delta_y \rho(x+y) = \Delta_x \rho(x+y)$ kann man die Greensche Formel anwenden. ObdA sei R so groß, daß $g(x) = \rho(x+y)$ für $x \in S(R)$ verschwindet. Dann liefert die Greensche Formel für $f(x) = \frac{1}{\|x\|^\kappa}$ wegen $\Delta_x(f) = 0$

$$\lim_{R \to \infty, r \to 0} \int_{X(r,R)} \frac{\Delta_x \rho(x+y)}{\|x\|^{\kappa}} dx_1 \cdots dx_n$$

$$= \lim_{r \to 0} \int_{S(r)} \frac{\sum_i \partial_i \rho(x+y) * dx_i}{r^{\kappa}} - \lim_{r \to 0} \int_{S(r)} \rho(x+y) \sum_i \partial_i \frac{1}{\|x\|^{\kappa}} * dx_i.$$

Der erste Limes über das S(r)-Integral verschwindet, da $vol(S(r))/r^{\kappa}$ für $r \to 0$ gegen Null geht. Aus $\sum_i \partial_i \frac{1}{\|x\|^{\kappa}} * dx_i = -\kappa \|x\|^{1-n} \sum_i \frac{x_i}{\|x\|} * dx_i = -\kappa \|x\|^{-n} \sigma_{n-1}$ folgt daher

$$\Delta_y \varphi(y) = \kappa \lim_{r \to 0} \int_{S(r)} \rho(x+y) ||x||^{-n} \sigma_{n-1} = \kappa vol(S) \rho(y) .$$

Bemerkung. In der **Elektrostatik** reduziert sich die 1-Form A (siehe Abschnitt 5.8) auf

$$A = -U(x, y, z)dt$$

und der Vierer-Strom j auf

$$j = \rho(x, y, z)dt$$
.

Die Maxwellgleichungen vereinfachen sich zu der Gleichung $\Delta U(x,y,z) = \rho(x,y,z)$ für die statische Ladungsverteilung $\rho = \rho(x,y,z)$. Das Lösungspotential U wird durch Satz 9.15 geliefert. Das physikalische Postulat, daß im Unendlichen die Lösung U(x,y,z) abklingt oder zumindestens beschränkt ist, impliziert daß die Lösung U durch ρ (bis auf eine Konstante) eindeutig bestimmt ist.

Bemerkung. Verschwindet die Ladungsdichte $\rho(x,y,z)=0$ in einer Kugelschale X um einen Punkt x_0 und sei obdA $x_0=0$ (dies ist die physikalisch typische Situation), dann ist die Potential U(x,y,z) eine harmonische Funktion im Inneren dieser Kugelschale und kann dann nach Satz 9.12 dort in eine Potenzreihe entwickelt werden. Nimmt man sogar an $X=\{x\in\mathbb{R}^n\mid \|x\|\geqslant \rho\}$, d.h. ist $R=+\infty$, und nimmt man außerdem an U(x,y,z) sei beschränkt auf X, dann folgt aus Satz 9.13 die harmonische Fortsetzbarkeit der Kelvin Transformierten $U^*(x,y,z)$ von $\{x\neq 0\in\mathbb{R}^n\mid \|x\|<\frac{1}{\rho}\}$ auf die offene Kugel $\{x\in\mathbb{R}^n\mid \|x\|<\frac{1}{\rho}\}$. Damit lässt sich U(x,y,z) im Bereich $\|X\|\geqslant R+\varepsilon$ in eine absolut und gleichmässig konvergente Reihe der Gestalt

$$U(x,y,z) = \sum_{l=0}^{\infty} \sum_{k=-l}^{k=+l} b_{kl} \cdot P_{k,l}^{*}(x,y,z)$$

entwickeln für gewisse Koeffizienten b_{kl} (für jedes $\varepsilon > 0$). Aus der Kenntnis von U auf X, d.h. aus dieser Entwicklung, kann man die Ladungsdichte ρ ausserhalb von X aber nicht rekonstruieren! Im Gegenteil: Für den Beobachter in X erscheint es eher so, als sei alle Ladung in infinitesimaler Nähe des Ursprungs $x_0 = 0$ konzentriert (**Multipolentwicklung**)!

