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1 Introduction

Reflections groups are those generated by reflections on the sides of polyhedra. To study these
you can not only use pure mathematical equations but also your geometric understanding.

Given "nice" enough polyhedra we get discrete groups which we can characterize by certain
graphs called coxeter graphs.
For those who like to get a nice way to visualize the results we can show that for a nice poly-
hedron P the set {giP}; gi ∈ Γ is a tesselation of e.g the Rn.

is talk will give an introduction to reflection groups and coxeter graphs. Our main goal is
to classify the simplex reflection groups and to compute some tesselations in 2 dimensions.

Enjoy!

2 Reflection groups

eorem 2.1. Let G be the group generated by the reflections of X in the sides of a finite-sided,
n-dimensional, convex polyhedron P in X of finite volume. en

X =
∪

{gP | g ∈ G}

Proof. Induction over n. Le for the reader as an exercise. Or see Ratcliff, m 7.1.1

One of our most important properties regarding the angles of the simplex will be the follow-
ing:

Definition 2.2. An angle α is a submultiple of π if and only if ∃k ∈ N : α = π/k

With this we can conclude:

eorem 2.3. Let Γ be a discrete reflection group with respect to the polyhedron P. en all
dihedral angles of P are submultiples of π and if gS and gT are reflections in adjacent sides S
and T of P with θ(S, T ) = π/k, then gSgT has order k in Γ.

Proof. We consider two cases:

θ = 0 : then gSgT is a translation.

θ > 0 : we will sketch this proof . Considering words gi = gS1 · · · · · gSi one can show
that {giP}i∈N defines a cycle of Polyhedra (see Ratcliff, Page 256). is tells us that
there are only finitely many distinct Polyhedra and thus there exsists k ∈ N such that
2θ(S, T ) = 2π

k and gSgT has order k.
For a more detailed proof consider the literatur.

2



e following theorem ensures that under the right prerequisites the group Γ which is gen-
erated by the reflection of X in the sides of P is indeed a discrete reflection group.

eorem 2.4. Let P be as in theorem 1 such that all dihedral angles are submultiples of π. em
Γ is a discrete reflection group with respect to P.

Proof. We will just give the idea:
for n = 1 the theorem is obviously true. e rest will be shown by induction on n. erefore
you can construct a topological space X̃ for which the theorem holds by construction. en
using a covering space argument you can show that X̃ is homeomoprhic to X.
See Ratcliff, m 7.1.3

To see this we can take a look at some examples:

Example 2.5. Consider the sphere Sn and

P = {x ∈ Sn | xi ≥ 0; i = 1, . . . , n+ 1}

P is a n-simplex in Sn with dihedral angles π/2. us Γ is a discrete reflection group.

Example 2.6. If we consider an n-cube in En then the dihedral angles are again π/2. us Γ
is a discrete reflection group.

Example 2.7. To get an hyperbolic example we can take a look at the 2-simplex inH2 whose di-
hedral angles are 30◦, 45◦, 90◦. If we keep the vertex at the 30◦ angle fixed we get the following
picture:

3 Coxeter groups and graphs

As we will see Later we can classify our reflection groups through certain graphs. us we first
need to take a look on special groups:

Definition 3.1 (Coxeter groups). A Coxeter group is a group G presented by (Si | (SiSj)
kij )

such that:

1. i, j ∈ I for some countable set I

2. kij ∈ N ∪ {∞} for all i, j

3. kij = kji for each pair i, j

4. kii = 1 ∀i

5. kij > 1 if i ̸= j

6. if kij = ∞ then (SiSj)
kij is deleted

Note: Since S2
i = S2

j we can derive (SjSi)
kji from (SiSj)

kij . us only one of the laer is
required.

Definition 3.2 (Coxeter graphs). Let G = (Si | (SiSj)
kij ) be a coxeter group. e coxeter

graph is a labeled graph with vertices I an edges

{(i, j) | kij > 2}

where each edge is labeled kij .
Note: for simplicity those edges with kij = 3 are not labeled.
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eorem 3.3. Let Γ be a discrete reflection group with respect to P. Let {Si} be the sides of P.
If Si and Sj are adjacent sides we set kij = π/θ(Si, Sj). en(

Si | (Si, Sj)
kij
)

is a group representation for Γ under the mapping Si 7→ gSi

Proof. See Ratcliff 7.1.4.
Using the proof of eorem 3 you can compute these representations.

With this every discrete reflection group is a coxeter group. Just set kij = ∞ if Si, Sj are
not adjacent.

