
Seminar: ”Differntial forms and their use”

Various operations on differential forms

Xiaoman Wu

February 5, 2015

Let M be an n-dimensional C∞ manifold. We denote all k-forms on M by Ak(M) and consider
their direct sum

A∗(M) =

n⊕
k=0

Ak(M)

with respect to k, that is, the set of all differential forms on M . We will define various operations
on A∗(M). And denote the set of all the vector fields on M by X(M).

1 Preparation

Proposition 1.1. The map ι : Λ∗V ∗ → A∗(V ) is an isomorphism. That is, the exterior algebra
Λ∗V ∗ of V ∗ and the vector space A∗(V ) of all alternating forms on V can be identified by ι. Using
this, a product is defined on A∗(V ) which is described as follows. If for ω ∈ ΛkV ∗, η ∈ ΛlV ∗, we
consider their exterior product ω ∧ η as an element of Ak+l(V ) by the identification ι, we have

ω ∧ η(X1, · · · , Xk+l)

=
1

(k + l)!

∑
σ

sgnσω(Xσ(1), · · · , Xσ(k))η(Xσ(k+1), · · · , Xσ(k+l))

(Xi ∈ V )

(.)

Here σ runs over the set Gk+l of all permutations of k + l letters 1, 2, · · · , k + l.

Theorem 1.1. Let M be a C∞ manifold. Then the set Ak(M) of all k-forms on M can be naturally
identified with that of all multilinear and alternating maps, as C∞(M) modules, from k-fold direct
product of X(M) to C∞(M).

1.1 The bracket of vector fields

Definition 1.1. Let M be a C∞ manifold and p a point of M . If a map v : C∞(M) 7→ R satisfies
the conditions

(i) v(f + g) = v(f) + v(g), v(af) = av(f),

(ii) v(fg) = v(g)g(p) + f(p)v(g),

for arbitrary functions f, g ∈ C∞(M) and a ∈ R, then v is said to be a tangent vector to M at p.

Proposition 1.2. Let M and N be C∞ manifolds and f : M → N a C∞ map. Then, for an
arbitrary tangent vector v ∈ TpM at the point p on M and an arbitrary function h ∈ C∞(N) on N ,

v(h ◦ f) = f∗(v)h.
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Proposition 1.3. Let M be a C∞ manifold and X,Y vector field on M . If Xf = Y f for an
arbitrary C∞ function f on M , then X = Y

Proof. see page 38 in the reference book

Let X,Y ∈ X(M) be two vector fields on a C∞ manifold M . Then, both X,Y act on C∞(M)
as derivations. Consider a map

C∞(M) 3 f 7→ X(Y f)− Y (Xf) ∈ C∞(M). (.)

By an easy calculation, we can check that this map also has two properties of the derivation. If we
rewrite it as X(Y f)− Y (Xf) = (XY − Y X)f , it indicates that XY − Y X expresses a vector field
on M . Actually, using the symbol [X,Y ] instead of XY − Y X, we consider the correspondence

C∞(M) 3 f 7→ [X,Y ]pf = Xp(Y f)− Yp(Xf) ∈ R (.)

at each point p ∈M . From the fact that (.) satisfies the properties of a derivation, we immediately
see that the correspondence (.) satisfies the condition (see Definition 1.1) of tangent vectors at the
point p. That is, we can consider [X,Y ]p as a tangent vector to M at p. If it is shown that [X,Y ]p
is of class C∞ with respect to p, we can conclude that [X,Y ] is a vector field on M . In order to
check that [X,Y ] is a vector field on M , we give X,Y the local expressions

X =

n∑
i=1

ai
∂

∂xi
, Y =

n∑
i=1

bi
∂

∂xi
.

By an easy calculation, we have

[X,Y ]pf =

n∑
i,j=1

(ai(p)
∂bi
∂xi

(p)− bi(p)
∂aj
∂xi

(p))
∂f

∂xj
(p).

From this, we see that [X,Y ] is a vector field on M , and simultaneously its local experssion is given
by

[X,Y ] =

n∑
i,j=1

(ai
∂bj
∂xi
− bj

∂aj
∂xi

)
∂

∂xj
(.)

Proposition 1.4. The bracket of vector fields has the following properties.

(i) [aX + bX ′, Y ] = a[X,Y ] + b[X ′, Y ] (a, b ∈ R), and the same for Y .

(ii) [Y,X] = −[X,Y ]

(iii) (Jacobi identity) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

(iv) [fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X (f, g ∈ C∞(M)).