10 Ausgewählte Anwendungen II

10.1 Kugelvolumina

Sei $E^n \subseteq \mathbb{R}^n$ die Einheitskugel, d.h. $x \in E^n \Leftrightarrow ||x|| \leqslant 1$. Aus der Substitutionsregel für Integrale folgt (benutze Lemma 8.9)

$$vol(\{x \in \mathbb{R}^n \mid ||x|| \leqslant R\}) = c(n) \cdot R^n$$

wobei c(n) das Volumen der Einheitskugel $c(n) = vol(S^n)$ ist.

Um die Konstante c(n) zu berechen betrachten wir für reelles r > 0 zuerst das Integral

$$I_r = \int_0^1 (1 - x^2)^r dx \ .$$

Durch partielle Integration sieht man sofort $I_r=\frac{2r}{2r+1}I_{r-1}$. Für halbganzes r kann man daher I_r induktiv berechnen aus $I_0=1$ (trivial) und $I_{1/2}=\frac{\pi}{4}$. [Beachte $I_{1/2}=\int_0^1 (1-x^2)^{1/2}dx=\int_0^{\pi/2}\cos^2(t)dt=0+\int_0^{\pi/2}\sin^2(t)dt$ mittels der Substitution $x=\sin(t)$ und partieller Integration. Vermöge $\sin^2(t)=1-\cos^2(t)$ ergibt dies $2I_{1/2}=\int_0^{\pi/2}dt=\pi/2$.]

Lemma 10.1. Es gilt
$$c(0) = c(1) = 2$$
 sowie $c(n) = 2c(n-1) \cdot I_{\frac{n-1}{2}}$.

Dies liefert rekursiv $c(0)=2, c(1)=2, c(2)=\pi, c(3)=4\pi/3, c(4)=\pi^2/2, c(5)=8\pi^2/15$ usw.

Beweis. Das letzte Lemma folgt aus Korollar 6.11 (Satz von Fubini). Wir haben dieses Resultat zwar nur für stetige Funktionen bewiesen, aber es überträgt sich sofort auf monoton fallende Limiten stetiger Funktionen und gilt deshalb auch für Funktionen der Gestalt $\chi_{E^n}(x) \cdot f(x)$ für beliebige stetige Funktionen f(x) auf $[0,1]^n$. Eine solche Funktion f(x) nennt man **zonal**, wenn sie nur von der Variable x_1 abhängt. Für zonale Funktionen gilt dann nach Fubini

$$\int_{[0,1]^n} \chi_{E^n}(x) f(x) dx = \int_{-1}^1 \left(\int_{[0,1]^{n-1}} \chi_{\{\xi | \|\xi\|^2 \le 1 - x^2\}}(\xi) d\xi \right) f(x_1) dx_1$$

und wegen der obigen Formel für das Kugelvolumen somit

$$\int_{E^n} f(x)dx = c(n-1) \cdot \int_{-1}^1 f(x) \cdot (1-x^2)^{(n-1)/2} dx.$$

10.2 Kugeloberfläche

In diesem Abschnitt betrachten wir den Fall der Kugeloberfläche $\partial M = S^{n-1}$ der Einheitskugel E^n im \mathbb{R}^n . Wir haben die n-1-Form σ_{n-1} in $A^{n-1}(\mathbb{R}^n)$ und ihren Pullback auf die Sphäre benutzt um das Standardintegral auf $S=S^{n-1}$ zu definieren. Die Kugeloberfläche (das Wort Oberfläche ist natürlich ein Sprachmissbrauch in Dimensionen $n \neq 3$) ist damit definiert durch

$$vol(S) = \int_{S} \sigma_{n-1} .$$

Zur Erinnerung: Die drehinvariante Differentialform $\sigma_{n-1} \in A^{n-1}(\mathbb{R}^n)$ ist gegeben durch

$$\sigma_{n-1} = \sum_{i=1}^{n} x_i * dx_i = *d(\frac{1}{2}r^2).$$

Zum Beispiel $\sigma_2=xdy\wedge dz+ydz\wedge dx+zdx\wedge dy$ im Fall n=3. Für $\omega_n=dx_1\wedge\cdots\wedge dx_n$ gilt

$$d\sigma_{n-1} = n \cdot \omega_n$$
.

