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Stephan Schmitt DEFINITIONS AND NECESSARY RESULTS

A quick reminder of Distributions and Foliations
We start with reminding about the theory of distributions and foliations on manifolds, since we will
need those notions in the main proof.

Definition 1.1. Let M be a smooth manifold. A Distribution on M of rank k is a rank-k subbundle
of the tangent bundle TM. Often a rank-k distribution is described by specifying for each p ∈ M
a linear subspace Dp ⊂ TpM of dimension k, and letting D =

⋃
p∈M Dp. It then follows from the

local frame criterion for subbundles that D is a smooth distribution if and only if each point of M
has a neighborhood U on which there are smooth vector fields X1, . . . , Xk : U → TM such that
X1|q, . . . , Xk|q form a basis for Dq at each q ∈ U . In this case, we say that D is the distribution
spanned by the vector fields X1, . . . , Xk

Definition 1.2. Suppose D ⊂ TM is a smooth distribution. A nonempty immersed submanifold
N ⊂ M is called an integral manifold of D if TpN = Dp at each point p ∈ N .

Definition 1.3. We say a smooth distribution D is involutive if given any pair of smooth sections of
D, their Lie bracket is also a local section of D.

Definition 1.4. Let M be a smooth n-manifold and let F be any collection of k-dimensional sub-
manifolds of M. A smooth chart (U, φ) for M is said to be flat for F if φ(U) is a cube in Rn, and each
submanifold in F intersects U in either the empty set or a countable union of k-dimensional slices of
the form xk+1 = ck+1, . . . , xn = cn. We define a foliation of dimension k on M to be a collection F
of disjoint, connected, nonempty, immersed k-dimensional submanifolds of M (called the leaves of the
foliation), whose union is M, and such that in a neighborhood of each point p ∈ M there exists a flat
chart for F .

We also need one specific proposition:

Proposition 1.5. Let D be an involutive distribution on a smooth manifold M and let N be a connected
integral manifold. If N is a closed subset of M, then it is a maximal connected integral manifold and
is therefore a leaf of the foliation determined by D.

Definitions and necessary results
In the following we denote with M a smooth manifold of dimension n. Further suppose we have a
group G on M. We will write θ : G ×M → M or (g, p) 7→ g · p. We will further assume that G acts
on the left, allthough a similar argument can be made if G would act on the right.

Next we look at the orbit of a point p ∈ M , G · p = {g · p : g ∈ G}. We define M/G to be the set
of orbits, which is obtained by defining an equivalence relation p q if ∃g ∈ G : g · p = q and looking at
the equivalence classes of that relation. This brings us to our first important lemma

Lemma 2.1. For any contninuous action of a topological group G on a topological space M, the
quotient map π : M → M/G is open.

Proof. Define g · U ⊂ M for g ∈ G, U ⊂ M by

g · U = {g · x : x ∈ U}

. Now if U ⊂ M is open, π−1(π(U)) is equal to the union of all sets of the form g ·U as g ranges over
G. Further they are open sets since p 7→ g · p is a homeomorphism, i.e. π−1(π(U)) is also open in M.
Because π is the quotient map, the same is valid for π(U) in M/G and therefore π is open.
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The next step in preparing for the quotient manifold theorem involves proper group actions, i.e.
actions in which the map G×M → M×M given by (g, p) 7→ (g ·p, p) is proper. We have the following
result for proper actions.

Proposition 2.2. If a Lie group acts continuously and properly on a manifold, then the orbit space
is Hausdorff.

Proof. Take a Lie group G acting continuously and properly on a manifold M. Let Θ : G×M → M×M
be the associated proper map, given by Θ(g, p) = (g · p, p). We define the orbit relation O ⊂ M ×M
by

O = Θ(M ×M) = {(g · p, p) ∈ M ×M : p ∈ M, g ∈ G}

. Since proper continuous maps are closed O is a closed in M × M . Our Lemma gives us the last
piece, since the quotient map π is open a basic result in topology guarantees M/G is Hausdorff.

Example 2.3. As the previous proposition implies, quotient spaces of smooth manifold are not
necessarily Hausdorff. Take an irrational number α and let R act on S1 × S1 by

t · (w, z) = (exp(2πit)w, exp(2πiαt)z)

. This action is clearly smooth and it can be shown that it is free and produces dense orbits. This in
turn implies the only smooth subsets of S1 × S1 are the empty set and the set itself, in other words
the orbit space has a trivial topology and is therefore not Hausdorff.