1.2 Transformations of vector fields by diffeomorphism

Let M,N be C∞ manifolds and f : M → N a diffeomorphism from M to N . Then, for an arbitrary
vector field X on M , a vector field f∗X on N is defined by

(f∗X)q = f∗(Xf−1(q))(q ∈ N).

Or equivalently we can write f∗(Xp) = (f∗X)f(p)(p ∈ M). Then, for an arbitrary function h ∈
C∞(N) on N , we have

(f∗X)h = X(h ◦ f) ◦ f−1. (.)
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This holds because, for a point q ∈ N , we have

((f∗X)h)(q) = (f∗X)qh = f∗(Xf−1(q))h,

and on the other hand, by Proposition 1.2, we have

f∗(Xf−1(q))h = Xf−1(q)(h ◦ f) = (X(h ◦ f) ◦ f−1)(q).

2 Exterior product

Definition 2.1. The exterior product ω ∧ η ∈ Ak+l(M) of a k-form ω ∈ Ak(M) and an l-
form η ∈ Al(M) on M is defined as follows. Since at each point p ∈ M we have ωp ∈ ΛkT ∗pM ,

ηp ∈ ΛlT ∗pM , their product ωp ∧ ηp ∈ Λk+lT ∗pM is defined. Then, we put

(ω ∧ η)p = ωp ∧ ηp.

By definition, the exterior product is obviously associative. That is, if τ ∈ Am(M), we have
(ω ∧ η) ∧ τ = ω ∧ (η ∧ τ). Therefore we do not need the parentheses. If they are locally expressed
as ω = fdxi1 ∧ · · · ∧ dxik , η = gdxj1 ∧ · · · ∧ dxjl , we have

ω ∧ η = fgdxi1 ∧ · · · dxik ∧ dxj1 ∧ · · · ∧ dxjl .

Proposition 2.1. The exterior product induces a bilinear map

Ak(M)×Al(M) 3 (ω, η) 7→ ω ∧ η ∈ Ak+l(M)

and it has the following properties.

(i) η ∧ ω = (−1)klωη.

(ii) For arbitrary vector fields X1, · · · , Xk+l ∈ X(M),

ω ∧ η(X1, · · · , Xk+l)

=
1

(k + l)!

∑
σ∈Gk+l

sgnσω(Xσ(1), · · · , Xσ(k))η(Xσ(k+1), · · · , Xσ(k+l))
(.)

Property (i) is obvious from the description above, and (ii) follows from ..

3 Exterior differentiation

Definition 3.1. For a k-form ω ∈ Ak(M) on M , its exterior differentiation dω ∈ Ak+1(M) is
the operation defined by

dω =
∑
j

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik ; (.)

here ω is locally expressed as ω = fdxi1 ∧ · · · ∧ dxik .

In view of the fact that for the isomorphism ϕ∗ : A∗(U ′) → A∗(U) induced by an arbitrary
diffeomorphism ϕ : U → U ′ between two open sets U , U ′ of Rn, the equation d ◦ ϕ∗ = ϕ∗ ◦ d holds
(see the description following (2.4) in the reference book), we see that the above d does not depend
on the local expression. Therefore, the operation of taking the exterior differentiation defines a
degree 1 (that is, increasing the degree by 1) linear map

d : Ak(M)→ Ak+1(M),

andwe can see that it has the following properties.
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Proposition 3.1. (i) d ◦ d = 0.

(ii) For ω ∈ Ak(M), d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

These can be easily proved by previous results.
Next, we shall characterize the exterior differentiation without using the local expression. Namely,

we have the following theorem.

Theorem 3.1. Let M be a C∞ manifold and ω ∈ Ak(M) an arbitrary k-form on M . Then for
arbitrary vector fields X1, · · · , Xk+1 ∈ X(M), we have

dω(X1, · · · , Xk+1)

=
1

k + 1
{
k+1∑
i=1

(−1)i+1Xi(ω(X1, · · · , X̂i, · · · , Xk+1))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, · · · , X̂i, · · · , X̂j , · · · , Xk+1)}.

(.)

Here the symbol X̂i means Xi is omitted. In particular, the often-used case of k = 1 is

dω(X,Y ) =
1

2
{Xω(Y )− Y ω(X)− ω([X,Y ])} (ω ∈ A1(M)).

