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Introduction
Up till now we examined many properties of manifolds which can be considered ”local “ones.
They only depend on local properties of our manifold and sometimes prove to be false when we
take a suffiecently large neighborhood.

In this talk we want to investigate the connection of certain local properties to global ones like,
e.g being homeomorphic to the euclidian space Rn in case of non-positiv sectional curvature.
To achieve this we only consider a special class of manifolds where expp is defined everywhere.
These so called complete manifolds have intuitively neither holes nor boundary components
which makes them in a sense ”nice to handle “.

The most important theorem of this talk will be the Hopf-Rinow theorem that not only
connects the topological property of being complete as a mertric space to the geometric notion
of being geodesically complete but it tells us in addition that we can always connect two points
with a length-minimizing geodesic.

That is on the one hand a powerfull tool to understand manifolds in regard to completeness.
On the other hand it yields the strong theorem of Hadamard, i.e. manifolds with sectional
curvature K ≤ 0 are homeomorphic to Rn.

Throughout this talk M will denote a connected riemannian manifold of dimension dim(M) =
n unless otherwise mentioned.

Hopf-Rinow
Since we want to have a look at global properties we need to make sure that M is ”on its own“,
i.e M is no proper open subset of a bigger manifold. This can be characterized as follows

Definition 1. M is said to be extendible iff there exists a riemannian manifold M ′ such that
M is isometric to a proper open subset of M ′.

As mentioned before we want to consider manifolds that are in a sence nice enough to work
with. With regard to the Hopf-Rinow theorem we want to take a look at manifolds where the
exponential map is defined everywhere. This leads us to the next definition

Definition 2. M is said to be geodesically complete iff for all p ∈ M expp is defined for every
v ∈ TpM , i.e. all geodesics γ(t) starting at p are defined for all t ∈ R.
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With this we can show that complete manifolds are also suitable to study global properties

Proposition 3. If M is complete it is not extendible.

Proof.

Assume the opposite. Then ∂M ⊂ M ′ is non-empty. For
p ∈ ∂M choose U ′ ⊂ M ′ as a normal neighborhood of p and
choose q ∈ U ′ ∩M . Let ψ(t) be the geodesic with ψ(0) = p
and ψ(1) = q. Then γ(t) = ψ(1− t) is by isometry a geodesic
in M für t small enough and γ(0) = q. But this geodesic is not
defined for some t ≤ 1 which contradicts the completeness.

M ′
M

p

q

To complete the preliminaries for the Hopf-Rinow Theorem we need to introduce a distance
function on M . We will do this in the standard way und thus omit the proofs.

Definition 4. Let p, q ∈M . Then

d(p, q) = inf {l(γ) | γ piecewise smooth and connection p, q}

Since M is connected this is well defined and has the desired properties i.e.

Proposition 5. Let d be as above. Then

i) d :M ×M −→ R is a metric, thus (M,d) is a metric space

ii) the topology induced from d coincides with the original topology

iii) f(p) = d(p, q) is continous for q ∈M

As a short remark we notice that d(p, q) = l(γ) if there exists a minimizing geodesic from p
to q.

Now we can state our main theorem from which it will be clear why completeness is important
in our observations.

Theorem 1 (Hopf-Rinow). Let M be a riemannian manifold and p ∈M Then the following
assertions are equivalent

i) expp is defined on all of TpM

ii) the closed and bounded sets of M are compact

iii) M is complete as a metric space

iv) M is geodesically complete

v) There exists a sequence of compact subsets Kn ⊂ M, Kn+1 ⊂ Kn where M =
⋃
Kn

such that if qn 6∈ Kn then d(p, qn) −→ ∞

Furthermore any of the above implies:

vi) for any q ∈M there exists a geodesic γ joining p and q with l(γ) = d(p, q)
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Proof. iv) ⇒ i) is definition and ii) ⇔ v) is a general topological proof which is left for the
reader. Since it comes in handy to have vi) we will look consider that first

i) ⇒ vi) Let d(p, q) = r and let Bδ(p) be the normal ball at p where S = Sδ(p) is its boundary.
Since d(q, x) is continous it attains a minimum on S which we will denote by x0. By
definition of the exponential map we find a unit vector v ∈ TpM such that x0 = expp(δv).
Now we define γ(t) = expp(sv) and show that γ(r) = q. Since γ is a geodesic this will
prove i) ⇒ vi). We consider

d(γ(s), q) = r − s (1)

and A = {s ∈ [0, r] | (1) is valid}. Since 0 ∈ A and the continuity of the distance function
A is not empty and closed. Thus we only need to check if A is open. Let s0 < r be in A
and let δ′ be sufficiently small. We want to show that s0 + δ′ ∈ A. Similar to the above
let Bδ′(γ(s0)) be the normal ball with boundary S′. Furthermore let x′0 be the minimum
of d(x, q) on S′.

p

γ(s0) q

δ

x′0

x0

δ′

By definition of the metric we have

r − s0 = d(γ(s0), q) = δ′ + min
x∈S′

d(x, q) = δ′ + d(x′0, q) (2)

using the triangle inequalitiy we obtain

d(p, x′0) ≥ d(p, q)− d(q, x′0) = r − (r − s0 − δ′) = s0 + δ′

Now we see, that γ(s0 + δ′) = x′0 because the broken curve from p to x′0 via γ(s0) has
length s0 + δ′ and hence needs to be a geodesic. So (2) turns out to be

r − s0 = δ′ + d(γ(s0) + δ′), q) ⇔ d(γ(s0) + δ′), q) = r − (s0 + δ′)

which is the desired result.

i) ⇒ ii) For a closed and bounded set A ⊂ M we always find a metric ball Bε(p) containing
A. Since we now can use vi) there is a ball Br(0) ⊂ TpM such that Bε(p) ⊂ expp(Br(0)).
Since exp is continous the image on the right is compact and hence A as a closed subset
of a compact set is compact itself.