To understand these graphs we will take a look at some examples

Example 3.4. Let G = (S1 | S2
1). en the graph looks like this:

Example 3.5. Let G be the group generated by the reflections in the sides of a rectangle P in
E2. G has the following representation:(

S1, S2, S3, S4 | S2
i , (SiSi+1)

2 i mod 4
)

us the graph looks like this:

4 Gram matrices

Definition 4.1 (Gram matrix). Let ∆ be a n-simplex in Sn, En or a generalized n-simplex in
Hn with sides S1, . . . , Sn+1. Let vi be a (nonzero) normal vector to Si directed inwards. en
the Gram matrix w.r.t. v1, . . . , vn+1 is

A =

{
(vi · vj) X = Sn, En

(vi ◦ vj) X = Hn
,

where "·" is the Euclidean inner product and "◦" is the Lorentzian inner product. If the vi are
unit vectors and it is n > 1, then A = (− cos(Θ(Si, Sj))) holds.
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Our goal is to prove the following theorem:

eorem 4.2. Let A = (− cos(Θij)) ∈ M(n+1)×(n+1)(R) be symmetric, s.t. 0 < Θij ≤ π
2

for all i ̸= j and Θii = π for all i holds. en A is a Gram matrix of an n-simplex X ∈
{Sn, En,Hn} if and only if Aii is positive definite for all i.
Furthermore there holds:

• X = Sn ⇔ detA > 0

• X = En ⇔ detA = 0

• X = Hn ⇔ detA < 0

Wewill prove this theorem for each case seperatly and start with the following lemma, which
should be known from linear algebra classes.

Lemma 4.3. Let A ∈ Mn×n(R) be symmetric, s.t. Ann is positive definite. en A is

1. positive definite, if and only if detA > 0,

2. of type (n− 1, 0), if and only if detA = 0 or

3. of type (n− 1, 1), if and only if detA < 0.

eorem 4.4. Let A be a symmetric matrix. en A is a Gram matrix of a simplex ∆ in Sn if
and only if A is positive definite.

Proof. "⇒" Let v1, . . . , vn+1 be the normalvectors ofS1, . . . , Sn+1 the sides of∆. Furthermore
let Vi ⊆ Rn+1 be linear subspaces, s.t.

⟨Si⟩ = Vi ∩ Sn

holds. Define Hi to be the halfspace bounded by Vi containing∆, i.e.

Hi = {x ∈ Rn+1 | x · vi ≥ 0}.

So we can compute ∆ = (∩n+1
i=1 Hi) ∩ Sn. Define B = (v1, . . . , vn+1). en we have

B⊥ = ∩n+1
i=1 = {0}.

us B is nondegenerate and v1, . . . , vn+1 is a basis of Rn+1. Define an inner product
by

⟨x, y⟩ := Bx ·By ∀x, y ∈ Rn+1.

en we can compute
⟨ei, ej⟩ = Bei ·Bej = vi · vj ,

yielding that A is the matrix of this inner product, so A is positive definite.
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"⇐" Conversly supposeA is positive definite. en there exists an orthonormal Basis (u1, . . . , un+1)
with regard to the inner product defined by A. Let C = (u1, . . . , un+1) and we get
CtAC = id. Seing B := C−1 we see A = BtB. We define vj to be the jth colum-
nvector of B. en (v1, . . . , vn+1) forms a basis of Rn+1 and A = (vi · vj). Next we
define

Q := {y ∈ Rn+1 | yi ≥ 0∀i = 1, . . . , n+ 1}.
usQ is a n+1-dimensional convex polyhedron in En+1 with n+1 sides and exactly
one vertex at the origin. We set

Hi := {x ∈ Rn+1 | vi · x ≥ 0}
Vi := {x ∈ Rn+1 | vi · x = 0}

K =

n+1∩
i=1

Hi

Take a x ∈ K and we see (Btx)i = vi · x ≥ 0. us we get BtK ⊂ Q. On the other
hand let y be arbitrary in Q. We set x = Cty and get Btx = y" ≥ 0". So vi · x ≥ 0 and
we see that x lies in K . us

BtK = Q.

We see thatK is a (n+1)-dimensional convex polyhedron inEn+1 withn+1 sidesVi∩K
and exactly one vertex at 0. us ∆ = K ∩ Sn is a n-dimensional convex polyhedron
in Sn with sides Si = Vi ∩∆. Now∆ lies in a open hemisphere because of [Rat05, m
6.3.16]. us ∆ is a polytope because of [Rat05, m 6.5.1]. Now ∆ has exactly n + 1
sides thus we see that ∆ is a n-simplex [Rat05, m 6.5.4] an its Gram matrix isA.

