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1 Motivation

One aim of this seminar is to tabulate all the knots. We want to be able to tell from a projection
of one knot if it is the same as another knot. To achieve this we introduced two invariants (or
conecpts of invariants) so far: the Seifert surfaces and the knot polynomials.

We now want to work towards a third invariant: the volume of a knot. How can we assign
a volume to a knot K? The process is to look at M := S3 \K , which is a 3-manifold and by a
thm and a conjecture of W. Thurston (c.f. [Ada94]), we assume that most knots are of the form,
thatM has the structure of a hyperbolic 3-manifold with finite volume. By this process we see,
that we get many more invariants for our knot. Since we get a unique manifold we can use all
of its invariants as knot invariants.

However today we can only take a first small step towards assigning a manifold to our knot
K . This first step consists in the construction of a triangulation of S3 \ K . After that one
could give these tetrahedra the structure of compatible hyperbolic tetrahedra and could then
compute their (hyperbolic) volume. This is then the knot volume we were talking about earlier.

2 The Figure-8 knot

We now want to show the construction of the Figure-8 knot complement very explicitly. For
our purposes we use the the projection given in figure 1 on page 2. Our aim will be to proof
the following

Theorem 2.1. M = S3 \K , whereK is the Figure-8 knot, is homeomorphic to the tesselation
given by the two tetrahedra in figure 2 on page 2, where sides with the same edges and edges
with the same arrows are identified and all vertices are removed.

After this we would have to show, that these two tetrahedra are in fact (ideal) hyperbolic
tetrahedra and then we can compute their volume and there by compute the volume of the
Figure-8 knot.

Before we can start with our proof, we need to define CW-complexes. The will give us a
decomposition of S3 \K , which will easily be seen to be homeomorphic to our two tetrahedra.
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Figure 1: One projection of the Figure-8 knot

Definition 2.2 (CW-complex). A k-cell is a topological space that is homeomorphic to
Bk := [0, 1]k. A open k-cell is a topological space that is homeomorphic to the interior of
Bk.

A CW-complex is a topological Hausdorff space X , which decomposes into a family of open
cells (ci)i∈I , s.t. the following properties hold:

1. For every k-cell ci ⊂ X , there exists a continuous map fi : B
k → X , s.t. the interior of

Bk is mapped homeomorphically to ci and the boundary of Bk is mapped onto a finite
union of cells of dimension (strictly) smaller than k.

2. M ⊂ X is closed if and only if M ∩ fi(B
k) is closed for all i ∈ I .

This definition is perhaps a little bit hard to grasp. One should think of CW-complexes in an
inductive way. First one scatters some 0-cells (i.e. points) in space. Afterwards we attach some
1-cells (i.e. line segments) to these points. Then some discs, then some balls and so far and so
forth.

Our aim is now to give S3 \K the structure of a CW-complex and show that it is the same
structure as the one given by our tesselation.

Figure 2: The labeling for the triangulation of the Figure-8 complement

Proof of Thm 2.1. We start by giving S3 the structure of a CW-complex, which uses K as part
of its 0- and 1-cells. For that we take the projection of K from figure 1 on page 2 and add two
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more linesegments (which will later on correspond to the two edges of the tetrahedra) and add
an orientation and a labeling, too. The result is figure 3.
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Figure 3: A labeling of the 1- and 2-cells introduced by the figure-8 knot. The 1-cells are labeled
1 to 6 and the 2-cells are labeled A to D. Remember that we have a point at infinity,
so B really is a disc, which includes infinity. We call the union of all the 1-cells K1

and the union of all the 1- and 2-cells K2.

We can now think of it as being embedded in S3 whichwe always identify withR3∪{∞}. So
now we have four points (the endpoints of the segment 1 and 2) and six lines embedded in S3.
The next step are the 2-cells, i.e. the discs. We will attach four of them (which is great, because
after the identification our two tetrahedra have only four sides left, which is the same number…).
The discs are labeled from A to D and their boundary is given by the 1-cells surrounding them.
We have to keep in mind that we have a point at infinity, so B really is a disc with boundary 6,
1, 1, 3, 2.

So now we are almost finished with giving S3 a CW-complex structure. The last thing we
have to prove is, that we can attach two 3-cells (balls) in a way that is compatible with the
interiors of our tetrahedra. The problem is, that it is not clear at all, that we can attach two
balls to our cells in a meaningful way. To show that this is possible we use a trick. We will
show that S3 \ K1, where K1 is the union of alle the 1-cells, is homeomorphic to S3 \ K ′1,
where K ′1 is given in figure 4 on page 4.
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Figure 4: The definition of K ′1 and the labeling of the discs A to D are mapped to.

It is not that obvious that we have this homeomorphism. To get it, we first note, that our
homeomorphism can be chosen as the identity outside a neighbourhood of segment 1 and a
neighbourhood of segment 2. We now concentrate on the neighbourhood of segment 1.

3



Figure 5: The homeomorphism in a neighbourhood of segment 1.

Figure 5 gives the motivation for the local homeomorphism. One can make this idea more
concrete, if one looks at the map

Ḃ2 × [0, 1] → (B2 \B2
r )× [0, 1], (x, t) 7→

(
x

1− r
+ r, t

)
,

which one can easily check to be an homeomorphism, if r < 1 and B2
r is the disc of radius r

and Ḃ2 = B2 \ {0} holds. With this map we get the first and the third arrow and the second
one is induced by an isotopy, so all the arrows are given by homeomorphisms, which yields
our assumption. In the case of segment 2, we do the same thing.

So nowwe have an homemorphism from S3\K1 to S3\K ′1 and our discs A to D are mapped
under this homeomorphism to A’ to D’. However to the union of K ′1 with A’ to D’ it is very
easy to attach two 3-cells, because the graph given byK ′1 ist planar and thus divides R3 (if we
forget for one moment about the point at infinity) in two halfspaces. So one ball will become
the upper halfspace and the other one the lower halfspace and by this we cover all of S3, so
we found a CW-complex structure on S3. At last we use the homeomorphism we constructed
to get to S3 \ K ′1 to get back to S3 \ K1 and attach by it the 3-cells to K2 und by this get
again a CW-complex structure which incorporates our knot K . If we study what happens to
the upper 3-cells under the homeomorphism, especially to which sides it gets attached to and
then remember, that we are interested in S3 \K , i.e. we have to collapse the line segments 3 to
6 and remove the remaining endpoints, we can draw the left tetrahedra shown in figure 6 on
page 5.

The right tetrahedron is just the first from figure 2 on page 2 and we see that the two are
compatible if we identify segment 1 with the single arrow and segment 2 with te double arrow.
We can do the same thing with the lower 3-cell and see that it is compatible with the other
tetrahedron.

This completes our proof of the structure of the Figure-8 knot complement.
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Figure 6: The left tetrahedron shows how the upper 3-cell is attached. The right tetrahedron
shows the right tetrahedron from figure 2 on page 2. We can see, that both are
compatible.

3 Outlook

As was stated in the motivation part, this is only the starting point. If one liked to stick to
the example of the Figure-8 knot, we would now have to show that the two tetrahedra can be
chosen as (ideal) hyperbolic tetrahedra. Thus S3 \K would get the structure of a hyperbolic
manifold. This is shown in [Rat06, §10]. There are even more examples on hyperbolic knots
and links, if you want to look at some more examples.

However one should try to generalize the approach to general knots and links. This has been
done by W. Thurston and J. Weeks. Weeks was even able to implement an algorithm, that can
compute the triangulation of a knot, if it exists and afterwards tries to calculate its volume (and
many more invariants). For further reading I would advice to have a look at [CDW].
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