Prof. Dr. R. Weissauer Mirko Rösner Sommersemester 2014

Abgabe bis 11.07.14 um 11:15 in INF 288.

1. Aufgabe: (3+3+2=8 Punkte) Sei $\omega = \sum_{\nu=1}^n \mathrm{d}q_{\nu} \wedge \mathrm{d}p_{\nu} \in A^2(\mathbb{R}^{2n})$ die kanonische 2-Form auf dem Phasenraum. Bestimmen Sie zur Hamiltonfunktion

$$h: \mathbb{R}^{2n} \to \mathbb{R}, \quad (q_1, \dots, q_n, p_1, \dots, p_n) \mapsto \sum_{\nu=1}^n a \cdot q_{\nu}^2 + b \cdot p_{\nu}^2$$

mit reellen Konstanten $a, b \geq 0$ jeweils das zugehörige Vektorfeld $X = X_h$ und den Hamiltonfluss $\varphi_t^X : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$,

- (a) falls $a, b \neq 0$,
- (b) falls a = 0.
- (c) Rechnen Sie in beiden Fällen konkret nach, dass $(\varphi_t^X)^*(\omega) = \omega$.

Hinweis zu (a): Machen Sie einen Ansatz der Form

$$\varphi_t^X(q_1,\ldots,p_n) = (\cos(\lambda t)q_1 - c\sin(\lambda t)p_1,\ldots,c^{-1}\sin(\lambda t)q_n + \cos(\lambda t)p_n)$$

und bestimmen Sie die reellen Konstanten $\lambda, c \neq 0$.

- **2.** Aufgabe: (3 Punkte) Seien $f_1, \ldots, f_n \in C^{\infty}(\mathbb{R}^n)$ reellwertige Funktionen mit der Eigenschaft $\partial_j f_i = \partial_i f_j$ für alle i, j. Zeigen Sie, dass es ein $g \in C^{\infty}(\mathbb{R}^n)$ gibt, sodass $\partial_i g = f_i$ für alle i.
- 3. Aufgabe: (2+2+2=6 Punkte) Es sei $f(\theta) = c_{\emptyset} + c_{\{1\}}\theta^1 + c_{\{2\}}\theta^2 + c_{\{1,2\}}\theta^1\theta^2$ ein Polynom in zwei antikommutierenden Variablen θ^1 , θ^2 mit reellen Koeffizienten $c_I \in \mathbb{R}$ für $I \subseteq \{1,2\}$. Berechnen Sie
 - (a) die Involution $(f(\theta))^*$,
 - (b) das Berezin-Integral $\int f(\theta) d\theta$,
 - (c) die Fouriertransformierte $(\mathcal{F}_L f)(\eta)$ zu $q_L : \mathbb{R}^2 \to \mathbb{R}, q_L(x) = x_1^2 + 2 \cdot x_2^2$.
- **4. Aufgabe:** (1+1+2=4 Punkte) Die Eins-Form $\alpha \in A^1(\mathbb{R}^{2n})$ auf dem Phasenraum \mathbb{R}^{2n} sei gegeben durch $\alpha(q,p) = \sum_{k=1}^n q_k \mathrm{d} p_k$. Berechnen Sie
 - (a) die Cartanableitung $\omega = d\alpha$,
 - (b) den Pullback $J^*\alpha$ mit der Matrix $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$,
 - (c) die Kontraktion $i_X(\alpha)$ mit dem Vektorfeld $X(q,p) = \sum_{\nu=1}^n q_{\nu} \partial_{p_{\nu}}$.

5. Aufgabe: (1+1+2+2+2=8 Bonuspunkte) Sei $U \subseteq (\mathbb{R}m)^3$ eine offene Teilmenge des Ortsraumes und sei

$$L: U \times (\mathbb{R}^{\frac{\mathrm{m}}{\mathrm{s}}})^3 \times (\mathbb{R}\mathrm{s}) \to \mathbb{R}\mathrm{J}, \quad L(\mathbf{q}, \mathbf{x}, t) = \frac{m}{2} \|\mathbf{x}\|^2 + e \sum_{i=1}^3 x_i A_i(\mathbf{q})$$

die Lagrangefunktion eines Elektrons mit Masse m und Ladung e im Magnetfeld mit Vektorpotential $\mathbf{A}: U \to (\mathbb{R}^{\frac{\mathrm{Vs}}{m}})^3$.

- (a) Bestimmen Sie die kanonischen Impulse $p_i(\mathbf{q}, \mathbf{x}, t) = \frac{\partial L}{\partial x_i}$.
- (b) Bestimmen Sie die Hamiltonfunktion $H(\mathbf{q}, \mathbf{x}, t) = \sum_{i=1}^{3} x_i p_i L(\mathbf{q}, \mathbf{x}, t)$.
- (c) Zeigen Sie, dass $\psi: (\mathbf{q}, \mathbf{x}, t) \mapsto (\mathbf{q}, \mathbf{p}(\mathbf{q}, \mathbf{x}, t), t)$ invertierbar ist und bestimmen Sie die Funktion $\mathbf{x} = \mathbf{x}(\mathbf{q}, \mathbf{p}, t)$.
- (d) Bestimmen Sie $h(\mathbf{q}, \mathbf{p}, t) = H(\mathbf{q}, \mathbf{x}(\mathbf{q}, \mathbf{p}, t), t)$ und formulieren Sie die Bewegungsgleichungen für den Hamiltonfluß $\varphi_t = (\mathbf{q}(t), \mathbf{p}(t), t)$.
- (e) Zeigen Sie, dass im Fall rot $\mathbf{A}=0$ der Hamiltonfluss die Bewegungsgleichung eines kräftefreien Teilchen $\frac{\mathrm{d}^2}{\mathrm{d}^2t}\mathbf{q}(t)=0$ beschreibt.