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Sven Grützmacher GEOMETRIES AND ORBIFOLDS

Introduction
It is a well known result that all closed 2-manifolds can all be realised as a quotient of
X = E2, S2 or H2 by a freely acting subgroup of Isom(X). So we can say that every closed
2-manifold has a geometric structure modelled on one of the spaces above.

These metrics are very nice since the space looks the same at every point and in every
direction one can look...it has a lot of symmetry.

Naturally we ask ourselves if the same result holds for higher dimensional manifolds
and in this talk we want to take a look at the case just one dimension higher. It turns
our that there are more geometries than E3, S3 and H3 which also means that this extra
dimension gives rise to more less-symmetric geometries and spaces.

To be able to talk about these problems we start in section 1 by defining what we mean
by ”M has a geometry modelled on X“ and review very few things about orbifolds.

After this we consider a special class of fibred spaces called Seifert fibre spaces. Their
structure as S1− bundles together with 2 invariants will be a powerfull tool to classify
most of the geometries we face in 3 dimensions.

With that we are ready to take a short look at all 8 geometries. In this talk we will
only give detailed insights on 2 of the geometries, i.e. two that have a structure as Seifert
fibre spaces.

The last section will discuss Thursons geometrization conjecture. We will state the
conjecture, a few facts and end this talk by not only showing Seifert fibre bundles can be
modelled on those geometries but also that spaces which are modelled on certain geometries
have to admit a structure as a Seifert fibre bundle.

Geometries and orbifolds
We should first ask ourselves what a ”geometry“ should be. Starting with Thurston’s
definition we can get:

Definition 1. Let F be a manifold. We say F posseses a geometry modelled on X if F is
the quotient of X by a subgroup Γ of Isom(X) such that the projection is a covering map.

As mentioned before, in two dimensions we can only choose X to be either S3, E3 or H3.
Adding one dimension now makes a big difference as it is easy to find 3−manifolds that
cannot posses a structure modelled on one of those 3 spaces as our next example shows:

Example 2. S2 × S1 has no geometry modelled on E3, S3 or H3.

Proof. We consider the universal cover S2 × R of S2 × S1. First of all this space is not
homeomorphic to one of the three spaces above, but it still admits a nice metric given
simply by the product-metric.

Now intuitively S2 ×R has a different geometry because the space looks different when
we look in a different direction. On the one hand we have a ”curved“ direction along S2

and on the other hand we have a ”flat“ direction along R.
To understand this argument mathematically we can take a look at the isometry group

and the stabilizer on S2 × R. In the case of constant curvature Isom(X) acts transitively
(in every point X looks the same) and the stabilizer Sp is O(3) (X looks the same in every
direction from p). If we compute this on S2 × R the isometry group still acts transitively
but the stabilizer of a point turns out to be isomorphic to O(2)× Z2.

Thus the geometric structure is different.

This example leads to a similar definition of what a geometry should be:

1



SEIFERT FIBRE SPACES Sven Grützmacher

Definition 3. Let M be a manifold

a) a metric on M is said to be locally homogeneous iff given x and y we can find
neighborhoods U and V and an isometry U −→ V

b) we say M admits a geometric structure iff M has a complete, locally homogeneous
metric

Note that such a metric always gives us a metric on a cover M̃ such that the covering
map is an isometry. Since the universal cover is simply connected one can show that such
a metric is always homogeneous in this case, i.e. the isometry group acts transitively on
the universal cover. Thus we can now try to understand what possible geometries there
can be.

But for the sake of simplicity we will exclude the non-orientable cases in this talk. Thus
fibred klein bottles are not all that interesting here.

To complete this section we want to take a short look at orbifolds. I will not give the
defition here because it can be found in [Sco83] or Harry’s talk. But there is one interesting
invariant, the Euler-Characteristic. This number is not only used to classify 2-dimensional
orbifolds but will also be a nice tool to classify some of the geometries later on.

