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Stephan Schmitt DIFFERENTIAL FORMS IN R3

Differential Forms in R3

We will start with an introduction to Differential Forms in R3, after that we will naturally generalize
the concept to Rn and proof important properties about them.

Definition 1.1. Let p ∈ R3, denote the set {q − p|q ∈ R3} by R3
p. This space is called the tangent

space(of R3 in p). The vectors ei; i = 1, 2, 3 form a canonical basis for R3
0. Their translates for p,

denoted by (ei)p, form a Basis for R3
p. Consider now the dual (R3

p)
∗ of R3

p. This space is called the
Co-Tangent Space. We obtain a basis for this space by taking dxi, i = 1, 2, 3, where xi : R3 → R is
the map assigning a point p its i-th coordinate.

Proposition 1.2. The set {(dxi)p; i = 1, 2, 3} is the dual basis of {(ei)p}

Proof.

(dxi)p(ej) =
∂xi
∂xj

=

{
0 if i 6= j

1 if i = j

Let us now introduce two essential maps working on those spaces:

Definition 1.3. A map v : R3 → R3
p, given by

v(p) =

3∑
i=1

ai(p)ei

where ai : R3 → R is called Vector Field. It is called differentiable, if the ai are.

Definition 1.4. A map ω : R3 → (R3
p)

∗,

ω(p) =

3∑
i=1

ai(p)(dx
i)p

is called exterior form of degree 1 and Differential 1-Form, if the ai are differentiable.

As the name suggests, there are forms of higher degree:

Definition 1.5. Denote by Λ2(R3
p)

∗ the set of all alternating, bilinear maps R3
p × R3

p → R. If
ω1, ω2 ∈ (R3

p)
∗, define ω1 ∧ ω2 ∈ Λ2(R3

p)
∗ as

ω1 ∧ ω2(v1, v2) = det(ωi(vj))

.

We need a basis for this space, conveniently the set {(dxi ∧ dxj)p; i = 1, 2, 3, i < j} is one. This
result will be proven later in a more general manner. Also notice the following as an imediate result
of this definition:

Proposition 1.6.
(dxi ∧ dxj)p = −(dxj ∧ dxi)p; i 6= j

and
dxi ∧ dxi = 0

Definition 1.7. A map ω : R3 → Λ2(R3
p)

∗,

ω(p) =
∑
i<j

aijdx
i ∧ dxj ; i, j = 1, 2, 3

where aij are real functions, is called exterior form of degree 2 or differential 2-form, if the aij are
differentiable.
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Differential Forms in Rn

We will now generalize these concepts to Rn. The definitions of tangent and co-tangent space are the
exact same with n in place of 3. We will start with the n-dimensional variant of Λ2(Rn

p )
∗:

Definition 2.1. Let Λk(Rn
p )

∗ denote the space of alternating, k-linear maps from Rn
p × · · ·×Rn

p → R.
Analogous to 3 dimensions if ωi ∈ (Rn

p )
∗; i = 1, . . . , k we get an element ω1 ∧ · · · ∧ ωk ∈ Λk(Rn

p )
∗ by

setting
ω1 ∧ · · · ∧ ωk(v1 . . . vk) = det(ωi(vj))); i, j = 1, . . . , k

Again we need a Basis for this space:

Proposition 2.2. The Set

{dxi1 ∧ · · · ∧ dxik ; i1 < i2 < · · · < ik; ij ∈ {1, . . . , n}}

forms a Basis for Λk(Rn
p )

∗.

Proof. The elements of this Set are linearly independet. To see this, take:∑
i1<···<ik

ai1...ikdx
i1 ∧ · · · ∧ dxik = 0

and apply it to
(ej1 . . . ejk), j1 < · · · < jk, jl ∈ {1, . . . , n}

this gives ∑
i1<···<ik

ai1...ikdx
i1 ∧ dxik(ej1 , . . . , ejk) = aj1...jk = 0

Because:
Start by looking at the determinant ρ = |dxil(ejn)|. Assuming i1 > j1 it follows that ik > · · · > i1 >

j1. This in turn implies dxil(ej1) = 0; l = 1, . . . , k. In turn assuming i1 < j1 gives jk > · · · > j1 > i1,
implying: dxi1(ejn) = 0; n = 1, . . . , k.

