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Sven Grützmacher CLASSICAL GROUPS

Introduction
Classical groups are among the most important lie groups there are. On the one hand
they are very simple and on the other hand nearly all simple lie groups are in fact classical
groups. As matrix groups they are easy to understand and many computations can be
done explicitly.

For example their corresponding Lie Algebras are easy to compute and even some to-
pological features can be derived with moderate or little effort.

classical groups
Throughout this talk let E ∈ {R,C,H} unless otherwise stated. Also, every vector space
considered has finite dimension.

First of all we want to get familiar with classical groups. Therefor we will define them
and consider both coordinate and coordinate-free representations.

Definition 1. Let V be a vector space over E. A classical group is either GL(V ) or
a subgroup that preserves a non-degenerate sesquilinear form being either symmetric or
skew-symmetric.

Whenever we choose a basis (vi)i for V this induces an isomorphism

GL(V ) −→ GL(n,E)

where the latter is the group of all n×n matrices with non-zero determinant and koefficents
in E. If the context is clear we will switch between notations as needed and omit the
underlying field, thus writing GL(n).

We assume that the reader has sufficent knowledge of those groups from linear algebra
and is familiar with matrix multiplication and basic operations.

Now it is time to consider some examples in detail. Therefore consider an E−vector
space V and a bilinear form

B : V × V −→ E

Let Isom(V,B) be the isometry group of B, i.e.

Isom(V,B) = {M ∈ GL(V ) | B(Mx,My) = B(x, y) ∀x, y ∈ V }

If we choose coordinates in V and identifiy M and B with their matrices in GL(n,E) we
get

B(Mx,My) = B(x, y) ∀x, y ⇔ B = MTBM (1)

Since B is non-degenerate if follows det(B) 6= 0 and thus (1) tells us that the condition
B(Tv, Tw) = B(v, w) ∀v, w directly implies T ∈ Isom(V,B).

orthogonal groups
Let E 6= H for now.

Lets start with a coordinate representation. The first one is well known:

Definition 2. The orthogonal group is

O(n,E) :=
{
M ∈ GL(n,E) | MTM = I

}
=

{
M ∈ GL(n,E) | MT = M−1

}
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As we will see soon if E = R there is a slight generalisation we are interested in

Definition 3. The indefinite orthogonal group is

O(p, q) :=
{
M ∈ GL(n,E) | MT Ip,qM = Ip,q

}
, Ip,q =

(
Ip 0
0 −Iq

)
Note that O(p, q) ∼= O(q, p) and thus O(0, n) = O(n, 0) = O(n,R).
It would not make sense to consider the indefinite case for E = C which can be seen

through the following lemma:

Lemma 4. Let V be an E−vector space and B a symmetric non-degenerate bilinear form
on V . Then

a) if E = C there is a basis (vi)i of V sucht that B(vi, vj) = δij

b) if E = R there are p, q ≥ 0 sucht that p+q = n and a basis (vi)i with B(vi, vj) = εiδij
where εi = 1 if i ≤ p and εi = −1 otherwise. Such a basis will be called pseudo-
orthonormal.
Furthermore p only depends on the choice of B.

Proof. Via the Gram-Schmidt algorithm we obtain an orthogonal basis (vi)i of V .
Now if E = C we can choose a square root of B(vi, vi) for all i and set

v′i =
1√

B(vi, vi)
vi

this gives us the desired basis. If E = R we do the same thing except we first order our
basis such that B(vi, vi) ≥ B(vi+1, vi+1) and set

v′i =
1√

±B(vi, vi)
vi

where the sign is determined by the sign of B(vi, vi).
It remains to show that p is intrinsic to B. Define

V + = span {v1, . . . , vp} V − = span {vp+1, . . . , vn}

Then V = V + ⊕ V − and B is positive definite on V + × V +.
take any subspace W of V such that B is positive definite on W . Assume w ∈ W and

πV +(w) = 0. Then it follows that w ∈ V − and thus w =
∑
i>p

aivi. We get

B(w,w) =
∑
i,j>p

aiajB(vi, vj) = −
∑
i>p

a2i ≤ q

Since B was assumed to be positive definite on W we get w = 0. Thus π : W −→ V +

is injective and hence dim(W ) ≤ dim(V +) = p. So p is uniquely number defined as the
maximum dimension of a subspace on which B is positive definite.