Definition 4. Let be O a compact orbifold triangulated by a finite simplicial complex
such that Γx is constant (up to isomorphism) on the images of the interior of the simplices.
Let Γ(σ) be the group on the interior of a simplex σ. Then

χorb(O) :=
∑
σi

(−1)dim(σi)
1

|Γ(σi)|

where O is triangulated by {σi}. For simplicity we will simply write χ(X).

Seifert fibre spaces
Definition 5. a) A fibred solid torus is solid torus which is finitely covered by a

trivial fibred solid torus (that is S1 ×D2 with the product foliation by circles).

b) A fibred solid klein bottle is solid klein bottle which is finitely covered by a trivial
fibred solid torus.

c) A Seifert fibre space is a 3−manifold which admits a decomposition into disjoint
circles Sα (called fibers) such that every fiber has a neighborhood isomorphic to a
fibred solid torus or klein bottle.

Note that a fibred solid torus can be easily contructed from a trivial fibred solid torus
by cutting along a disk {x} × D2 and glueing back with a q/p-th turn. This object will
then be p-fold covered by a trivial solid torus and we will call ist T (p, q). To get a fibred
solid klein bottle glue via a reflection.

Since a Seifert fibre space M is foliated by circles the idea comes up to shrink every
circle to a point. Doing so we then obtain a surface X and a projection map M −→ X.
If we first consider a trivial fibred torus X is clearly the disk D2 and the map M −→ X
is the usual covering map. Taking a closer look at T (p, q) we can use the p-fold cover to
induce a homeomorphism on D2 by a rotation by 2π/p. Thus X can be identified with
cone orbifold with cone angle 2π/p. Now M −→ X fails to be a covering map in the usual
sense but we will still see it as one in a generalized way. To sum this up we get:
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Definition 6. Let M be a Seifert fibre space and X be the surface one obtains by collapsing
every fibre to a single point. Then

i) X is called the base space of M (an orbifold in general)

ii) we call X togehter with the generalized covering map M −→ X a circle bundle,
namely a Seifert bundle

iii) a fiber whose neighborhood is not a trivial torus is called critical
To give a short intuition we want to take a look at examples:

Example 7. a trivial fibred torus and a fibred torus

It has been shown that every Seifert fibre space M is aspherical unless it is covered by
S3 or S2 × R, i.e. all homotopy groups except π1 vanish. Hence we should take a short
look at π1(M) which has in fact a rather special structure:
Lemma 8. Let M be a seifert fibre space with base orbifold X. Then we have an exact
sequence

1 −→ K −→ π1(M) −→ π1(X) −→ 1

where K < π1(M) is cyclic and generated by a regular fibre. Furthermore K is only finite
when M is covered by S3.

Proof. Since π1(M) acts on M̃ by decktransformation and thus preserves the fibration
(p = p ◦ f) this gives us an action on X̃ by acting on the resprective points. Since this is a
deck transformation on X̃ we get an action of π1(M) on π1(X) resulting in the surjectiv
homomorphism on the right.

If we consider the kernel of this action this have to be the covering translations which
project to the identity on X̃. Thus the kernel K acts freely and has to be cyclic. The
finiteness comes from the fact that S3 is simply connected.

Example 9. Let M = T 2 × S1 and thus M̃ = R3.
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To finish this section and thus our overview of Seifert fibre spaces we take a look at a
fiber invariant e(η) if η is our Seifert bundle which in a sense measures how far off we are
from getting a section in our bundle.

Let M be our bundle over a base space X 6= S2 which will be a regular surface without
singularities for now. Our lemma above gives us the exact sequence

1 −→ K −→ π1(M) −→ π1(X) −→ 1

where K is infinite cyclic (why not finite?). Let K = 〈k〉 and note that if X is not closed
π1(X) is free and thus this sequence splits.