Lemma 4.5. Let∆ be an n-simplex inEn. Let v be a vertex of∆, let S be the side of∆ opposite
v and let h be the distance from v to ⟨S⟩. en there holds

Voln(∆) =
1

n
hVoln−1(S).

Proof. is is a consequence of the theroem of Cavalieri.

eorem 4.6. Let A ∈ M(n+1)×(n+1)(R) be symmetric and n > 0. A is a Gram matrix of ∆
in En if and only if

1. Aii is positive definite for all i,

2. detA = 0 and

3. all entries of adjA are positive.

Proof. "⇒" LetA be aGrammatrix of ann-simplex inEnw.r.t. the normalvectors v1, . . . , vn+1

of the sides S1, . . . , Sn+1. LetHi be the halfspace of En bounded by ⟨Si⟩ containing∆.
en we get

∆ =
n+1∩
i=1

Hi.
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By translation we can assume that the vertex opposite Sj is the origin. enn+1∩
i=1
i̸=j

Hi

 ∩ Sn−1 =: ∆j

is a (n− 1)-dimensional simplex in Sn−1. us v1, . . . , v̂j , . . . , vn+1 form a basis of Rn

and Ajj is a Gram matrix of ∆j . erfore Ajj is positive definite.
We defineB := (v1, . . . , vn+1) ∈ Mn×(n+1)(R). If we set ⟨x, y⟩ = Bx ·By, we seet that
A is the matrix of this inner product. Now there holds rankB = n and thus rankA = n.
erfore we yield detA = 0.
Now let ui be the vertex opposite of Si and let hi := dist(ui, ⟨Si⟩), si = h−1

i and Fi =
Voln−1(Si). We see

Fi

si
= nVoln(∆)

Let x be in ∆̊. en ∆ ist subdivided in n + 1 simplices. We set x̄i := dist(x, ⟨Si⟩). By
the above lemma we see

n+1∑
i=1

Fix̄i = nVoln(∆)

Using Fi = nsi Voln(∆) we yield

n+1∑
i=1

six̄i = 1. (1)

Now we translate ∆ such that un+1 = 0 holds and we define

v̂i =
vi
|vi|

.

us we see

v̂i · x = x̄i i ≤ n

v̂n+1 · x = x̄n+1 − hn+1

Plugging these equations into (1) we get(
n+1∑
i=1

siv̂i

)
· x =

n+1∑
i=1

six̄i − sn+1hn+1︸ ︷︷ ︸
=1

= 0

Now x ∈ ∆̊ is arbitrary and ∆̊ contains a basis of Rn+1. Hence we yield

n+1∑
i=1

siv̂i = 0
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and

vi

n+1∑
j=1

sj v̂j =

n+1∑
j=1

sjaij |vj |−1 = 0.

So w := (s1|v1|−1, . . . , sn+1|vn+1|−1) is a eigenvector of A ot the eigenvalue 0. We see
that all the components of w are positive and since rankA = n the eigenspace of 0 is
onedimensional. So we see that all components of all the elements of ker(A) have the
same sign. From the equation

A adjA = detA id = 0

we get that all the column vectors fo adjA lie in kerA and since (adjA)ii = detAii > 0
we have that all entries of adjA are positive.

"⇐" We see that A is of type (n, 0) by our first Lemma. us we have dim ker(A) = 1 and
again we see by

A adjA = detA id = 0

that all the columnvectors of adjA lie in kerA. us all the components of elements in
kerA have the same sign. Since A ist of type (n, 0) we find a matrix B ∈ GLn+1(R)
with

A = Bt diag(1, . . . , 1, 0)B

Let vj be the jth columnvector of B and we define v̄j ∈ Rn by dropping the last co-
ordinate of vj . en we see A = (v̄i · v̄j). We set B̄ = (v̄1 . . . v̄n). en we have
B̄ei · B̄ej = v̄i · v̄j and so the restriction of the bilinear form A to Rn ist given by

⟨x, y⟩ = B̄x · B̄y.

Now An+1,n+1 is positive definite, therefore B̄ is nonsingular. Tus v̄1, . . . , v̄n is a basis
vo Rn. We define

Hi = {x ∈ Rn | v̄i · x ≥ 0},
Vi = {x ∈ Rn | v̄i · x = 0}

and

C =

 v̄t1
...

v̄tn+1


en CCt = A. us the columnspace of C is the same as the columnspace of A. Sup-
pose x ∈

∩n+1
i=1 Hi. en v̄ix ≥ 0 for all i = 1, . . . , n + 1. So each component vo Cx

is nonnegative. We take a 0 ̸= y ∈ kerA. Since A is symmetric y is orthogonal to the
columnspace. us

(Cx) · y = 0
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holds. Now all components of y have the same sign and we get Cx = 0. us x ∈∩n
i=1 Vi = {0}. So we see

∩n+1
i=1 Hi = {0}. So we see thath

∩n
i=1Hi is a n-dimensional

convex polyhedron inEnwith sidesVi∩
(∩n

j=1Hj

)
and exactly one vertax at 0.