Thus we now have a good understanding of these orthogonal matrices. Yet a coordinate-
free version would be nice to have. Since we already have the identification

GL(V ) −→ GL(n,E)

we should try if we can indetify these orthogonal matrices as isometrys of certain bilinear
forms. If we consider the definition of O(p, q) or O(n,E) we know that those bilinear
forms need to be at least symmetric. This leads us to
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Theorem 1. Let B be a non-degenerate symmetric bilinear form on V (E-vector space)
and (vi)i be a (pseudo-)orthonormal basis with respect to B. Then the map

Isom(V,B) −→ O(p, n− p)

sending M onto its matrix-representation is an isomorphism. Note that for E = C we get
p = n.

Proof. After choosing a suitable basis we get the result from

B(Mx,My) = (Mx)T (B(vi, vj))ijMy = xTMT (B(vi, vj))ijMy = xTMT Ip,qMy

We now try to get similar results for different kinds of groups.

Symplectic groups

If we define J =

(
0 I
−I 0

)
we consider the symplectic group

Sp(n,E) =
{
M ∈ M2n(E) | MTJM = J

}
< GL(n,E)

As this is the coordinate representation we are now interested in a coordinate-free version
using bilinear forms. This time we take a look at skew-symmetric bilinear forms, e.g
B(x, y) = −B(y, x). Note that there is no vector space with uneven dimension equipped
with a skew-symmetric bilinear form because if we consider the matrix-representation of
such a form we get

det(A) = det(AT ) = det(−A) = (−1)n det(A)

Since the matrix B for a non-degenerate skew-symmetric bilinear form B(x, y) is non-zero
it vanishes in uneven dimensions.

So we have

Lemma 5. Let V be a 2n−dimensional vector space over E and B a non-degenerate, swek-
symmetric bilinear form on V . Then there is a basis (vi)i of V such that (B(vi, vj))ij = J .
Such a basis will be called B−symplectic.

Proof. We only sketch the proof. Since B is non-degenerate we find v, w such that
B(v, w) 6= 0. After rescaling we thus achieve B(v, w) = 1 and B(w, v) = −1. Consider

W = {x ∈ V | B(v, x) = 0 & B(w, x) = 0}

and show that dim(W ) = 2n− 2. By Induction we get the desired basis.

Like before we achieve

Theorem 2. Let V be a 2n−dimensional vector space over E and B a non-degenerate,
swek-symmetric bilinear form on V . Fix a B−symplectic basis for V . Thenn this induces
an isomorphism

Isom(V,B) −→ Sp(n,E)
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unitary groups
If we consider complex matrices it makes sense to take a look at unitary matrices. Let
A∗ = ĀT . Then we can define the unitary group

U(n) = {M ∈ Mn(C) | M∗M = I}

Since this is similar to the orthogonal case we also take a look at the indefinite case. For
this let Ip,q as before. Then

U(p, q) = {M ∈ Mn(C) | M∗Ip,qM = Ip,q}

is the indefinite unitary group of signature (p, q). To get to the coordinate-free version
we take a look at specific bilinear forms:

Definition 6. Let V be a C−vector space. A bilinear form B(x, y) is called hermitian
iff

1. B(av, w) = aB(v, w) for a ∈ C

2. B(w, v) = B(v, w)

Since B(v, v) is always real the notion of positve definitness is the same as in the real
case.

Again we get the following result

Lemma 7. Let V be a C−vector space and B a non-degenerate hermitian form on V .
Then there is an integer p and a basis (vi)i of V such that B(vi, vj) = εiδij where εi = 1
if i ≤ p and εi = −1 otherwise. Moreover p only depends on the choice of B and not on
the choice of the basis.

Proof. Nearly the same as in Lemma 4 except we have complex numbers.

Since we now have a nice basis we conclude

Theorem 3. Let V be a C−vector space and B a non-degenerate hermitian formwith sig-
nature (p, q) on V . If we fix a pseudo-orthonormal basis on V this induces an isomorphism

Isom(V,B) −→ U(p, q)

Quarternion groups
Up until know we only considered E ∈ {R,C} so now we take a look at E = H. Before
we consider quarternionic groups we should review some basic fact about H.

Definition 8. Let {1, i, j, k} be a basis of R4. We define a multipliction by setting

i2 = j2 = k2 = −1 ij = −ji = k ki = −ik = j jk = −kj = i

and extending this linear. This space is called the quarternions.

Like this we can define a conjugation

(a+ ib+ jc+ kd)∗ = a− ib− jc− kd

and an absolute value by

|w| = |a+ ib+ jc+ kd| = w∗w = ww∗ =
√
a2 + b2 + c2 + d2

4
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We should note that multiplication in the quarternions is not commutative.
In arbitrary dimension we can define a right multiplication on Hn by

(u1, . . . , un) · a = (u1 · a, . . . , un · a)

for ui, a ∈ H. Therefore we can think of Hn as a vector space over H (instead of an
4n-dimensional real vector space).