ii) ⇒ iii) Let P = (pn)n be a cauchy sequence in M . Then {pn} is bounded and closed and
thus compact. Since we can now find a convergent subsequence P must converge as well
(being cauchy).
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iii) ⇒ iv) We suppose M is not geodesically complete. Then there exists a normalized geodesic
γ that is defined for values s < s0 but not for s0. Let (sn)n be a sequence such that
sn −→ s0. For sufficiently large indices we have |sn − sm| < ε. This tells us that

d(γ(sn), γ(sm)) ≤ |sn − sm| < ε

and hence that {γ(sn)} is cauchy.. Because M is complete there is p0 ∈M : γ(sn) −→ p0.
Let (W, δ) be a totally normal neighborhood of p0. Let N be big enough such that
|sm − sn| < δ, γ(sn), γ(sm) ∈ W whenenver m,n > N . Then by definition there is a
unique geodesic g connecting γ(sn) and γ(sm) with length less than δ. Wherever γ is
defined it is obvious that g = γ. Since we know that expγ(sn) : Bδ(0) −→M is a diffeo on
its image which contains W we see that g extends γ for values beyond s0.

From this theorem we get immediately 2 useful corollaries

Corollary 6. If M is compact it is complete.

Corollary 7. A closed submanifold of a riemannian manifold is complete in the induces metric.
In particular that holds for euclidian space.

Hadamard
Aside of the corollaries above the Hopf-Rinow theorem has other interesting applications. We
want to take a look at the properties of riemannian manifolds with sectional curvature K ≤ 0
everywhere. The following lemma shows us that under this assumption the exponential map is
a local diffeomorphism:

Lemma 8. Let M be a complete riemannian manifold with K(p, σ) ≤ 0 for all p, σ. Then the
exponential map expp : TpM −→M is a local diffeomorphism.

Proof. Let J be a non-trivial Jacobi field along γ where γ : [0,∞) −→ M is a geodesic with
γ(0) = p and J(0) = 0. Since we have a non-positiv curvature the Jacobi equation yields

〈J, J〉′′ = 2
〈
J ′, J ′〉+ 2

〈
J ′′, J

〉
= 2

〈
J ′, J ′〉− 2

〈
R(γ′, J)γ′, J,

〉
= 2|J ′|2 − 2K(γ′, J)|γ′ ∧ J |2 ≥ 0

Thus we get that 〈J, J〉′ is an increasing function. Remember that J ′(0) 6= 0 and 〈J, J〉′ (0) = 0.
Then around t = 0 we have

〈J, J〉 (t) > 〈J, J〉 (0) = 0

Thus γ(t) is not conjugate to γ(0) along γ which implies that expp must be a local diffeomorphism
by the inverse function theorem.

Before we can state and proof the Hadamard theorem we need one more and in particular
powerful lemma. Note that this lemma comes in handy in many situations aside from this talk.

Lemma 9. Let M be a complete riemannian manifold, N a riemannian manifold and f :M −→ N
be a local diffeomorphism. If for all p ∈M, v ∈ TpM we have |dfp(v)| ≥ |v| then f is a covering
map.
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Proof. Since we already have a local diffeomorphism we only need to check that f has the path-
lifting property, i.e. given a curve c in N and a point in q ∈M there exists a curve c̃ in M with
c̃(0) = q and f ◦ c̃ = c. Consider

A = {t ∈ [0, 1] | ∃c̃ : [0, t] −→M}

Since f is a local diffeomorphism A is clearly open. Now let t0 be the supremum of A and (tn)n
be an increasing series converging to t0. Then {c̃(tn)} need to be contained in a compact set
due to M being complete. Otherwise the distance from c̃(tn) and c̃(0) would be arbitraily large
but by assumption on |df | we have

l(c|[0,tn]) =
tn∫
0

∣∣∣∣dcdt
∣∣∣∣ dt =

tn∫
0

∣∣∣∣dfc̃(t)(dc̃dt
)∣∣∣∣ dt ≥

tn∫
0

∣∣∣∣dc̃dt
∣∣∣∣ dt ≥ d(c̃(tn), c̃(0))

this implies that l(c|[0,t0]) is arbitrarily large which is absurd.
Now {c̃(tn)} has an accumulation point r ∈ M . Let V be a neighborhood of r such that f

is a diffeomorphism on V . Thus c(t0) ∈ V and therefor exists an interval I ⊂ [0, 1] such that
c(I) ⊂ f(V ) and t0 ∈ I. Choose n such that c̃(tn) ∈ V and consider the lift g on I that passes
through r (remember that f is a diffeo on V ). Because g = c̃ on [0, tn) ∩ I g is an extension of
c̃ and t0 ∈ A. Hence A is closed and therefor [0, 1].

Now we can state and proof the theorem of Hadamard

Theorem 2. Let M be a simply connected, complete manifold with sectional curvature K(p, σ) ≤ 0
for all p ∈M and σ ∈ TpM . Then M is diffeomorphic to Rn where n = dim(M). More precisely
expp is a diffeomorphism.

Proof. This proof is simple now.
Since M is complete expp is a local diffeomorphism for all p ∈ M and especially surjective.

Introduce a riemannian metric on TpM such that expp is a local isometry (the pullback). Because
expp sends lines t 7→ tv to geodesics we find that the geodesics in TpM are straight lines. Consider

exp0 : T0TpM −→ TpM

We see that exp0 is the identity (while T0TpM ∼= TpM) and is hence defined everywhere. By
the Hopf-Rinow theorem TpM is a complete manifold.

Since expp must now be a covering and M simply connected the proof is finished.
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