Now let X be closed and consider the representation (that’s why we need X 6= S2)

π1X = 〈ā1, b̄1, . . . , āg b̄g |
g∏

i=1

[āi, b̄i]〉

Now take an element ai ∈ π1(M) that projects to āi and a bi resprectively. Because the

sequence is exact it follows that
g∏

i=1
[ai, bi] lies in the kernel of π1(M) −→ π1(X) and thus

in K. Since K is cyclic we obtain an integer r such that
g∏

i=1

[ai, bi] = kr

To ensure that r coincides with the euler number of the unit tangent bundle of a closed
orientable surface we say:

Definition 10. Let η be a Seifert bundle. Then the integer e(η) = −r is called the euler
number of η.

Note that we only defined this for bundles which have a regular surface as base space.
In the general case one would also consider the orbit-invariants (p, q) of critical fibers. In
that case one would first define an invariant b and then sacrifice some information to get
e. For more information on this see [Sco83]. For this talk it will make no difference and I
will mention it when needed.

In order to show later results concerning the 8 geometries we need to observe the fol-
lowing:

Theorem 1. Let η be a Seifert bundle over a closed orbifold X with total space M . Let
M̃ be a finite covering of degree d so that M̃ is the total space of a Seifert bundle η̃ over
an orbifold X̃.

Let l be the degree of the covering X̃ −→ X and m be the degree with which fibers of η̃
cover fibers of η, so that lm = d.

Then we get e(η̃) = e(η) l
m .

This finally leads to a very useful theorem to distinguish Seifert bundles later on.

Theorem 2. If a Seifert bundle η has compact total space M , then M possessses a finite
covering which is a trivial circle bundle over a surface , with the induced Seifert bundle
structure iff e(η) = 0.

The 8 geometries
Thurston’s theorem involves 8 different geometries of which we will only examine two
more closely. First we have the three well known geometries E3, S3,H3 like in dimension
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2. But, as said in the introduction we can now find more candidates, i.e. the product
spaces H2 ×R and S2 ×R, Nil and Sol and the universal cover of Sl2(R) denoted by S̃l2.

In this talk we set focus on H2 × R and S̃L2(R) as examples. We will see, that they
(among 6 of the 8 above) admit a structure as a Seifert fibre space and can be classified
by e(η) and χ(X) where X is the base space. Our two candidates share the property
χ(X) < 0 which led to this decision.

Overview
Before we start I want to give a short overview of the six other geometries.

The geometry of E3

This is the well known euclidian 3-space, i.e. the geometry of constant curvature zero.
The isometries are given by maps x 7→ Ax+ b where A ∈ O(3). If we put this together we
get a exact sequence

1 −→ R3 −→ Isom(E3) −→ O(3) −→ 1

because the kernel of Isom(E3) −→ O(3) is exactly the set of all translations. In contrast
to the two dimensional case the isometries are not only rotations and translations but also
srew motions.If you follow [Sco83] the conclusion will be that there are exactly 10 closed
manifolds with a geometry modelled on E3. In regard of the last chapter these are exactly
the Seifert fibre spaces where both χ and e vanish.

The geometry of H3

The hyperbolic three space is the geometry with negative curvature −1. It is well known
especially because of the work of Milnor and Thurston which is the reason why I won’t
say very much here.

There are a few constructions of H3 like taking the upper half-space R3
+ = {(x, y, z) | z > 0}

with the metric ds2 = 1
z2
(dx2 + dy2 + dz2) or the sphere with radius i in the minkowski-

space.
The group of orientation preserving isometries of H3 are exactly the Möbius transform-

ations on C ∪ {∞}. For further information the works of Thurston and Milnor will offer
detailed results.

The geometry of S3

This is the geometry with constant positive curvature and can simply be seen as the set
of all ordered pairs (z, ω) ∈ C2 such that |z|2 + |ω|2 = 1. Like all other spheres S3 can be
embedded in R4. Like in one dimension less the geodesics are given bei S3 ∩ P where P
is a two-plane through the origin. So geodesics are also also circles. The isometry group
is simply given by O(4).

As with E3 the geometries modelled on S3 are all connected to the theory of Seifert
fibre spaces. If one considers the induced fibre structure we get χ > 0 and e 6= 0.