Both giving us ρ = 0 if i1 6= j1. Now assume i1 = j1 and j2 6= i2. Using the exact same Argument
as above it follows that ρ = 0 if i2 6= j2. Iterating gives us the desired

(dxi1 ∧ · · · ∧ dxik)(ej1 , . . . , ejk) = 0

if ∃jl 6= il. It remains to see that the above expression gives 1 if i1 = j1, . . . , ik = jk. But this is an
immediate result of the definition of forms.

We will now show f ∈ Λk(Rn
p )

∗ ⇒ f =
∑

i1<···<ik
ai1...ikdx

i1 ∧ · · · ∧ dxik

Define
g =

∑
i1<···<ik

f(ei1 , . . . , eik)dx
i1 ∧ · · · ∧ dxik

Clearly:
g(ei1 . . . eik) = f(ei1 . . . eik);∀i1, . . . ik

It follows that f = g. Setting f(ei1 , . . . , eik) = ai1...ik the result follows.

Definition 2.3. A map ω : Rn → Λk(Rn
p )

∗, given by

f =
∑

i1<···<ik

ai1...ik(p)(dx
i1 ∧ · · · ∧ dxik)p; ij ∈ {1, . . . , n}
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where the ai1...ik are real functions in Rn, if they are differentiable, this map is called differential
k-form.

In the following we will denote (i1, . . . , ik), i1 < · · · < ik; ik ∈ {1, . . . , n} with I. Therefore ω can be
written

ω =
∑
I

aIdx
I

Further we will set the convention to refer to differentiable functions as differential 0-forms.

Let us now look at an example for forms in R4

Example 2.4. Let ai, aij , . . . denote real functions.
0-forms: functions in R4

1-forms: a1dx
1 + a2dx

2 + a3dx
3 + a4dx

4

2-forms: a12dx
1 ∧ dx2 + a13dx

1 ∧ dx3 + a14dx
1 ∧ dx4 + a23dx

2 ∧ dx3 + a24dx
2 ∧ dx4 + a34dx

3 ∧ dx4

3-forms: a123dx
1 ∧ dx2 ∧ dx3 + a124dx

1 ∧ dx2 ∧ dx4 + a134dx
1 ∧ dx3 ∧ dx4 + a234dx

2 ∧ dx3 ∧ dx4

4-forms: a1234dx
1 ∧ dx2 ∧ dx3 ∧ dx4

From now on we will restrict ourself to differential k-forms, or simply k-forms. In the following we
will define operations of k-forms to see their structure.

Exterior Product
Definition 2.5. Let α =

∑
I aIdx

I , β =
∑

I bIdx
I denote two k-forms, their sum is definded to be

α+ β =
∑

I(aI + bI)dx
I .

Now let α =
∑

I aIdx
I be a k-form and β =

∑
J bJdx

J an s-form. Their exterior product is defined
to be: α ∧ β =

∑
IJ aIbJdx

I ∧ dxJ , which is an (s+k)-form. Notice that this agrees, by definition of
the determinant, with our previous definition of ∧.

Example 2.6. Let us look at the explicit exterior product of two forms, therefore let α = x1dx
1 +

x2dx
2 + x3dx

3 denote a 1-form in R3 and β = x1dx
1 ∧ dx2 + dx1 ∧ dx3 a 2-form. Using dxi ∧ dxi = 0

and dxi ∧ dxj = −(dxj ∧ dxi), i 6= j, we obtain:

α ∧ β = x2dx
2 ∧ dx1 ∧ dx3 + x3x1dx

3 ∧ dx1 ∧ dx2 = (x1x3 − x2)dx
1 ∧ dx2 ∧ dx3

Proposition 2.7. Let α be a k-form, β a s-form and γ an r-form, then:

a) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ

b) α ∧ β = (−1)ks(β ∧ α)

c) α ∧ (β + γ) = α ∧ β + α ∧ γ, if r = s

Proof. a) and c) trivially follow from definition, let us look at b):
Denote

α =
∑
I

aIdx
I , β =

∑
J

bJdx
J

.
Then:

