Prof. Dr. R. Weissauer Mirko Rösner Sommersemester 2014

Abgabe bis 06.06.14 um 11:15 in INF 288.

- **1. Aufgabe:** (1+1+1=3 Punkte) Für $a,b \in \mathbb{R}_{>0}, a \neq 1 \text{ setzt man } \log_a(b) := \frac{\log(b)}{\log(a)}$. Für $x \in \mathbb{R}_{>0}$ und $\alpha \in \mathbb{R}$ definiert man $x^{\alpha} := \exp(\alpha \log(x))$. Zeigen Sie:
 - (a) $x^{\alpha+\beta} = x^{\alpha}x^{\beta}$ für $\alpha, \beta \in \mathbb{R}$,
 - (b) $(x^{\alpha})^{\beta} = x^{\alpha\beta}$,
 - (c) $\log_a(b)\log_b(c) = \log_a(c)$ für $a, b, c \in \mathbb{R}_{>0}, a, b \neq 1$.
- **2. Aufgabe:** (2+2=4 Punkte) Sei $f:[0,1] \to \mathbb{R}$ eine Funktion. Wir nehmen an, es gibt Funktionenfolgen $(g_n)_n$ und $(h_n)_n$ mit $g_n, h_n \in C([0,1])$, sodass $g_n \searrow f$ monoton fallend und $h_n \nearrow f$ monoton steigend jeweils punktweise gegen f konvergieren. Zeigen Sie: Dann ist f stetig. Folgern Sie:

$$C([0,1]) = C([0,1])^+ \cap C([0,1])^-.$$

- **3. Aufgabe:** (2+2=4 Punkte) Sei K ein Körper der Charakteristik char $K \neq 2$, das heißt $1+1 \neq 0$. Bestimmen Sie die Dimension der folgenden K-Vektorräume von homogenen Polynomen, indem Sie eine Basis angeben.
 - (a) Der Raum $K[X,Y]_n$ besteht aus den homogenen Polynomen in zwei kommutierenden Variablen vom Grad $n \in \mathbb{N}_0$.
 - (b) Der Raum $K[\theta_1, \ldots, \theta_m]$ besteht aus den Polynomen in $m \in \mathbb{N}_{\geq 1}$ antikommutierenden Variablen $\theta_1, \ldots, \theta_m$. (Antikommutierend heißt $\theta_i \theta_j = -\theta_j \theta_i$ für alle i, j). Hinweis: Zeigen Sie zunächst $\theta_i \theta_i = 0$. Wenn Sie die Polynome konkret hinschreiben möchten, dürfen Sie $m \leq 4$ annehmen.
- **4. Aufgabe:** (2+2=4 Punkte) Zeigen Sie für stückweise stetige $f \in CT(\mathbb{R}^n)$:
 - (a) $\int_{\mathbb{R}^n} f(x+x_0) dx = \int_{\mathbb{R}^n} f(x) dx$ für ein festes $x_0 \in \mathbb{R}^n$,
 - (b) $\int_{\mathbb{R}^2} f(x_1, x_2) dx = \int_{\mathbb{R}^2} f(x_2, x_1) dx$ für n = 2.

Hinweis: Zeigen Sie dies zunächst für Treppenfunktionen.

5. Aufgabe: (5 Punkte) Sei $f \in C_c(\mathbb{R}^n)$ stetig mit kompaktem Träger und sei $L \in GL(n, \mathbb{R})$ ein linearer Automorphismus. Zeigen Sie die Substitutionsformel

$$\int_{\mathbb{R}^n} f(y) dy = |\det L| \cdot \int_{\mathbb{R}^n} f(Lx) dx.$$

Hinweis: Zeigen Sie die Formel zunächst für Elementarmatrizen und verwenden Sie die Aussagen der vorigen Aufgabe. Sie können dann aus der Linearen Algebra die Aussage verwenden, dass jedes $L \in GL(n,\mathbb{R})$ ein Produkt von Elementarmatrizen ist.