As can be seen from the definition, seeing that a particular action is proper is rather difficult, to
solve this problem, we have the following proposition:

Proposition 2.4. Let G be a Lie group acting continuously on M. Then the following are equivalent.

• The action is proper.

• If (pi) is a sequence in M and (gi) a sequence in G such that both (pi) and (gi ·pi) converge, then
a subsequence of (gi) converges.

• For every compact subset K ∈ M , the set GK = {g ∈ G : (g ·K) ∩K 6= ∅} is compact.

Proof. Lee.

Corollary 2.5. Every continuous action by a compact Lie group on a manifold is proper.

Proof. If (pi) and (gi) satisfy the previous hypotheses, then a subsequence of (gi) converges, for the
simple reason that every sequence in G has a convergent subsequence.

This lets us classify the orbits of proper actions as follows.

Proposition 2.6. Suppose θ is a proper smooth action of a Lie group G on a smooth manifold M.
For p ∈ M , the orbit map θ(p) : G → M is a proper map and thus the orbit G · p = θ(p)(G) is closed
in M. If in addition Gp = {e}, then θ(p) is a smooth embedding and the orbit is a properly embedded
submanifold.

Proof. Assume K ⊂ M is compact, then (θ(p))−1(K) is closed in G by continuity, further since it is
contained in GK∪{p}, it is compact by the previous proposition. Therefore θ(p) is proper and therefore
closed. The statement follows from the properties of the quotient map and the characterizations of
embeddings.

This gives us another necessary condition for proper actions.
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Corollary 2.7. If a Lie group G acts properly on a manifold M, then each orbit is a closed subset of
M, and each isotropy group is compact.

Proof. The first statement follows immediately from the previous proposition. The second statement
follows if we use the fact that the isotropy group of a point p ∈ M is the set GK for K = {p} and an
application of the characterization of proper actions we showed earlier.

Example 2.8. Let R+ be a group acting on Rn by

t · (x1, . . . , xn) = (txi, . . . , txn).

We now have to ways to see this action is not proper: the isotropy group of the origin is all of R+,
which is obviously not compact and the orbits of other points are open rays, which are not closed in
Rn.
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The quotient manifold theorem
We will now prove the quotient manifold theorem, i.e. that smooth, free and proper group actions
always lead to smooth manifolds as orbit spaces. The basic idea of the proof involves showing that G
induces a foliation on M in terms of its orbits whose leaves are embedded submanifolds diffeomorphic
to G. We then construct flat charts for the foliations to get coordinates on the orbit space.

Proposition 3.1. Suppose G is a Lie group acting smoothly, freely and properly on a smooth manifold
M. Then the orbit space M/G is a topological manifold of dimension equal to dim M - dim G and
has a unique smooth structure with the property that the quotient map π : M → M/G is a smooth
submersion.

In this section we will use the following notation. Assume, without loss of generality, that G acts on
the left. Denote by g the Lie algebra of G, k = dim G, m = dim M n = m− k. Let θ : G×M → M
denote the action and Θ : G×M → M ×M the proper map Θ(g, p) = (g · p, p).

Proof. The first step is comparatively easy, we start with the uniqueness of the smooth structure.
Suppose M/G has two different smooth structures such that π : M → M/G is a smooth submersion,
denote the different structures with (M/G)1 and (M/G)2 respectively. The identity map is smooth
from (M/G)1 to (M/G)2 and of course, so is it’s inverse, which proves that the structures are identical
and thereby also uniqueness.

M

(M/G)1 (M/G)2

π
π

Id

The next step is to show that M/G is a topological manifold and find a smooth structure for it. We
say that a smooth chart (U, φ) for M is adapted to the G-action if it is a cubical chart with coordinate
functions (x, y) = (x1, . . . , xk, y1, . . . , yn), such that each G-orbit intersects U either in the empty set
or in a single slice of the form (y1, . . . , yn) = (c1, . . . , cn). The most important part of this proof is
the claim that for each p ∈ M there exists an adapted chart centered at p.

To prove the claim, note first that the G-orbits are properly embedded submanifolds of M dif-
feomorphic to G by our characterization of orbits. In fact, we will show that the orbits are integral
manifolds of a smooth distribution on M.