α ∧ β =
∑
IJ

aIbJdx
i1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjs

Switching one indice, we obtain

α ∧ β =
∑
IJ

bJaI(−1)dxi1 ∧ · · · ∧ dxik−1 ∧ dxj1 ∧ dxik ∧ · · · ∧ dxjs

Sven Grützmacher 3
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repeating this k-times, we get:∑
IJ

bJaI(−1)kdxj1 ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj2 ∧ · · · ∧ dxjs

Since J has s elements, we repeat this process for all jl ∈ J and obtain

α ∧ β = (−1)ks(β ∧ α)

Pullback
So far we introduced the tangent space and co-tangent space with maps giving you elements of those
spaces. Another important question is, given Rn and Rm can we somehow get differential forms in Rn

from those in Rm. The next definition will give us a possibility to do so in a very natural way. All we
need is a differentiable function.

Definition 2.8. Let f : Rn → Rm be a differentiable function. This induces a map, denoted by
f∗, called the pullback of f , that takes k-forms in Rm to k-forms in Rn. For a k-form ω in Rm

(f∗w)p(v1, . . . , vk) = ω(f(p))(dfp(v1), . . . , dfp(vk)). Where dfp : Rn
p → Rm

f(p) is the differential of f at
point p ∈ Rn and v1, . . . , vk ∈ Rn

p . In the special case of g being a 0-form(a differentiable function),
we set: f∗g = g ◦ f

As always, we need some properties for this new map, after that we will try to make more sense of
this map.

Proposition 2.9. Let f : Rn → Rm be a differentiable function, α, β k-forms on Rm and g : Rm → R
a 0-form in Rm, then:

a) f∗(α+ β) = f∗α+ f∗β

b) f∗(gα) = f∗(g)f∗(α)

c) If α1, . . . , αk are 1-forms in Rm, f∗(α1 ∧ · · · ∧ αk) = f∗(α1) ∧ · · · ∧ f∗(αk)

Proof. These proofs will be rather short:

a)

f∗(α+ β)(p)(v1, . . . , vk) = (α+ β)(f(p))(dfp(v1), . . . , dfp(vk))

= (f∗α)(p)(v1, . . . , vk) + (f∗β)(p)(v1, . . . , vk)

= (f∗α+ f∗β)(p)(v1, . . . , vk)

b)

f∗(gα)(p)(v1 . . . vk) = (gα)(f(p))(dfp(v1), . . . , dfp(vk))

= (g ◦ f)(p)f∗α(p)(v1, . . . , vk)

= f∗g(p)f∗α(p)(v1, . . . , vk)

c)

f∗(α1 ∧ · · · ∧ αk) = (α1 ∧ · · · ∧ αk)(df(v1), . . . , df(vk))

= det(αi(df(vj)) = det(f∗αi(vj))

= (f∗α1 ∧ · · · ∧ f∗αk)(v1, . . . , vk)
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Note that the last part of this proposition is also true for k-forms, and will be proven so later. For
now we try to make sense of the pullback by interpreting it as a substitution of variables, to justify
this interpretation:

Example 2.10. Let (x1, . . . , xn) be coordinates in Rn and (y1, . . . , ym) in Rm, define f : Rn → Rm

by y1 = f1(x1, . . . , xn), . . . , ym = fm(x1, . . . , xn). Now let ω =
∑

I aIdy
I be a k-form in Rm.

Using the last Proposition we obtain

f∗ω =
∑
I

f∗(aI)(f
∗dyi1) ∧ · · · ∧ (f∗dyik)

since
f∗(dyi)(v) = dyi(df(v)) = d(yi ◦ f(v)) = df i(v)

we finally get
f∗ω =

∑
I

aI(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))df
i1 ∧ · · · ∧ df ik

where fi and df i are functions of xj . Thus, applying f∗ to ω is equivalent to ’substitue’ the variables
yi and their differentials in ω by xk and dxk obtained abvore.