∩n+1
i=1 Hi =

{0} implies
n∩

i=1

Hi ⊂ −H̊n+1 = {x ∈ Rn | v̄n+1 · x < 0}.

Let
H0 := {x ∈ Rn | v̄n+1 · x ≥ −1}

and V0 its bounding hyperplane. en

∆ =

n∩
i=0

Hi

is a convex n-simplex in En with the normalvectors v̄1, . . . , v̄n+1 and thus with Gram
matrix A.

e next step is to consider the hyperbolic case.

eorem 4.7. Let A ∈ M(n+1)×(n+1)(R), n > 0. A is the Gram matrix of a n-simplex ∆ in n
if and only if

1. Aii is positive definite for all i,

2. detA < 0 and

3. all entries of adjA are positive

Proof. "⇒" SupposeA is a Grammatrix with regard to the (Lorentz orthogonal) normalvectors
v1, . . . , vn+1 of the sides S1, . . . , Sn+1. Let Vi be the n-dimensional subspace of Rn+1

with ⟨Si⟩ = Vi ∩Hn. Furthermore we define, as above, Hn to be the halfspace of Rn+1

bounded by Vi containing∆. us we yield

Hi = {x ∈ Rn,1 | x ◦ vi ≥ 0}

and

∆ =

(
n+1∩
i=1

HI

)
∩Hn

We define B := (v1 . . . vn+1). en we see

B⊥ = {x ∈ Rn+1 | x ◦ vi = 0∀i} =
n+1∩
i=1

Vi = {0}.
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us B is nonsingular and we can define a bilinear form of type (n, 1) by seing

⟨x, y⟩ := Bx ◦By.

We can compute ⟨ei, ej⟩ = Bei ◦ Bej = vi ◦ vj . us A is the matrix of the form ⟨·, ·⟩.
us A is of typ (n, 1), which leads to detA < 0.
Next, by a translation we assume that the vertex opposite Sj is en+1 and we set rj :=
1
2 dist(en+1, Sj). Now we can define

∆′ := S(en+1, rj) ∩∆.

So ∆′ is a (n − 1)-dimensional spherical simplex with sides S′
i = Si ∩ S(en+1, rj) and

vi is normal to the side S′
i for all i ̸= j in th horizontal hyperplane P (en+1, cosh rj) of

En+1 containing S′
i, since the laste coordinate of vi is zero foreach i ̸= j. us we get

Ajj is positive definite.
We define v∗j to be the jth rowvector of B−1 and set wj = Jv∗i , where we have J =
diag(−1, 1, . . . , 1). us we get

wi ◦ v∗j = Jv∗i ◦ vj
= v∗i · vj
= (B−1)tei · vj
= ei ·B−1vj

= ei · ej
= δij

Since A = BtJB hold we get

A−1 = B−1J(B−1)t = (v∗i ◦ v∗j ) = (wi ◦ wj).

e iith entry of A−1 is detAii︸ ︷︷ ︸
>0

(detA)−1︸ ︷︷ ︸
<0

. us ∥wi∥ is imaginary, i.e. wi is time-like.

Now wi ◦ vj = 0 for all i ̸= j, so wi lies in a onedimensional time-like subspace spanned
by the vertex of ∆ opposite Si. Furthermore, since wi ◦ vi = 1 > 0, wi is positive time-
like. [Rat05, m 3.1.1] yieldswi◦wj < 0 for all i, j. us all entries ofA−1 are negative
and since detA < 0 holds, we get that alle entries of adjA are positive.