Define a D ⊂ TM by

D =
⋃
p∈M

Dp where Dp = Tp(G · p).

Because every point is contained in exactly one orbit, and the orbits are submanifolds of dimension
k, each Dp has dimension k. To see that D is a smooth distribution, for each X ∈ g let (̂X) be the
vector field on M defined by the infinitesimal generator of the flow (t, p) 7→ (exp tX)·p. If (X1, . . . , Xk)
is a basis for g then (X̂1, . . . , X̂k is a global frame for D, so D is smooth. Because the G−orbits are
closed, we have that each connected component of an orbit is a leaf of the foliations determined by D,
by the proposition about foliations.

Let p ∈ M be arbitrary and let (U, φ) be a smooth chart for M centered at p that is flat for D with
coordinate fucntions (x, y) = (x1, . . . , xk, y1, . . . , yn), so each G-orbit intersects U either in the empty
set or in a countable union of constant slices. It remains to show that we can find a cubical subset
U0 ⊂ U centered at p and intersecting each G-orbit in at most a single slice, to prove the claim.

We start by assuming there is no such subset U0. For each positive inter i, let Ui be the cubical
subset of U consisting of points whose coordinates are all less than 1/i in absolute value. Let Y be
the n-dimensional submanifold of M consisting of points in U whose coordinate representations are of
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the form (0, y) and for each i let Yi = Ui ∩ Y . Since each k-slice Ui intersects Yi in exactly one point,
our assumption implies, we have distinct points pi, p

′
i ∈ Yi for each i, which fulfil gi · pi = p′i for some

gi ∈ G, i.e. they are in the same orbit. By our choice of {Yi}, both sequences (pi) and (p′i = gi · pi)
converge to p. Because we required G to act properly, as proven in the earlier chapter, we may pass
to a subsequence and assume that gi → g ∈ G.

g · p = lim
i→∞

gi · pi = lim
i→∞

p′i = p

follows from continuity and since G acts freely, this implies g = e.
Now let θY : G×Y → M be the restriction of the G-action to G×Y . Note that G×Y and M both

have dimension k + n = m. The restriction of θY to {e} × Y is just the inclusion map Y → M , and
TpM = Tp(G ·p)⊕TpY , it follows that d(θY )(e,p) is an isomorphism. Thus, there is a neighborhood W

of (e, p) in G×Y such that θY |W is a diffeomorphism onto its image and hence injective. This however
is contradicting the fact that θY (gi, pi) = p′i = θY (e, p′i) as soon as i is large enough that (gi, pi) and
(e, p′i) are in W, because we are assuming pi 6= p′i.

We are left to show that M/G is indeed a smooth manifold, first we take care of the topological
part. We have that M/G is Hausdorff by the previous chapter. Take {Bi} as a countable basis for the
topology of M, then {π(Bi)} is a countable collection of open subsets of M/G, since π is open. By the
properties of the quotient topology it follows that it is a basis for the quotient topology on M/G and
therefore M/G is second-countable.

Let q = π(p) be an arbitray point of M/G, and let (U, φ) be an adapted char for M centered at p,
with φ(U) equal to an open cube in Rk × Rn, which we write as φ(U) = U ′ × U ′′, where U ′ and U ′′

are open cubes in Rk and Rn respectively. Define V = π(U), since π is open, V is also open. Take
further coordinate functions of φ and denote them by (x1, . . . , xk, y1, . . . , yn) as before, let Y ⊂ U
be the submanifold {x1 = · · · = xk = 0}. Looking at π : Y → V we have an bijective map, by the
definition of an adapted chart. We can say even more, take W ⊂ Y open, then

π(W ) = π({(x, y) : (0, y) ∈ W}),

which is open in M/G and thus π|Y : Y → V is a homeomorphism. Now let σ : V → Y ⊂ U be a
local section of π, i.e. σ = (π|Y )−1.

Finally define η : V → U ′′ by sending the equivalence class of a point (x, y) to y; this is well
defined, again by definition of an adapted chart. More formally, we have η = π′′ ◦ φ ◦ σ, where
π′′ : U ′ × U ′′ → U ′′ ⊂ Rn is the projection onto the second factor. Because σ is a homeomorphism
from V to Y and π′′◦φ is a homeomorphism from Y to U ′′, it follows that η is a homeomorphism. This
shows that M/G is locally Euclidean, and thus completes the proof that we have indeed a topological
manifold of dimension n.