Diese Bedingung und die Drehinvarianz unter Drehungen M in der orthogonalen Gruppe $SO(n,\mathbb{R})$ (in allen Teilebenen in den i,j-Koordinatenrichtungen für $1 \leqslant i < j \leqslant n$) bestimmen die Form $\sigma = \sigma_{n-1}$ in $A^{n-1}(\mathbb{R}^n)$ eindeutig 1

Aus dem Satz von Stokes folgt $\int_{S^{n-1}} \sigma_{n-1} = \int_{E^n} d\sigma_{n-1}$, also

Lemma 10.2. Für das Volumen $c(n) = vol(E^n)$ der Einheitskugel gilt

$$\int_{S^{n-1}} \sigma_{n-1} = n \cdot c(n) .$$

Wir nennen die (n-1)-Differentialform σ_{n-1} die **Kugelflächen Form** im \mathbb{R}^n . Zusammen mit der Berechnung von c(n) im Abschnitt 10.1 ergibt sich daher für $vol(S) = \int_{S^{n-1}} \sigma_{n-1} der$ Wert

$$vol(S) = 2, 2\pi, 4\pi, 2\pi^2, \cdots$$

in den Fällen $n = 1, 2, 3, 4, \cdots$.

In der Fußnote wird unter anderem gezeigt, daß die der Kugelflächenform σ_{n-1} zugeordnete **Potentialform** $\rho \in A^{n-1}(\mathbb{R}^n \setminus \{0\})$

$$\rho = \frac{\sigma_{n-1}}{r^n} \,,$$

 $^{^{1}\}text{Ist }\sigma=\sum f_{i}(x)*dx_{i} \text{ invariant unter allen Drehungen }M=M(\alpha) \text{ in Richtung der }x_{1},x_{2}\text{-Ebene mit Winkeln }\alpha, \text{ d.h. gilt }M^{*}(\sigma)=M, \text{ dann folgt }f_{1}(x)=\cos(\alpha)f_{1}(\cos(\alpha)x_{1}+\sin(\alpha)x_{2},-\sin(\alpha(\alpha)x_{1}+\cos(\alpha)x_{2}),...)-\sin(\alpha)f_{2}(\cos(\alpha)x_{1}+\sin(\alpha)x_{2},-\sin(\alpha(\alpha)x_{1}+\cos(\alpha)x_{2},...)) \text{ für alle }\alpha. \text{ Wenn man diese Relation nach }\alpha \text{ ableitet und }\alpha=0 \text{ setzt, folgt daraus }x_{1}f_{2}(x)=x_{2}f_{1}(x). \text{ Macht man dies analog für andere Koordinaten-Ebenen, so folgt }f_{i}(x)=x_{i}\cdot f(x) \text{ für eine Funktion }f(x), \text{ welche auf Sphären konstant ist und daher nur vom Radius }r \text{ abhängt. Also }\sigma=f(r)\cdot\sigma_{n-1}. \text{ Fordert man noch }d\sigma=n\cdot\omega_{n}, \text{ so folgt aus }d\sigma=df\wedge\sigma_{n-1}+nf\omega_{n} \text{ die inhomogene lineare Differentialgleichung }\sum_{i=1}^{n}x_{i}\partial_{i}f(x)+nf(x)=n, \text{ oder wegen }\partial_{i}f(r)=\frac{x_{i}}{r}\frac{d}{dr}f(r) \text{ dann }r\frac{d}{dr}f(r)+nf=n. \text{ Also }f=1 \text{ plus eine Lösung }g(r)=c\cdot r^{-n} \text{ der homogenen Gleichung }r\frac{d}{dr}g(r)+ng(r)=0. \text{ Nur für }c=0 \text{ ist diese Lösung differenzierbar im Punkt Null.}$

welche einen Singularität im Nullpunkt besitzt, eine geschlossene (rotationssymmetrische) Differentialform auf $U = \mathbb{R}^n \setminus \{0\}$ ist:

$$d\rho = 0$$
.