Proof. If we consider the right-hand side of the formula to be proved, as a map from the (k + 1)-
fold direct product of X(M) to C∞(M), we see that it satisfies the conditions of degree k + 1
alternating from as a map between modules over C∞(M). Since it is easy to verify this fact by using
Proposition 1.4 (iv), we leave it to reader. Therefore, by Theorem 1.1, we see that the right-hand
side is a (k + 1)-form on M .

If two differential forms coincide in some neighborhood of an arbitrary point, they coincide on
the whole. Then, consider a local coordinate system (U ;x1, · · · , xn) around an arbitrary point
p ∈ M . Let the local expression of ω with respect to this local coordinate system be ω =∑
i1<···<ik fi1···ikdxi1 ∧ · · · ∧ dxik . Then we have

dω =
∑

i1<···<ik

dfi1···ikdxi1 ∧ · · · ∧ dxik (.)

From the linearity of differential forms with respect to the functions on M , it is enough to consider
only vector fields Xi such that Xi = ∂

∂xji
(i = 1, · · · , k+1) in a neighborhood of p. Then [Xi, Xj ] = 0

near p. Moreover, by the alternating property of differential forms, we may assume that j1 < · · · <
jk+1. Then, if we apply (.) to (X1, · · · , Xk+1), we have

dω(X1, · · · , Xk+1) =
1

(k + 1)!
{
k+1∑
s=1

(−1)s−1
∂

∂xjs
fj1···ĵs···jk+1

}.

On the other hand, when we calculate the right hand side of the formula using [Xi, Xj ] = 0, we
obtain the same value. This finishes the proof.

We consider Theorem . as a definition of the exterior differentiation that is independent of the
local coordinates.
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4 Pullback by a map

We shall study the relationship between differential forms and C∞ maps. Let

f : M → N

be a C∞ map from a C∞ manifold M to N . Consider the differential f∗ : TpM → Tf(p)N of f
at each point p ∈ M . f∗ induces its dual map f∗ : T ∗f(p)N → T ∗pM , that is, the map defined

by f∗(α)(X) = α(f∗(X)) for α ∈ T ∗f(p)N , X ∈ TpM . Furthermore, f∗ defines a linear map f∗ :

ΛkT ∗f(p)N → ΛkT ∗pM for an arbitrary k, and they induce an algebra homomorphism

f∗ : A∗(N)→ A∗(M).

For a differential form ω ∈ Ak(N) on N , f∗ω ∈ Ak(M) is called the pullback by f . Explicitly, for
X1, · · · , Xk ∈ TpM ,

f∗ω(X1, · · · , Xk) = ω(f∗X1, · · · , f∗Xk).

Proposition 4.1. Let M , N , be C∞ manifolds. Let f : M → N be a C∞ map and f∗ : A∗(N)→
A∗(M) the map induced by f . Then f∗ is linear and has the following properties.

(i) f∗(ω ∧ η) = f∗ω ∧ f∗η (ω ∈ Ak(N), η ∈ Al(N)).

(ii) d(f∗ω) = f∗(dω)

The proof can be given easily by using the previous results.

5 Interior product and Lie derivative

Definition 5.1. Let M be a C∞ manifold and X ∈ X(M) a vector field on M . Then a linear map

i(X) : Ak(M)→ Ak−1(M)

is defined by
(i(X)ω)(X1, · · · , Xk−1) = kω(X,X1, · · · , Xk−1)

for ω ∈ Ak(M), X1, · · · , Xk−1 ∈ X(M). Note that if k = 0, we define i(X) = 0. We call i(X)ω the
interior product of ω by X.

By definition, i(X) is obviously linear with respect to functions. That is, i(X)(fω) = fi(X)ω.
Using Proposition 1.1, we see that i(X) is an anti-derivation of degree -1, that is,

i(X)(ω ∧ η)

= i(X)ω ∧ η + (−1)kω ∧ i(X)η (ω ∈ Ak(M), η ∈ Al(M)).
(.)

Definition 5.2. Define a linear operator

LX : Ak(M)→ Ak(M),

called Lie derivative, also concerning the vector field X ∈ X(M). This is defined by

(LXω)(X1, · · · , Xk)

= Xω(X1, · · · , Xk)−
k∑
i=1

ω(X1, · · · , [X,Xi], · · · , Xk).
(.)
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It is easy to see that the right-hand side of this formula . satisfies the condition of Theorem 1.1,
so that LXω is definitely a differential form. Obviously LX is linear. This definition . is extremely
algebraic. Although we may say that the formula is neat and beautiful, it is not clear what it means
geometrically. We shall give a definition that makes the meaning clearer in the next section.