Another thing we have yet to mention: Subsets of Rn. Up until now we only referred to Rn directly,
sometimes however it is more convenient to use the concepts we introduced only on Subsets of Rn. As
long as these are open, everything done up to now extends trivially.

To showcase these last two facts see:

Example 2.11. Let ω be the 1-form in R2 − {0, 0} given by

ω = − y

x2 + y2
dx+

x

x2 + y2
dy

Next define
U = {r > 0; 0 < θ < 2π}

and let f : U → R2 be the map

f(r, θ) =

{
x = rcosθ

y = rsinθ

We can now compute f∗ω. For that, notice

dx = cosθdr − rsinθdθ

dy = sinθdr + rcosθdθ

which gives us

f∗ω = −rsinθ

r2
(cosθdr − rsinθdθ) +

rcosθ

r2
(sinθdr + rcosθdθ) = dθ

We can now proof another important fact, the Pullback actually commutes with the exterior product:

Proposition 2.12. Let f : Rn → Rm be a differentiable map. Then

a) f∗(α ∧ β) = (f∗α) ∧ (f∗β), where α is a k-form and β a s-form in Rm

b) (f ◦ g)∗α = g∗(f∗α), g : Rp → Rn differentiable

Proof. Setting (y1, . . . , ym) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) ∈ Rm,(x1, . . . , xn) ∈ Rn, α =
∑

I aIdy
I ,

β =
∑

J bJdy
J

We get:

Sven Grützmacher 5
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a)
f(α ∧ β)∗ = f∗(

∑
IJ

aIbJdy
I ∧ dyJ) =

∑
IJ

aI(f1, . . . , fm)bJ(f1, . . . , fm)df I ∧ dfJ

We can now seperate this and get:∑
I

aI(f1, . . . , fm)df I ∧
∑
J

bJ(f1, . . . , fm)dfJ = f∗α ∧ f∗β

b)

(f ◦ g)∗α =
∑
I

aI((f ◦ g)1, . . . , (f ◦ g)m)d(f ◦ g)I

=
∑
I

aI(f1(g1, . . . , gn), . . . , fm(g1, . . . , gn))df
I(dg1, . . . , dgn)

= g∗(f∗(α))

exterior derivative
Unitl now we have seen some properties of k-forms in Rn. Yet we haven’t covered why those forms
are also called : ”differential “forms. This name implies some form of differentiability we haven’t seen
so far. To motivate the following definition we take a look at 0-forms which we understand quite well.

Example 2.13. Let g : Rn −→ R be a 0-form (and thus a smooth function). Then its differential is
given by

dg =

n∑
i=1

∂g

∂xi
dxi

which is a 1-form

We generalize this idea to k-forms now

Definition 2.14. Let w =
∑
I

aIdx
I be a k-form in Rn. The exterior differential is

dw =
∑
I

daI ∧ dxI

We will see later that this generalizes some concepts of differential calculus. To show this we will
take a look at a little example und some properties of exterior differentiation:

Example 2.15. Let w = xydx+ ezdy + xdz. Then

dw = d(xy) ∧ dx+ d(ez) ∧ dy + d(x) ∧ dz

= (ydx+ xdy) ∧ dx+ ezdz ∧ dy + dx ∧ dz

= −xdx ∧ dy + dx ∧ dz − ezdy ∧ dz

Proposition 2.16. Let w be a k-form, ϕ a s-form in Rn and f : Rm −→ Rn smooth. Then

a) d is R-linear

b) d(w ∧ ϕ) = dw ∧ ϕ+ (−1)kw ∧ dϕ

6 Sven Grützmacher
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c) d(dw) = d2w = 0

d) d(f∗w) = f∗(dw)