It is often useful to see quarternions in a complex form. For this we write z = x+jy ∈ Hn

with x, y ∈ Cn if we see C embedded into H via C = R + iR ⊂ H. Moreover if we write
C = A+ jB ∈ Mn(H) for A,B ∈ Mn(C) we get

Lemma 9. Consider the maps

z 7→
(
x
y

)
C 7→

(
A −B̄
B Ā

)
They define an isomporphism Hn −→ C2n and

Mn(H) −→
{
T ∈ M2n(C) | JT = T̄ J

}
, J =

(
0 I
−I 0

)
This tells as that H−linear transformations can be seen as complex-linear ones. Using

this embedding it is possible to define the following:

Definition 10. The general linear group GL(n,H) is defined as

GL(n,H) =
{
T ∈ GL(2n,C) | JT = T̄ J

}
With these basic facts we can take a look at two more classical groups. Let Ip, q be as

before and set X∗ = (x∗ji)ij then

Definition 11. The indefinite quaternionic unitary group is

Sp(p, q) = {M ∈ GL(n,H) | M∗Ip,qM = Ip,q}

In the same manner as with unitary groups we get

Isom(V,B) ∼= Sp(p, q)

for non-degenerate quaternionic hermitian forms B(w, z) = w∗Ip,qz, e.g. forms, such that

B(w, z) = B(z, w)∗ B(w · a, z · b) = a∗B(w, z)b

Our last example is to take a look at symplectic groups with quarternions. Let J be
the matrix from the symplectic groups. Since J2 = −I2n we get an auotmorphism of
GL(2n,C) via

θ(M) = −JMJ

such that θ2 = Id. This leads us to

Definition 12.

SO∗(2n) =
{
M ∈ SO(2n,C) | θ(M̄) = M

}
Since we can identify C2n with Hn by (a, b) 7→ a + jb. Then the group above is the

isometry group of non-degenerate quarternionic skew-hermition forms

C(x, y) = x∗ · j · y

e.g. forms that satisfy C(x, y) = −C(y.x)∗ and C(xa, yb) = a∗C(x, y)b
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lie algebras of classical groups
Now that we have seen all classical groups we want to calculate their Lie algebras.

general lie algebra
First of all we want to take a look at the general and special linear lie algebras.
Definition 13. The general linear lie algebra is

Lie(End(V )) = gl(V ) ∼= gl(n,E) = Lie(Mn(E))

where End(V ) is equipped with [X,Y ] = XY − Y X

Another easy to calculate example is the special lie algebra. For this define (note: the
trace is basis independend)

sl(V ) = {T ∈ End(V ) | tr(T ) = 0}

Since tr(AB) = tr(BA) we get tr([A,B]) = 0 for all A,B ∈ End(V ) and thus sl(V ) is a
sub-lie-algebra of gl(V ). With this we get
Definition 14. The special linear lie algebra is

sl(n,E) = {A ∈ gl(n,E) | tr(A) = 0}

Lie algebras of bilinear forms
For now let us consider E ∈ {R,C}.

In an earlier talk we have seen that for a Lie group G we have the identification

Lie(G) = TeG

Let us consider differentiable curves σ : (−ε, ε) −→ GL(V ) such that σ(0) = I and
σ(t) ∈ G, e.g. σ(t) satisfies the conditions which defined G as a subgroup of GL(V ). Now
we have shown that σ′(0) ∈ Lie(G) and that every element in the lie algebra is obtained
like this.

We can now consider Isom(V,B) for a bilinear form B. Then

B(σ(t)v, σ(t)w) = B(v, w)

for every t. Differentiating this equation yields

0 = B(σ′(0)v, σ(0)w) +B(σ(0)v, σ′(0)w)

because σ(0) = I we can define
Definition 15. The lie algebra associated with a bilinear form is

so(V,B) = {X ∈ End(V ) | B(Xv,w) = −B(v,Xw)}

This is indeed a subalgebra of gl(V ) because

B(XY v,w) = −B(Y v,Xw) = B(v, Y Xw)

implies that B([X,Y ]v, w) = −B(v, [X,Y ]w).
If we fix a basis of V and let Γ = (B(vi, vj))ij then this implies

ATΓ + ΓA = 0

for every matrix representation A of an element in so(V,B). Since B is non degenerate in
our cases we have

AT = −ΓAΓ−1

and thus tr(T ) = 0 for all T ∈ so(V,B).