The geometry of S2 × R
This is the first of the two product geometries and possibly the easiest one since there

are one seven manifolds which admit a geometric structure on S2 ×R. Also the isometry
group can be easily identified with the product Isom(S2)×Isom(R). Since we take a closer
look at the other product geometry I will only give you the list of the seven manifolds:

non-compact:S2 × R, two line bundles over P 2

compact:two S2−bundles over S1, P 2 × S2 and P 3#P 3
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The geometry of Nil
Nil is the 3-dimensional Lie group obtained by considering all 3×3 matrices of the form1 x z

0 1 y
0 0 1


under multiplication. This group is nilpotent and one gets the sequence

0 −→ R −→ Nil −→ R2 −→ 0

this lets us see Nil as a line bundle over R2. If we take a look at the isometry group we
find a similar sequence

0 −→ R −→ Isom(Nil) −→ Isom(E2) −→ 1

where all isometries are orientation preserving.
The final interesting fact is that manifolds modelled on Nil have a natural sturcture as

a Seifert fibre space. This time the invariant are χ = 0 and e 6= 0.

The geometry of Sol
This geometry is the one with the least symmetry. One way to define it is to consider

the action of R on R2 by (x, y) −→ (etx, e−ty) thus giving us the exact sequence

0 −→ R2 −→ Sol −→ R −→ 0

This geometry is one of the two which cannot be modelled as a Seifert fibre space. In
fact if the geometry of Sol can be seen as the geometry of a torus bundle over S1. So in
contrast to the one-dimensional fibres of Seifert fibre space we have two-dimensional fibres
here.

This should give us a rough overview over six of the eight geometries. We now take a
look at the last two geometries in a little more detail

H2 × R

This is the second of the two product geometries that can occur as candidates for Thur-
stons conjecture. In contrast to S2 × R we can find infinitely many manifolds that have
a geometry modelled on H2 × R. Simpy take any hyperbollic surface an consider the
product with R. Because of the product structure we know that Isom(H2×R) is naturally
isomorphic to Isom(H2)× Isom(R).

Obviously H2 × R is a fibre space and thus we get the following lemma:

Lemma 11. Any 3-manifold which admits a geometry modelled on H2 × R admits a
foliation by lines or circles.

Proof. Because Isom(H2 × R) ∼= Isom(H2) × Isom(R) consider (α, β) ∈ Isom(H2 × R).
Then (α, β)({x}×R) = {α(x)}×β(R) and thus the fibration is invariant under the action
of the isometry group.

It follows that if a 3-manifold admits a geometry modelled on H2 × R it is a quotient
under the isometry group. Thus the foliation by lines {x} × R descends to a foliation by
lines or cirlces.

Now that we know our manifold M admits a fibration the next question is wether this
is the structure of a Seifert fibre space or not. To determine this we take a look at the
main theorem of this subsection
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Theorem 3. Let G be a discret group of isometries of H2 × R which acts freely and has
quotient M . Then one of the following holds:

i) the natural foliation of H2 × R descends to a Seifert bundle structure on M

ii) the structure descends to a structure of a line bundle over some hyperbolic surface

iii) the foliation descends to a foliation by lines in which each line has non-closed image
in M . G must be isomorphic to one of Z, Z× Z or the Klein bottle group

Proof. We regard both groups Isom(H2) and Isom(R) as subgroups of Isom(H2 × R) in a
natural way.

Since G is discrete we have that K = G ∩ Isom(R) must be discrete. As G also acts
freely it has to be torsion free and thus K is either 1 oder Z. In either case K is a normal
subgroup of G and clearly K is the kernel of G −→ Isom(H2). Thus we get an exact
sequence

1 −→ K −→ G −→ Γ −→ 1

where Γ is the image of G −→ Isom(H2).
Now let K be Z which means K ∼= (1,Z) ⊂ Isom(H2×R). If we now consider (H2×R)/K

we see that each line {x} × R descends to a circle over some point z ∈ H2. Thus we have
a Seifert fibre bundle and this gives us i).