Similar things can be said also for the exterior product and the exterior differentiation. We first
introduced both exterior product and the exterior differentiation with geometric definitions int terms
of local expressions. However, leaving them aside, we can use formula (.) for exterior product and
Theorem . for exterior differentiation as algebraic definitions.

As for the Lie derivative, we use (.) as its definition for the moment, and proceed.

6 The Cartan formula and properties of Lie derivatives

The following theorem represents the relationship between two operators concerning a vector field
X, namely, the interior product i(X) and the Lie derivative LX , and is sometimes called the Cartan
formula.

Theorem 6.1. (Cartan formula)

(i) LX i(Y )− i(Y )LX = i([X,Y ]).

(ii) LX = i(X)d+ di(X).

Proof. First, we prove (i). It is obvious for k = 0, so let ω be an arbitrary k-form with k > 0. Then,
for any X1, · · · , Xk−1 ∈ X(M),

(LX i(Y )ω)(X1, · · · , Xk−1)

= X((i(Y )ω)(X1, · · · , Xk−1))−
k−1∑
i=1

(i(Y )ω)(X1, · · · , [X,Xi], · · · , Xk−1)

= k{X(ω(Y,X1, · · · , Xk−1))−
k−1∑
i=1

ω(Y,X1, · · · , [X,Xi], · · · , Xk−1)}.

(.)

On the other hand,

(i(Y )LXω)(X1, · · · , Xk−1)

= kLXω(Y,X1, · · · , Xk−1)

= k{X(ω(Y,X1, · · · , Xk−1))− ω([X,Y ], X1, · · · , Xk−1)

−
k−1∑
i=1

ω(Y,X1, · · · , [X,Xi], · · · , Xk−1)}.

(.)

Subtracting (.) from (.), we have

LX i(Y )ω − i(Y )LXω = i([X,Y ])ω,

and (i) is proved.
Next we shall prove (ii). When k = 0, since LXf = Xf for a function f and on the other hand

i(X)f = 0 and i(X)df = df(X) = Xf , (ii) holds. Thus, let k > 0, and let ω be a k-form and
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X1, · · · , Xk vector fields. Then, we have

(i(X)dω)(X1, · · · , Xk)

= (k + 1)dω(X,X1, · · · , Xk)

= X(ω(X1, · · · , Xk)) +

k∑
i=1

(−1)iXi(ω(X,X1, · · · , X̂i, · · · , Xk))

+

k∑
j=1

(−1)jω([X,Xj ], X1, · · · , X̂j , · · · , Xk)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X, · · · , X̂i, · · · , X̂j · · · , Xk),

(.)

and on the other hand we have

(di(X)ω)(X1, · · · , Xk)

=

k∑
i=1

(−1)i+1Xi(ω(X,X1, · · · , X̂i, · · · , Xk))

+
∑
i<j

(−1)i+jω(X, [X,Xj ], X1, · · · , X̂i, · · · , X̂j , · · · , Xk).

(.)

Summing up (.) and (.), we have

(i(X)d+ di(X))ω(X1, · · · , Xk)

= X(ω(X1, · · · , Xk)) +

k∑
i=1

(−1)jω([X,Xj ], X1, · · · , X̂j , Xk)

= (LXω)(X1, · · · , Xk),

(.)

and (ii) is proved.

Using the Cartan formula (Theorem 6.1), we can prove some properties of the Lie derivative LX .

Proposition 6.1. (i) LX(ω ∧ η) = LXω ∧ η + ω ∧ LXη (ω ∈ Ak(M), η ∈ Al(M)).

(ii) LXdω = dLXω (ω ∈ Ak(M)).

(iii) LXLY − LY LX = L[X,Y ] (X,Y ∈ X(M)).

Proof. According to Cartan formula (ii) and

i(X)(ω ∧ η) = i(X)ω ∧ η + (−1)kω ∧ i(X)η,

we can get

LX(ω ∧ η)

= i(X)d(ω ∧ η) + di(X)(ω ∧ η)

= i(X)(dω ∧ η + (−1)kω ∧ dη) + d(i(X)ω ∧ η + (−1)kω ∧ i(X)η)

= {[i(X)dω ∧ η + (−1)k+1dω ∧ i(X)η] + (−1)k[i(X)ω ∧ dη + (−1)kω ∧ di(X)η]}
+ {[di(X)ω ∧ η + (−1)k−1i(X)ω ∧ dη] + (−1)k[dω ∧ i(X)η + (−1)kω ∧ di(X)η]}

= i(X)dω ∧ η + ω ∧ di(X)η + di(X)ω ∧ η + ω ∧ di(X)η

= LXω ∧ η + ω ∧ LXη.
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For the property (ii),
LXdω = i(X)ddω + di(X)dω = di(X)dω,

and right side is
dLXω = di(X)dω + ddi(X)ω = di(X)dω.