The last claim in the theorem involves us showing that M/G has a smooth structure such that π
is a smooth submersion. We use the atlas consisting of all charts (V, η) constructed in the last step.
We have the coordinate representation π(x, y) = y for π with respect to any such chart for M/G and
the corresponding adapted chart for M. The projection of the second argument is certainly a smooth
submersion, so it remains to be seen that any two such charts are indeed smoothly compatible.

Take (U, φ) and (Ũ , φ̃) two adapted charts for M and denote their corresponding charts for M/G as
(V, η) and (Ṽ , η̃). We first consider the case where both adapted charts are centered at the same point
in M. We write the adopted coordinates as (x, y) and (x̃, ỹ). Two points with the same y-coordinate
are in the same orbit, since our coordinates are adapted to the G-action, but this also means that they
have the same ỹ-coordinate. This means we can write the transition map between these coordinates
as (x̃, ỹ) = (A(x, y), B(y)), where A and B are smooth maps defined on some neighborhood of the
origin. The transition map η̃ ◦ η−1 is just ỹ = B(y), which is clearly smooth. Now assume they are
not centered at the same point, instead assume that for p ∈ U, p̃ ∈ Ũ we have adapted charts (U, φ)
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and (Ũ , φ̃) such that π(p) = π(p̃). We can add constant vectors to modify both charts in a such a
way, that they are centered at p and p̃. Since p and p̃ are in the same orbit, there is an element g ∈ G
such that g · p = p̃. Because θp : M → M is a diffeomorphism taking orbits to orbits, we have another
chart centered at p, namely φ̃′ = φ̃ ◦ θg. Moreover, σ̃′ = θ−1

g ◦ σ̃ is the local scetion corresponding to
φ̃′ and therefore η̃′ = π′′ ◦ φ̃′ ◦ σ̃′ = π′′ ◦ φ̃ ◦ θg ◦ θ−1

g ◦ σ̃ = π′′ ◦ φ̃ ◦ σ̃ = η̃. The we are in the same
situation as before and the two charts are smoothly compatible.

The quotient manifold theorem is very powerful, however we can say even more. First a quick
reminder:

Definition 3.2. A fiber bundle with two topological spaces M and F, over M with model fiber F, is a
topological space E together with a surjective continuous map π : E → M with the property that for
each x ∈ M , there is a neighborhood U of x in M coupled with a homeomorphism Φ : π−1(U) → U×F ,
called a local trivialization of E over U, such that the following diagram commutes:

π−1(U) U × F

U

π

Φ

π1

We call E the total space of the bundle, M is it’s base and π is its projection.

Corollary 3.3. With the perquisites of the previous theorem, the manifold M is the total space of a
smooth fibre bundle with base M/G, model fiber G and projection π : M → M/G.

Proof. Rough sketch:
We have to check the local trivialization property, to do this show that for any smooth local section

σ : U → M of π, the map (g, x) → g · σ(x) is a diffeomorphism from G × X to π−1(U). The claim
then follows. See also [2].
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Covering Manifolds
After proving our main theorem, we now move on to give a small example of it’s application. We will
investigate what we can say about our quotient manifold, if the corresponding Lie group is discrete.
First recall the following two facts:

Proposition 4.1. The covering space of a smooth manifold is itself a smooth manifold.

Proposition 4.2. For any smooth covering π : E → M the automorphism group is a discrete Lie
group acting smoothly and freely on the covering space E.

Proof. For proofs, see [Lee].

The first of the preceding proposition answers the question what the covering space of a smooth
manifold looks like, but it is also often interesting to know what kind of space is covered by a smooth
manifold, a corner stone in investigating this, is knowing when an action is proper:

Lemma 4.3. Suppose a discrete Lie group Γ acts continuously and freely on a manifold E. The action
is proper if and only if the following conditions both hold:

• Every point p ∈ E has a neighborhood U such that for each g ∈ Γ, (g · U) ∩ U = ∅ unless g=e.

