Übungen zur Höheren Mathematik für Physiker III

Blatt 10

Prof. Dr. R. Weissauer

Wintersemester 2014/15

Mirko Rösner

Abgabe bis 09.01.15 um 11:15 in den Übungskästen in INF 288

1. Aufgabe: (2+2=4 Punkte) Betrachten Sie auf $C^{\infty}(\mathbb{R})$ den linearen Operator

$$A_-: f(x) \mapsto \partial_x f(x) + 2\pi x \cdot f(x).$$

Zeigen Sie:

- (a) $A_{-} = e^{-\pi x^2} \partial_x e^{\pi x^2}$,
- (b) $\ker A_- = \mathbb{R} \cdot e^{-\pi x^2}$.
- **2.** Aufgabe: (2+2=4 Punkte) Sei $f \in \mathcal{S}(\mathbb{R}^n)$, $n \ge 1$ im Schwartz-Raum. Zeigen Sie:
 - (a) $\frac{1}{2\pi i} \partial_{y_i} (\mathcal{F}f(x))(y) = \mathcal{F}(x_i f(x))(y),$
 - (b) $-y_j(\mathcal{F}f(x))(y) = \mathcal{F}(\frac{1}{2\pi i}\partial_{x_j}f(x))(y).$
- 3. Aufgabe: $(2+2=4 \text{ Punkte}) \text{ Auf } C^{\infty}(\mathbb{R}^3,\mathbb{C}) \text{ sind die Drehimpulsoperatoren}$

$$L_1 = x_3 \partial_2 - x_2 \partial_3, \quad L_2 = x_1 \partial_3 - x_3 \partial_1, \quad L_3 = x_2 \partial_1 - x_1 \partial_2,$$

und $L_{\pm} = L_2 \mp iL_3$ sowie $L^2 = L_1^2 + L_2^2 + L_3^2$.

(a) Berechnen Sie zwei der Kommutatoren:

$$[L_i, \Delta], [L_2, L_3], [L_i, L^2], [L_+, L_-], [L_+, L_1].$$

- (b) Zeigen Sie $L^2 = -(iL_1)^2 + (iL_1) + L_-L_+$.
- **4. Aufgabe:** (2+2+2=6 Punkte) Für $n \in \mathbb{N}_0$ sind die Hermite-Polynome $H_n \in \mathbb{R}[x]$

$$H_n(x) = c(n) \cdot e^{2\pi x^2} \partial_x^n (e^{-2\pi x^2}),$$

mit Konstanten $c(n) \in \mathbb{R}$. Zeigen Sie:

- (a) H_n ist ein Polynom vom Grad n,
- (b) die Funktionen $f_n(x) = H_n(x) \cdot e^{-\pi x^2}$ sind orthogonal in $L^2(\mathbb{R})$,
- (c) bestimmen Sie c(n) mit $||f_n||_{L^2} = 1$.
- **5. Aufgabe:** (4 Bonuspunkte) Sei $f \in \mathcal{S}(\mathbb{R}^{n+1})$, $n \ge 1$ im Schwartzraum eine Lösung der Wellengleichung

$$\Box f = 0.$$

Zeigen Sie: Dann ist f = 0. Hinweis: Fouriertransformation und Aufgabe 2.

6. Aufgabe: (2+2+3+2=9 Bonuspunkte) Sei $M \subseteq \mathbb{R}^n$ offen und $u \in L^1_{loc}(M)$ mit

$$\Delta F_{u\,\mathrm{d}x}=0.$$

In dieser Aufgabe soll gezeigt werden, dass $F_{u\,\mathrm{d}x}$ glatt ist. Sei dazu $\xi\in M$ ein fester Punkt und sei $N=B_r(\xi),\,r>0$, eine offene Kugel um ξ mit $B_{2r}(\xi)\subseteq M$. Dann gibt es ein $f\in C_c^\infty(M)$ mit $f|_N\equiv 1$ und Träger in $B_{2r}(\xi)$ (Satz über die Partitionen der Eins). Die Fundamentallösung der Poisson-Gleichung sei $E:\mathbb{R}^n\backslash\{0\}\to\mathbb{R}$. Für $(x,y)\in N\times M$ mit $x\neq y$ setzen wir

$$w(x,y) = \Delta_y \left((1 - f(y)) E(x - y) \right).$$

Zeigen Sie:

- (a) Für $y \in N$ ist w(x,y) = 0, also gibt es eine glatte Fortsetzung $w \in C^{\infty}(N \times M)$.
- (b) $v_N(x) = \int_M u(y)w(x,y)dy$ definiert eine glatte Funktion $v_N \in C^{\infty}(N)$.
- (c) Es gilt $\int_M v_N(x)g(x)dx = \int_M u(x)g(x)dx$ für alle $g \in C_c^\infty(N)$.
- (d) Es gibt ein $v \in C^{\infty}(M)$ mit $F_{vdx} = F_{udx}$. Hinweise: (b) Vertauschungssatz 4.32 (c) Satz von Fubini (d) Verheften der lokal eindeutig definierten Funktionen v_N .

Frohe Weihnachten!