If K is trivial then G ∼= Isom(H2) and if Γ is discrete it must act freely and torsion free.
Thus it is easy to see that M is a line bundle over H2/Γ with fibers R and so we get ii).

The last case is then that Γ is not discrete. This part will be left for the reader and can
be found in [Sco83].

The reason why I didn’t show the whole proof is simple. As we have seen, the manifolds
of case ii) cannot be closed and the same holds for those in case iii). Regarding this talk
we are only interested in closed manifolds and to theorem 3 could have been reduced to
just stating i). The last step we have to do is to see which invariants these Seifert fibre
bundles have.

Proposition 12. Let M be a closed manifold that admits a geometry modelled on H2×R
an let η be the Seifert fibre bundle over the orbifold X for this structure. Then χ(X) < 0
and e(η) = 0.

Proof. Let Γ be the image of G −→ Isom(H2) as in the proof above. Then it is clear that
X = H2/Γ and so χ(X) < 0.

As discussed earlier we find a finite orientable cover M̃ that is a cirlce bundle (̃η) over
a closed orientable surface X̃. Because of Theorem 1 if suffices to show that e(η̃) = 0.

Let āi, b̄i be the standard generators of π1(X̃) and ai, bi elements of G̃ that project on
the generators. Remember that π1(M̃) = G̃ < G. Thus we get

g∏
i=1

[ai, bi] = ke(η̃)

where 〈k〉 = K = ker(G̃ −→ π1(X̃)).
Because the isometry group splits nicely into its 2 components we have ai = (āi, ti)

bi = (b̄i, si) for some isometries s, t of R. Let (x, y) ∈ H2 × R then

ke(η̃)(x, y) =

g∏
i=1

[ai, bi](x, y) =

(
x,

g∏
i=1

[ti, si]y

)
= (x, y)

Because orientation preserving isometries of R are just its translations. Thus ke = 1 und
so it follows that e(η) = 0.
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S̃L2(R)

The last of the 8 geometries we have to consider. The Lie group Sl2 is the group of all
2× 2 matrices with determinant one. If we want to talk about geometries on its universal
cover S̃l2 we first have to get a metric on this space and take a look at the isomtries.

If we try to fully understand everything going on here this would be too much for this
talk so I will just briefly explain how to get a metric on S̃l2 and give some useful facts.

Let M be a n-dimensional riemannian manifold. Then there is a natural metric on
the tangent bundle TM which is 2n-dimensional. It is well known that an isometry
f : M −→ M induces an isometry TM −→ TM . If we applay this knowledge to M = H2

we get a metric on TH2 which then induces a metric on the unit tangent bundle UH2.
Now we can identify UH2 with PSl2 and thus get a metric there. Because PSl2 is double
covered by Sl2 which itself is double covered by its universal cover S̃l2 we get our metric
here. The following diagram visualizes this construction:

H2 TH2
⊂

UH2 PSl2

Sl2

S̃l2

To include some facts about S̃l2 we can observe that it has the structure of a line bundle
over H2. Furthermore R acts as an isometry on the universal cover by translating the
fibers.

Like in the subsection before we want to prove a theorem that tells us what structures
we can have:

Proposition 13. Let G be a discret group of isometries of S̃l2 acting freely with quotient
M . The foliation of S̃l2 by vertical lines descends to a foliation on M and one of the
following occurs:

i) the foliation gives M the structure of a line bundle over a non-closed surface

ii) it is a Seifert fibration

iii) the foliation is by lines whose image in M is not closed. There G must be isomorphic
to Z,Z× Z or the Klein bottle group

Proof. As in the last section we will only prove i) and ii). The start of this proof is the
same like the one for H2 × R. We have the exact sequence

0 −→ R −→ Isom(S̃l2) −→ Isom(H2) −→ 1

if now K = G ∩ R an Γ is again the image in Isom(H2) we get

0 −→ K −→ G −→ Γ −→ 1

As before K can either be infinite cyclic or trivial and case ii) tolds in the first case whereas
i) holds in the latter if Γ is discret.