Bei Integration über die Sphäre S^{n-1} liefert die Potentialform dasselbe Integral $nc(n) \neq 0$ wie die Oberflächenform σ_{n-1} , da r=1 ist auf der Einheitssphäre. Wir zeigen nun, daß deshalb im Gebiet U das Poincare Lemma nicht gilt (siehe auch Seite 73 im Fall n=2)

Lemma 10.3. $\rho \notin dA^{n-2}(U)$.

Beweis. Aus $\rho = d\eta$ für ein $\eta \in A^{n-1}(U)$ folgt $nc(n) = \int_{S^{n-1}} \omega = \int_{S^{n-1}} d\eta$. Man benutzt jetzt eine stärkere Version (!) des Satzes von Stokes (hier ohne Beweis) und erhält den Widerspruch $0 \neq nc(n) = \int_{S^{n-1}} d\eta = \int_{\partial S^{n-1}} \eta = 0$ wegen $\partial S^{n-1} = \emptyset$.

10.3 Der Residuensatz

Sei $\varepsilon > 0$ und f(z) eine in einer um z_0 gepunkteten Kreisscheibe U holomorphe Funktion

$$f: U = \{z \in \mathbb{C} \mid 0 < ||z - z_0|| < \varepsilon\} \longrightarrow \mathbb{C}$$
.

Satz 10.4 (Laurent Entwicklung). f(z) ist dann auf jedem kompakten Kreisring in U in eine absolut und gleichmässig konvergente Potenzreihe entwickelbar

$$f(z) = \sum_{l=0}^{\infty} a_l \cdot (z - z_0)^l + \sum_{l=1}^{\infty} b_l \cdot (z - z_0)^{-l}.$$

Man nennt den Koeffizient b_1 das **Residuum** $Res_{z_0}(f)$ der Funktion f bei z_0 .

Beweis. ObdA $z_0=0$. Nach Lemma 5.8 sind Real- und Imaginärteil von f(z) harmonisch. Die harmonischen Polynome in $\mathcal{H}_l(\mathbb{R}^2)$ sind $Re(z^l)$ und $Im(z^l)$ und somit folgt aus Satz 9.12 die Existenz einer Entwicklung $f(z)=a_0+b_0\cdot log(r)+\sum_{l=1}^{\infty}(a_lz^l+\tilde{a}_l\overline{z}^l)+\sum_{l=1}^{\infty}(b_lz^{-l}+\tilde{b}_l\overline{z}^{-l})$. Nach Annahme gilt $\overline{\partial}_z f=0$ für $\overline{\partial}_z:=\partial_x+i\partial_y$ (siehe Abschnitt 5.2). Gliedweises Ableiten mit $\overline{\partial}_z$ gibt $\frac{b_0}{2z}+\sum_{l=0}^{\infty}l\tilde{a}_l\overline{z}^{l-1}-\sum_{l=1}^{\infty}l\tilde{b}_l\overline{z}^{-l-1}=0$. Es folgt $b_0=\tilde{b}_l=\tilde{a}_l=0$ für alle $l\neq 0$.

Bemerkung. Der letzte Satz liefert für $\gamma:[0,2\pi]$ mit $\gamma(t)=z_0+r\cdot exp(it)$ und $0< r< \varepsilon$ die Formel

$$\int_{\gamma} f(z)dz = 2\pi i \cdot Res_{z_0}(f).$$

Satz 6.9 zeigt nämlich $\int_{\gamma} f(z)dz = \sum_{l=0}^{\infty} a_l \cdot \int_{\gamma} (z-z_0)^l dz + \sum_{l=1}^{\infty} b_l \cdot \int_{\gamma} (z-z_0)^{-l} dz$. Beachte

$$\int_{\gamma} (z - z_0)^{-1} dz = 2\pi i \quad \text{sowie} \quad \int_{\gamma} (z - z_0)^n dz = 0 \; , \; (n \neq -1)$$

wegen $(z-z_0)^n dz = d\frac{(z-z_0)^{n+1}}{n+1}$ für $n \neq -1$ (für beides siehe Abschnitt 5.2).