Property (i) and (ii) are proved.
Now we prove (iii), we use induction on k. First, if k = 0, since L[X,Y ]f = [X,Y ]f = (LXLY −

LY LX)f for a function f , it certainly hold. Next assume that it is true up to k(≥ 0), and we shall
prove the case of k+ 1. Let ω be an arbitrary (k+ 1)-form. Then since, for an arbitrary vector field
Z, i(Z)ω is k-form, by the assumption of induction we have

L[X,Y ]i(Z)ω = (LXLY − LY LX)i(Z)ω. (.)

On the other hand, by Cartan formula (i), we have

L[X,Y ]i(Z)ω = i(Z)L[X,Y ] + i([[X,Y ], Z]), (.)

and, again using (i),

LXLY i(Z)

= LX(i(Z)LY + i([Y, Z]))

= i(Z)LXLY + i([X,Z])LY + i([Y,Z])LX + i([X, [Y,Z]]),

(.)

and similarly,

LY LX i(Z)

= i(Z)LY LX + i([Y,Z])LX + i([X,Z])LY + i([Y, [X,Z]]).
(.)

Subtracting (.) from (.), we have

LXLY i(Z)− LY LX i(Z)

= i(Z)(LXLY − LY LX) + i([X, [Y, Z]])− i([Y, [X,Z]]).
(.)

Also subtracting (.) from (.), we have

(L[X,Y ] − LXLY + LY LX)i(Z) = i(Z)(L[X,Y ] − LXLY + LY LX). (.)

Here we used the Jacobi identity [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0. If we substitute (.) in
(.), we have

i(Z)(L[X,Y ] − LXLY + LY LX)ω = 0.

Here, since Z was an arbitrary vector field, we obtain

(L[X,Y ] − LXLY + LY LX)ω = 0,

and the proof is finished.

7 Lie derivative and one-parameter group of local transfor-
mations

Here, as we promised in previous section, we shall give a more geometric definition of the Lie
derivative.
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Suppose a vector field X is given on a C∞ manifold M . We can consider X as an assignment of
a direction Xp ∈ TpM at each point p on M . Therefore, for instance, if a C∞ function f ∈ C∞(M)
on M is given, we can ”differentiate f in the direction of X”. This is nothing but Xf . Now what
would happen if a differential form is given on M instead of a function? Since a function is a special
case (the case of degree 0) of differential forms, it will be natural to try to ”differentiate” also a
general differential form ω in the direction of X. Actually, such a natural operation is defined,
and furthermore it operates not only on differential forms but also on so-called tensors, which is a
notion including vector fields on a manifold. We call this a (general) Lie derivative. The geometric
definition of a Lie derivative is given using the one-parameter group ϕt of local transformations on
M generated by X (see §1.4(c) in reference book) rather than the vector field X itself.

At first, we shall study the relationship between the differential Xf of a function f ∈ C∞(M)
by X and the one-parameter group of local transformations. The result is

(Xf)(p) = lim
t→0

(ϕ∗t f)(p)− f(p)

t
(p ∈M) (.)

(here ϕ∗t f stands for f ◦ ϕt). This follows because, by the notation of §1.4(c) in the reference book,
ϕt(p) = c(p)(t) and ċ(p)(0) = Xp, we have

lim
t→0

(ϕ∗t f)(p)− f(p)

t
= lim
t→0

f(ϕt(p))− f(p)

t
= Xpf.

Though ϕt is not always defined on the whole of M , for each point p ∈ M , ϕt is defined in a
neighborhood of p for sufficiently small t, and there is no problem in the above calculation.

Next we shall see that the bracket [X,Y ] of vector fields can be considered as the Lie derivative
of Y by X (the symbol LXY is used). That is,

[X,Y ] = lim
t→0

(ϕ−t)∗Y − Y
t

. (.)