Like before the only interesting case for us is ii) since the other cases can not occur for
closed manifolds.
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Thurston’s classification
Not lets set our eyes on the main goal of this talk: the geometrization theorem of Thurston.
Before I state it I want to say a few words. First of all a geometry shall be a pair (X,G)
where X is a manifold and G a group acting transitively on X with compact stabilizers.
Note that we say two geomtries are equivalent if X is diffeomorphic to X ′ such that the
action of G lands on the action of G′. Since we can always consider the universal cover we
restirct ourselves to simply connected spaces where G is maximal, i.e. the case (R2,R2)
is omitted. We also restrict ourselves to those geometries that admit a compact quotient,
that is there exists H < G such that X/H is compact.

Theorem 4. Any maximal, simply connected, 3-dimensional geometry which admits a
compact quotient is equivalent to one of the geometries (X, Isom(X)) where X is one of
the following

E3 H3 S3 S2 × R
H2 × R S̃L2(R) Nil Sol

Theorem 5. If M is a closed 3−manifold which admits a geometry modelled on one of
the eight above, then the geometry involved is unique.

Theorem 6. Let M be a closed 3−manifold.

i) M posseses a geometrix structure modelled on Sol iff M is finitely covered by a torus
bundle over S1 with hyperbolic glueing map.

ii) M posseses a geometric structure on one of the eight except H3 and Sol iff M is a
Seifert fibre space. Furthermore if M has the structure of a Seifert fibre bundle η
over an orbifold X then the geometry is determined as follows

χ > 0 χ = 0 χ < 0

e = 0 S2 × R E3 H2 × R
e 6= 0 S3 Nil S̃l2

Proof. In this talk we will only proof a little piece of this theorem while the rest can be
found in [Sco83].

i) (perhaps)

ii) here we only prove the cases where χ < 0 and e = 0, i.e. H2 × R . A big part has
already been done in (cite lemma) so that we only need to show that every Seifert
fibre space with these invariants admits a geometric structure.
So let η be a Seifert bundle over an orbifold X such that χ(X) < 0 and e(η) = 0.
Thus we get

1 −→ K −→ π1(M) −→ π1(X) −→ 1

where K = 〈k〉 is infinite cyclic. Now again choose generators āi, b̄i, x̄i for π1(X)
and elements ai, bi, xi in π1M that project to those generators. Thus we get

π1(X) =

〈
ā1, b̄1, . . . , āg, b̄g, x̄1, . . . , x̄q | x̄αi

i = 1,

g∏
i=1

[āi, b̄i]x̄1 . . . x̄q = 1

〉

with the same argument as before we get
g∏

i=1
[ai, bi]x1 . . . xq = k−b and xαi

i kβi = 1.
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Now because χ(X) < 0 we can see X as a quotient of H2 by π1(X) and we just need
to define the isometries of H2 × R that we want. So let

k = idH2 × τ1 ai = āi × idR

xi = x̄i × τ−βi/αi
bi = b̄i × idR

where τt is a translation by t.
This defines a group action on H2 × R by some group G which has all the relations

from above except perhaps the last one. So let ω =
g∏

i=1
[ai, bi]x1 . . . xq ∈ G. By

construction this maps to idH2 when projected on the first factor an to a translation
by −

∑
βi/αi if projected on the second factor.

Now it would be important to distinguish between the bundle invariants b and e.
As I mentioned when defining this invariant there are some differences when X is
not simply a closed surface. In this case the additional knowledge would give us
0 = e = −b−

∑
βi/αi which then lets us see ω = kb. Thus G has all relations from

the presentation above. In fact, G is isomorphic to π1(M).
The last step is to see that G actually acts free on H2 × R und thus the quotient is
a Seifert fibre space with invariants χ(X) < 0 and e = 0. Thus it is isomorphic to
the given Seifert bundle.

References
[Sco83] Peter Scott. The geometries of 3-manifolds. Bull. London Math Soc., 1983.

10