• If p, p′ ∈ E are not in the same Γ-orbit, there exist neighborhoods V of p and V’ of p’ such that
(g · V ) ∩ V ′ = ∅ ∀g ∈ Γ

Proof. Suppose that the action is free and proper, let π : E → E/Γ denote the quotient map. We know
that E/Γ is Hausdorff, based on the previous chapter. If p, p′ ∈ E are in different orbits, we choose
disjoint neighborhoods W of π(p) and W ′ of p′, and then V = π−1(W ) and V ′ = π−1(W ′) satisfy the
conclusion of the second condition. To prove the first condition, take p ∈ E and define V to be a
precompact neighborhood of p. By our first characterization of proper actions in the previous section
the set ΓV is a compact subset of Γ and hence finite because Γ is discrete. Writing Γv = {e, g1, . . . , gm}.
Shrinking V is necessary, we may assume that g−1

i · p /∈ V (implying p /∈ gi ·V ) for i = 1, . . . ,m. Then
the open subset

U = V \ (g1 · V ∪ · · · ∪ gm · V )

satisfies the conclusion of the first part.
Conversely assume that both of the points hold. Take a sequence (gi) in Γ and a sequence (pi)

in E, such that pi → p and gi · pi → p′. If p and p′ are in different orbits, there are again disjoint
neighborhoods V, V ′ as before; however for large enough i, we have pi ∈ V and gi · pi ∈ V ′, which
contradicts the fact that (gi · V )∩ V ′ = ∅. Thus, p and p′ are in the same orbit, so there exists g ∈ Γ
such that g · p = p′. If that’s the case we have g−1gi · pi → p. Choose a neighborhood U of p as
before and let i be large enough that pi and g−1gi · pi are both in U. Because (g−1gi · U) ∩ U 6= ∅,
it follows that g−1gi = e. So gi = g when i is large enough, which certainly converges. By our first
characterization, properness follows.

A continuous discrete group action satisfying the first condition is also called properly discontinuous.

Proposition 4.4. Let M be a smooth manifold, π : E → M be a smooth covering map. With the
discrete topology, the automorphism group Autπ(E) acts smoothly, freely and properly on E.

Proof. We already know that the action is smooth and free, we will now improve the theorem and
show that it is also proper using our preceeding lemma. Taking e ∈ E arbitrarily, choose W ⊂ M
to be an evenly covered neighborhood of π(p). If U is the component of π−1(W ) containing p, then
it is easy to check that U satisfies the first condition. Now take p, p′ with different orbits, then just
as in the preceeding proof, we can choose disjoint neighborhoods W,W ′ of π(p), π(p′) respectively. It
follows then that V = π−1(W ) and V ′ = π−1(W ′) satisfy the second condition.
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With that we are able to answer the question we posed at the begining of the section and use the
quotient manifold theorem to prove a sort of inverse of the preceeding proposition.

Proposition 4.5. Suppose E is a connected smooth manifold and Γ is a discrete Lie group acting
continuously, freely and properly on E. Then the orbit space E/Γ has a unique smooth structure such
that π : E → E/Γ is a smooth normal covering map.

Proof. It follows from the quotient manifold theorem that E/Γ has a unique smooth manifold structure
such that π is a smooth submersion.Because a smooth covering map is in particular a smooth submer-
sion, any other smooth manifold structure on E making π into a smooth covering map must be equal
to this one. We also get that π is a local diffeomorphism since dim E/Γ = dim E − dim Γ = dim E.
It remains to show that π is a normal covering map.

To see this take p ∈ E, by our preceding lemma, p has a neighborhood U in E, that satisfies

(g · U) ∩ U = ∅,

as long as g ∈ Γ and g 6= e.
We can assume U is connected, since otherwise we just shrink it. Defining V = π(U), which is

open due to our lemma. Further we can reduce the problem to showing that π is a homeomorphism
from V to π−1(V ), since φ−1(V ) is a disjoint union of open subsets gU̇ , g ∈ Γ. We have the following
commuting diagram

U g · U

V

g

π π

Since g : U → gU̇ is a homeomorphism, it suffices to show that π : U → V is a homeomorphism.
We already know that it is surjective, continuous and open. To see injectivity, assume π(q) = π(q′)
for q, q′ ∈ U , which means that q = g · q for some g ∈ Γ. But as we said before this can only happen if
g = e, i.e. q = q′. Therefore π is a smooth covering map, it is further normal since Γ acts transitively
on fibers by definition and its elements act as automorphism of π.
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