Übungen zu Höhere Mathematik für Physiker III – WS~2012/13~Blatt~8~Dr.~Rolf~Busam/Mirko~Rösner

Abgabe bis Freitag, den 14.12.2012, um 11:15 Uhr in den Übungskästen in INF 288. Website: http://www.mathi.uni-heidelberg.de/~mroesner/HM3

- 1. Sei $f: \mathbb{R}^n \to \mathbb{R}$ stetig. Zeigen Sie, dass die folgenden Eigenschaften äquivalent sind:
 - (a) Es gibt eine Funktionenfolge (f_k) mit $f_k \in C_c(\mathbb{R}^n)$, die gleichmäßig¹ gegen f konvergiert.
 - (b) Es gilt $\lim_{\|x\|\to\infty} f(x) = 0$. Das bedeutet: Für alle $\epsilon > 0$ existiert ein $R \in \mathbb{R}_{>0}$, sodass für alle $x \in \mathbb{R}^n$ mit $\|x\| > R$ gilt, dass $|f(x)| < \epsilon$.

Folgern Sie, dass $C_c(\mathbb{R}^n)$ mit der Supremumsnorm kein Banachraum ist. (3P+1P)

- 2. Sei X eine nichtleere Menge und seien $A, B \subseteq X$ Teilmengen. Zeigen Sie für die jeweiligen charakteristischen Funktionen:
 - (a) $\chi_{A \cap B} = \chi_A \chi_B = \min(\chi_A, \chi_B),$
 - (b) $\chi_{A \cup B} = \chi_A + \chi_B \chi_{A \cap B} = \max(\chi_A, \chi_B),$
 - (c) $\chi_{A\setminus(A\cap B)} = \chi_A \chi_{A\cap B}$. (1P+1P+1P)
- 3. Sei $X := \mathbb{R}^n$, sei $N \subseteq X$ eine Teilmenge und sei χ_N die charakteristische Funktion von N. Zeigen Sie, dass folgende Eigenschaften äquivalent sind:
 - i) Es gibt eine Funktion $f: X \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ mit f(x) > 0 für alle $x \in N$, sodass² $I^*(f) = 0$.
 - ii) Jede Funktion $g: X \to \mathbb{R} \cup \{-\infty, \infty\}$, die außerhalb von N verschwindet, ist Lebesgue-integrierbar mit Integral $I_L(g) = 0$.
 - iii) Die Funktion χ_N ist Lebesgue-integrierbar und es gilt $I_L(\chi_N) = 0$.
 - iv) $I^*(\chi_N) = 0$.

Ist eine der vier äquivalenten Bedingungen erfüllt, dann nennt man N eine Lebesgue'sche Nullmenge. (4P)

4. Sei $A_1 := [0,1] \subseteq \mathbb{R}$ das Einheitsintervall und sei für $k \in \mathbb{N}_{>1}$ die Menge A_k rekursiv definiert durch

$$A_k := \{x \in [0,1] | 3x \in A_{k-1} \text{ oder } 3x - 2 \in A_{k-1} \}.$$

- (a) Zeigen Sie: $A_k \subseteq A_{k-1}$ für alle $k \in \mathbb{N}_{>1}$. (1P)
- (b) Das Cantor'sche Diskontinuum $C := \bigcap_{k=1}^{\infty} A_k \subseteq \mathbb{R}$ ist eine Nullmenge. (2P)
- (c) Es gibt eine Bijektion $C \to [0, 1]$, also ist C überabzählbar. (2P)

¹Das heißt bezüglich der Supremumsnorm.

²Im Skript wird $I^*(f)$ mit $I^{\#}(f)$ bezeichnet.