6
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orthogonal and symplectic lie algebras
If we apply the previous results it is easy to compute the orthogonal lie algebras.

First of all if Γ = I we have

so(n,E) =
{
X ∈ Mn(E) | XT = −X

}
Now let B be a bilinear form with matrix Ip,q. Then

so(p, q) =
{
X ∈ Mn(R) | XT Ip,q = −Ip,qX

}
Remember that because B is non degenerate they are sub lie algebras of sl(n, F ).

As we have seen before choosing a (pseudo-)orthonormal basis induces an lie algebra
isomorphism

so(V,B) −→ so(p, q) or so(n,E)

when we consider symmetric bilinear forms.
In the symplectic case we get similar results:

sp(n,E) =
{
X ∈ M2n(E) | XTJ = −JX

}
and for non-degenerate skew-symmetric bilinear forms

so(V,B) ∼= sp(n,E)

(after choosing a B−symplectic basis fo course).

unitary lie algebras
In the following complex cases the arguments are essentially the same. Note that instead
of AT we will now use A∗ = ĀT . Then we can define

u(p, q) = {X ∈ Mn(C) | X∗Ip,q = −Ip,qX}

this is a lie subalgebra of gl(n,C) which can be seen by the same argument as for so(V,B).
Furthermore we can set

su(p, q) = u(p, q) ∩ sl(n,C)

These matrices derive from hermitian forms on EndC(V ). So by defining

u(V,B) = {X ∈ EndC(V ) | B(Xv,w) = −B(v,Xw)}

we achieve a coordinate-free representation via, i.e.

u(p, q) ∼= u(V,B)

by choosing a pseudo-orthogonal basis of V ,

quarternionic lie algebras
First of all we can also define the general linear lie algebra for quaternions by

gl(n,H) = (Mn(H), [·, ·])

7
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with the usual matrix commutator. Note that we need to consider this as a lie algebra
over R since we have not defined what a lie algebra over a skew field should be. If we
identify Hn with C2n we simply define

sl(n,H) = {X ∈ gl(n,H) | tr(X) = 0}

We already stated this definition but since it is important that we use the identification
above it is good to do this here again.

This real lie algebra is usually denoted by su∗(2n).
To end the overview of lie algebras we define the unitary and orthogonal lie algebras in

the same manner:

sp(p, q) = {X ∈ gl(n,H) | X∗Ip,q = −Ip,qX}

This group consist of matrices satisfying

B(Xx, y) = −B(x,X∗y)

For the last example remember the map θ(A) = −JAJ . With this we define

so∗(2n) =
{
X ∈ so(2n,C) | θ(X̄) = X

}
If we again identify C2n and Hn we can see this as the matrices satisfying

C(Xx, y) = −C(x,X∗y)

where C(x, y) = x∗jy in a quaternionian way.

connectness
If we consider these groups we can derive some information about their topology and how
they look like.

connection of SO(n) and O(n)

It is easy to see that O(n) is not connected since the determinant is nonzero and changes
signs.

I will give the proof that SO(n) is connected only as a sketch. For details see [War].
An important proposition is the following:

Proposition 16. Let H be a closed subgroup of a Lie group G. If H and G/H are
connected then so is G.

Since we know that SO(1) is connected because it consists only of the 1 × 1 identity
matrix our problem reduces to the question if SO(n)/SO(n− 1) is connected or not.

For this consider the action of O(n) on Sn−1 (O(n) preserves norm). and note that
A ∈ O(n− 1) can be embedded in O(n) through(

A 0
0 1

)
Geometrically O(n − 1) leaves 〈en〉 fixed. Putting these things together one can find a
diffeomorphism

SO(n)/SO(n− 1) −→ Sn−1

and thus we achieve the required connectness. Proposition 16 then tells us that SO(n) is
connected for every n.
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S3 and unit quarternions
We want to see how SO(3) looks like. Consider the totally imaginary quarternions

IH = {ai+ bj + ck | a, b, c ∈ R}

because the absolute value is multiplicative in H and H is skew-field we see that
S3 ⊂ H is a group under multiplication and the map

(q, p) 7→ qpq−1

defines a group action S3× IH −→ IH. (long computation). If we identify IH ∼= R3 every
q ∈ S3 defines a map

σq : R3 −→ R3

which satisfies

σ1 = id σq−1 = σ−1
q |σq(p)| = |p|

especially the last equation tells us that σq preserves norms. If we put everything together
this results in an homomorphism

S3 −→ SO(3)

but since q and −q give the same map we end up with

SO(3) ∼= RP3

moreover we get π1(SO(3)) = Z2.
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