Here, the equation (.) means that the values of both sides are equal at each point p on M , and
then the limit of the right-hand side is taken with respect to the usual topology of TpM as a vector
space. We shall prove (.). By Proposition (1.3), it is enough to show that the operations of both
sides on an arbitrary C∞ function f ∈ C∞(M) on M are equal. We shall calculate the operation of
the right-hand side of f . Since by (.),

((ϕ−t)∗Y )f = Y (f ◦ ϕ−t) ◦ ϕt = ϕ∗t (Y (f ◦ ϕ−t)),

we have

lim
t→0

(ϕ−t)∗Y − Y
t

f

= lim
t→0

ϕ∗t (Y (f ◦ ϕ−t))− ϕ∗t (Y f) + ϕ∗t (Y f)− Y f
t

= lim
t→0

ϕ∗t {Y (
f ◦ ϕ−t − f

t
)}+ lim

t→0

ϕ∗t (Y f)− Y f
t

= lim
t→0

ϕ∗tY {(
ϕ∗−tf − f

t
)}+ lim

t→0

ϕ∗t (Y f)− Y f
t

= Y (−Xf) +X(Y f) = [X,Y ]f.

Here we have used (.), the fact that the functions which appear in the calculation are all of
class C∞ so that we can change the order of differentiation, and also the fact that {ϕ−t} is the
one-parameter group of local transformations generated by −X. Thus (.) is proved.

As for the Lie derivative of differential forms, the following proposition holds.
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Proposition 7.1. Let X be a vector field on C∞ manifold M , and {ϕt} the one-parameter group
of local transformations generated by X. Then for an arbitrary k-form ω ∈ Ak(M), we have

LXω = lim
t→0

ϕ∗tω − ω
t

.

Proof. First, we shall show that if ϕ : M →M is an arbitrary diffeomorphism, we have

(ϕ∗ω)p(X1, · · · , Xk) = ϕ∗(ω(ϕ∗X1, · · · , ϕ∗Xk)) (.)

for vector fields X1, · · · , Xk on M . By the definition of pullback of differential forms, we have

(ϕ∗ω)p(X1, · · · , Xk) = ωϕ(p)(ϕ∗X1, · · · , ϕ∗Xk)

for an arbitrary point p ∈ M . (.) immediately follows from this. If we calculate the right-hand
side on X1, · · · , Xk using (.), we obtain

lim
t→0

(ϕ∗tω)(X1, · · · , Xk)− ω(X1, · · · , Xk)

t

= lim
t→0

ϕ∗t (ω((ϕt)∗X1, · · · , (ϕt)∗Xk))− ω(X1, · · · , Xk)

t

= lim
t→0

ϕ∗t (ω((ϕt)∗X1, · · · , (ϕt)∗Xk))− ϕ∗t (ω(X1, · · · , Xk))

t

+ lim
t→0

ϕ∗t (ω(X1, · · · , Xk))− ω(X1, · · · , Xk)

t
.

Let A be the first term and B the second term in this last formula. Then by (.) we have

B = Xω(X1, · · · , Xk). (.)

On the other hand, we have

A = lim
t→0

ϕ∗t (
ω((ϕt)∗X1, · · · , (ϕt)∗Xk)− ω(X1, · · · , Xk)

t
)

= lim
t→0

ϕ∗t (
ω((ϕt)∗X1, · · · , (ϕt)∗Xk)

t
− ω(X1, (ϕt)∗X2, · · · , (ϕt)∗Xk)

t
)

+ lim
t→0

ϕ∗t (
ω(X1, (ϕt)∗X2, · · · , (ϕt)∗Xk)

t
− ω(X1, X2, (ϕt)∗X3, · · · , (ϕt)∗Xk)

t
)

+ · · ·+ lim
t→0

ϕ∗t (
ω(X1, X2, · · · , Xk−1, (ϕt)∗Xk)− ω(X1, · · · , Xk)

t
)

=

k∑
i=1

ω(X1, · · · , [−X,Xi], · · · , Xk).

Therefore we have

A+B = Xω(X1, · · · , Xk)−
k∑
i=1

ω(X1, · · · , [X,Xi], · · · , Xk)

= (LXω)(X1, · · · , Xk)

and the proof is completed.

Reference
Shigeyuki Morita. Geometry of differential forms, American Mathematical Society, volume 201,
2001

10


	Preparation
	The bracket of vector fields
	Transformations of vector fields by diffeomorphism

	Exterior product
	Exterior differentiation
	Pullback by a map
	Interior product and Lie derivative
	The Cartan formula and properties of Lie derivatives
	Lie derivative and one-parameter group of local transformations