"⇐" We know by our first lemma that A is of type (n, 1). So we find a B ∈ GLn+1(R), s.t.
A = BtJB. Let vj be the jth columnvector of B. en V1, . . . , vn+1 is a basis of Rn+1

and A = (vi ◦ vj). We set

Q := {y ∈ Rn+1 | yi ≥ 0∀i}
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and see that Q is a (n + 1)-dimensional convex polyhedron in En+1 with n + 1 sides,
n+ 1 edges and exactly one vertex at 0. We define

Hi := {x ∈ Rn,1 | vi ◦ x ≥ 0}
Vi := {x ∈ Rn,1 | vi ◦ x = 0}

K :=

n+1∩
i=1

Hi

As in the proof of the euclidean case we haveBtJK = Q. usK is a n+1-dimensional
convex polyhedron in En+1 with n+1 sides Vi ∩K , n+1 edges and exactly one vertex
at 0. Let v∗j be the jth rowvector fo B−1 and wi = Jv∗i . en we have, as before,
wi ◦ vJ = δij and thus wi ∈ K for all i. As wi ◦ vj = 0 for all i ̸= j, we have that wi is
on the edge of K opposite the side Vi ∩K for all i. It is

A−1 = B−1J(B−1)t = (v∗i ◦ v∗j ) = (wi ◦ wj).

On the other hand we have

A−1 = (detA)−1 adjA

So all entries of A−1 are negative and we get wi ◦ wjj < 0 for all i, j. So w1, . . . , wn+1

are time-like with some parity by [Rat05, m 3.1.1]. Without loss of generality we
may assume that all wi are positive time-like or we replace B by −B. Let 0 ̸= x ∈ K
and y = BtJx. en y is in Q an so yi ≥ 0 holds fo rall i. A short computation
shows X =

∑n+1
i=1 yiwi and so x is positive time-like by [Rat05, m 3.1.2]. erefore

∆ = K ∩Hn is a n-dimensional convex polyhedron with sides Si = Vi∩∆. Now radial
projection from the origion maps a link of the origion onto ∆. So ∆ is compact and
therefore a polyhedron. Since it has exactly n + 1 sides it is an n-simplex by theorems
[Rat05, ms 6.5.1, 6.5.4] and A is its Gram matrix with regard to v1, . . . vn+1.

Now the only thing le is to get rid of adjA. e first step is the following lemma.

Lemma 4.8. Let A = (aij) ∈ Mn×n(R) be symmetric with aij ≤ 0 for all i ̸= j. Suppose Aii

is positve definite for all i. en adjA is nonnegative.

Proof. Let x ∈ Rn with Ax ≥ 0. We claim that x ≥ 0 or x ≤ 0 holds, where we compare
componentwise. On the contrary assume we find xi < 0 and xj > 0 for some i ̸= j. Let x′ be
the vector obtained by x by deleting the nonnegative components. Furthermore, let A′ be the
diagonalminor of A obtained by deleting rows and columns assosciated to x′. en we have
A′x′ ≥ 0 since the terms omied are of the form aijxj where xi < 0 and xj ≥ 0. us i ̸= j
and by assumption we have aij ≤ 0 and aijxJ ≤ 0. So we see x′ ·A′x′ ≤ 0, since x′ < 0 holds.
However A′ is positive definite, which is a contradiction. Hence we have x ≥ 0 or x ≤ 0.
Now suppose A ∈ GLn(R). en A · A−1ei ≥ 0 and by the previous argument we see

A−1ei ≥ 0 or A−1ei ≤ 0. ere holds adjA = detAA−1, so again we have adjAei ≥ 0 or
adjAej ≤ 0.
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Suppose A is singular. en we get A adjAei = detAei = 0 ≥ 0. So adjAei ≥ 0 or
adjAei ≤ 0.
So in general we have adjAei ≤ 0 or adjAei ≥ 0 and since (adjA)ii = detAii > 0 we have

adjA ≥ 0.

proof of 4.2. 1. Let X = Sn. is case follows directly form 4.4.

2. Let X = En. If A is a Gram matrix, then Aii is positive definite for all i and detA = 0
by 4.6. Conversly we know thatA is of type (n, 0) and so ker(A) is onedimensional. Let
0 ̸= x ∈ kerA. en xi ̸= 0, since Aii is positive definite. We have the equation

A adjA = detA id = 0.

So the column vectors of adjA are in the kernel of A. Since (adjA)ii = detAii > 0 we
have that adjA > 0. us the theorem follows from 4.6

3. LetX = Hn. IfA is a Grammatrix, thenAii is positive definite for all i and detA < 0 by
4.7. Conversly we consider the vectorsw1, . . . , wn+1 in the second half of the proof of 4.7.
We have that A−1 = (wi ◦ wj). By our last lemma we have that A−1 = (detA)−1 adjA
is nonpositive. Hence we have wi ◦ wj ≤ 0 for all i, j. Since (A−1)ii < 0 holds, all
w1, . . . , wn+1 are time-like. So [Rat05, m 3.1.1] gives aus wi ◦ wj < 0 for all i, j and
thus all entries of A−1 are negative and at last all entries of adjA are positive and we
can use 4.7 to get the result.
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