Proof. a) follows directly from the definition

b) Sei w =
∑

aIdx
I und ϕ =

∑
bJdx

J . Dann gilt

d(w ∧ ϕ) = d

(∑
IJ

(aIbJ)dx
I ∧ dxJ

)
=
∑
IJ

d(aIbJ) ∧ dxI ∧ dxJ

=
∑
IJ

bJdaI ∧ dxI ∧ dxJ +
∑
IJ

aIdbJ ∧ dxI ∧ dxJ

= dw ∧ ϕ+ (−1)k
∑
IJ

aIdx
I ∧ dbJ ∧ dxJ

= dw ∧ ϕ+ (−1)kw ∧ dϕ

c) we will give this proof in two steps.
First let w be a 0-form and thus a smooth function Rn −→ R; x 7→ f(x1, . . . , xn). Then

d(df) = d

(
n∑

i=1

∂f

∂xi
dxi

)
=

n∑
i=1

d

(
∂f

∂xi

)
∧ dxi =

n∑
i,j=1

∂2f

∂xj∂xi
dxj ∧ dxi =

n∑
i,j=1

∂jifdx
j ∧ dxi

Since f is smooth the order of differtiation does not matter, e.g. ∂ijf = ∂jif .
Furthermore dxj ∧ dxi = −dxi ∧ dxj . Thus we get

d(df) =
∑
i<j

(∂ijf − ∂jif)dxi ∧ dxj = 0

Now let w =
∑

aIdx
I . Through linearity it suffices to consider w = aIdx

I where aI 6= 0. Using b)
we get

dw = daI ∧ dxI + aId(dx
I)

while d(dxI) = d(1) ∧ dxI = 0 we can compute

d(dw) = d(daI ∧ dxI) = d(daI) ∧ dxI + daI ∧ d(dxI) = 0

since we have already shown d2 = 0 in the cases above.

d) we use the same method as in c). So let g : Rn −→ R; y 7→ g(y1, . . . , yn) be a smooth function.
Then

f∗(dg) = f∗

(∑
i

∂g

∂yi
dyi

)
=
∑
ij

∂g

∂yi

∂fi
∂xj

dxj =
∑
j

∂(g ◦ f)
∂xj

dxj = d(g ◦ f) = d(f∗g)

Now again let w =
∑

aIdx
I be a k-form. Since f commutes with the exterior product we obtain

d(f∗w) = d

(∑
I

f∗(aI)f
∗(dxI)

)
=
∑
I

d(f∗(aI)) ∧ f∗(dxI)

=
∑
I

f∗(daI) ∧ f∗(dxI) = f∗

(∑
I

daI ∧ dxI

)
= f∗(dw)

Sven Grützmacher 7
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The first properties certainly justify the name ”differential“form since we got a product rule and
linearity. Property c) is probably the most important one which can be easily seen if you have some
basic knowledge in Ko-/Homology-theory.

Since in Rn we can identify smooth vector fields with smooth 1-forms via the scalarproduct induced
isomorphism we can take a look at some concepts of differential calculus to see in which way they’re
connected to 1-forms.

divergence and gradient
The divergence and the gradient are commonly known objects in the first calculus lectures. There
they’re often defined by concrete formulas. Yet they can naturally be defined using the exteroir
derivative

Definition 2.17. Let v be a vector field in Rn. We can identify v with a map Rn −→ Rn. Then the
divergence of v is a function Rn −→ R defined as follows:

div(v)(p) = trace(dv)p

Since we know what dvp looks like concerning the standard basis we deduce the known formula for
v =

∑
aiei

div(v) =
∑ ∂ai

∂xi

Definition 2.18. Given a smooth function f : Rn −→ R we define a vector field grad(f) : Rn −→ Rn

through

< grad(f)(p), u >= dfp(u), u ∈ Rn
p

If we choose the standard basis for Rn
p we get

graf(f) =
∑ ∂f

∂xi
ei

which can be easily derived from the initial definition by

< grad(f)(p), u >= dfp(u) =
∑ ∂f

∂xi
dxi(u) =

∑ ∂f

∂xi
ui

laplacian
A combination of the two concepts above is the laplacian which involves second derivatives.

Definition 2.19. Let f : Rn −→ R be a smooth function. Then the lapacian is

4f = div(grad(f)); Rn −→ R

As before we can describe it in local coordinates:

4f = div

(∑
i

∂f

∂xi
ei

)
=
∑
ij

∂2f

∂xi∂xj

8 Sven Grützmacher
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