Lemma 10.5. Ist $f: U \to \mathbb{C}$ eine holomorphe Funktion und ist U eine sternförmige offene Teilmenge von \mathbb{C} , dann gilt $\int_{\mathbb{C}} f(z)dz = 0$ für jeden geschlossenen Weg γ in U.

Beweis. Nach Lemma 5.4.1 ist die Differentialform $\omega = f(z)dz$ für holomorphes f(z) geschlossen: $d\omega = 0$. Ist der Definitionsbereich U von f offen und sternförmig, folgt aus dem Poincare Lemma die Existenz eines Potentials ϕ mit $\omega = d\phi$. Ist $\gamma: [a,b] \to U$ ein Weg in U, gilt also $\int_{\gamma} \omega = \phi(\gamma(b)) - \phi(\gamma(a))$. Ist der Weg γ in U geschlossen, folgt $\int_{\gamma} f(z)dz = 0$. \square

Sei nun $Q=[a_1,a_2]\times[b_1,b_2]$ ein beschränkter Quader im \mathbb{R}^2 . Wir entfernen aus Q offene Kreise vom Radius $\varepsilon>0$ um die Eckpunkte und erhalten eine abgeschlossene Menge X. Nach Konstruktion gilt $X\subset Q$. Sei U eine offene Teilmenge von \mathbb{R}^2 mit $X\subset U$ und sei $f:U\to\mathbb{C}$ eine holomorphe Funktion. Wurde $\varepsilon>0$ klein genug gewählt, enthält U eine sternförmige offene Teilmenge $V\subseteq U$ welche ganz X enthält. Wegen Lemma 10.5 folgt daraus $\int_{\partial X} f(z)dz=0$. Dies zeigt

Lemma 10.6. Sei $Q \subset \mathbb{R}^2$ ein Quader und $U \subset \mathbb{R}^2$ eine offene Menge, welche Q enthält. Seien $z_1,...,z_l$ endlich viele Punkte in $Q \setminus \partial Q$ und sei $f: U \setminus \{z_1,...,z_l\} \to \mathbb{C}$ holomorph. Dann gilt

$$\boxed{\frac{1}{2\pi i} \int_{\partial Q} f(z) dz = \sum_{\nu=1}^{l} Res_{z_{\nu}}(f)}.$$

Beweis. Wir zerlegen den Quader Q in endlich viele Teilquader so, daß alle Punkte z_{ν} für $\nu=1,..,l$ zu Eckpunkten werden. Wir wählen dann $\varepsilon>0$ klein genug so daß das Innere aller Teilquader nach Herausnahme kleiner Kreisscheiben vom Radius ε um die Eckpunkte sternförmig wird. Seien $\gamma_{\nu}:[0,2\pi]\to U$ kleine Kreisringe in U definiert durch $\gamma_{\nu}(t)=z_{\nu}+\varepsilon\cdot exp(it)$. Dann gilt $\frac{1}{2\pi i}\int_{\partial Q}f(z)dz=\sum_{\nu=1}^{l}\frac{1}{2\pi i}\int_{\gamma_{\nu}}f(z)dz$, denn die Differenz beider Seiten schreibt sich als eine endliche Summe von Integralen $\int_{\gamma}f(z)dz$ über Wege, die in einem sternförmigen offenen Teil von U enthalten sind und daher nach Lemma 10.5 verschwinden. Ist ε klein genug, dann liegt γ_{ν} in U und f ist holomorph auf $\{z\mid \|z-z_{\nu}\|<2\varepsilon\}$. Daraus folgt $\frac{1}{2\pi i}\int_{\gamma_{\nu}}f(z)dz=Res_{z_{\nu}}(f)$, wie oben gezeigt wurde. Dies zeigt die Behauptung.

10.4 Wärmeleitungskerne

Die Funktion $f_t(x) = t^{-1/2}e^{-\pi\frac{\|x\|^2}{t}}$ ist definiert auf $\mathbb{R}_{>0} \times \mathbb{R}^n$ und stellt dort eine C^{∞} -Funktion dar. Man zeigt leicht, daß sie dort eine Lösung der Differentialgleichung (die sogenannte Wärmeleitungsgleichung)

$$4\pi \partial_t f_t(x) = \Delta f_t(x)$$

ist. Wir studieren im Folgenden das Verhalten der Funktion im rechtsseitigen Limes $t \to 0^+$ (im Spezialfall n=1). Im physikalischen Kontext bedeutet dies in der Regel: Entweder die Zeit t geht gegen Null oder die Temperatur oder Energie $T=\frac{1}{t}$ geht gegen unendlich. Man nennt die Funktion $f_t(x-y)$ den Wärmeleitungskern.

Lemma 10.7. Für t > 0 und $f_t(x) = t^{-1/2}e^{-\pi \frac{x^2}{t}}$ gilt

$$\int_{\mathbb{R}} f_t(x) dx = 1.$$

Beweis. Man reduziert dies mittels Variablensubstitution auf den Spezialfall t=1, der in Lemma 7.13 bewiesen wurde.

Für $0 < t \leqslant \delta$ kann das Integral $\int_{|x| \geqslant \delta} f_t(x) dx$ durch $\int_{|x| \geqslant 1} \frac{\delta}{t^{1/2}} \exp(-\pi \frac{\delta^2}{t} x^2) dx$, oder damit $\int_1^\infty \frac{\delta}{t^{1/2}} \exp(-\pi \frac{\delta^2}{t} y) dy = \frac{t^{1/2}}{\pi \delta} \cdot \exp(-\pi \frac{\delta^2}{t}) \leqslant c(\delta) t^{1/2}$ für $c(\delta) = \frac{\exp(-\pi \delta)}{\pi \delta}$ abgeschätzt werden.

Lemma 10.8. Für eine beschränkte stetige Funktion g(x) auf \mathbb{R} gilt²

$$g(0) = \lim_{t \to 0^+} \int_{\mathbb{R}} g(x) f_t(x) dx .$$

Beweis. Indem man g(x) durch g(x)-g(0) ersetzt kann obdA g(0)=0 angenommen werden [benutze $\int f_t(x)dx=1$]. Nach Annahme gilt $|g(x)|\leqslant C$ für eine Konstante C. Wegen der Stetigkeit von g gibt es für $\varepsilon>0$ ein $\delta>0$ mit $|g(x)-g(0)|<\varepsilon$ für $|x|<\delta$. Es gilt $|\int_{|x|\leqslant\delta}g(x)f_t(x)dx|\leqslant\varepsilon\int_{|x|\leqslant\delta}f_t(x)dx$ wegen $f_t(x)\geqslant0$. Weiterhin ist $|\int_{|x|\geqslant\delta}^\infty g(x)f_t(x)dx|\leqslant C\int_{|x|\geqslant\delta}^\infty f_t(x)dx$. Für $t\leqslant\delta$ ist dies wie oben gezeigt $\leqslant Cc(\delta)\cdot t^{1/2}$ und geht gegen Null im Limes $t\to0$. Es folgt

$$-\varepsilon \cdot \lim_{t \to 0^+} \int_{\mathbb{R}} f_t(x) dx \leq \lim_{t \to 0^+} \int_{\mathbb{R}} g(x) f_t(x) dx \leq +\varepsilon \cdot \lim_{t \to 0^+} \int_{\mathbb{R}} f_t(x) dx.$$

Aus $\int_{\mathbb{R}} f_t(x) dx = 1$ (Lemma 10.8) folgt dann sofort die Behauptung.

²Insbesondere gilt hier im Fall $g(0) \neq 0$ also $g(0) = \lim_{t \to 0^+} \int_{\mathbb{R}} g(x) f_t(x) dx \neq \int_{\mathbb{R}} \lim_{t \to 0^+} g(x) f_t(x) dx = 0$.