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1 Motivation

Figure 1: A vector parallel transported along a closed curve on a curved manifold.[1]

The aim of this talk is to define the curvature of Riemannian Manifolds and meeting
some important simplifications as the sectional, Ricci and scalar curvature. We have already
noticed, that a vector transported parallel along a closed curve on a Riemannian Manifold
M may change its orientation. Thus, we can determine whether a Riemannian Manifold is
curved or not by transporting a vector around a loop and measuring the difference of the
orientation at start and the endo of the transport. As an example take Figure 1, which
depicts a parallel transport of a vector on a two-sphere. Note that in a non-curved space the
orientation of the vector would be preserved along the transport.
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2 Curvature

In the following we will use the Einstein sum convention and make use of the notation:

X(M) space of smooth vector fields on M

D(M) space of smooth functions on M

2.1 Defining Curvature and finding important properties

This rather geometrical approach motivates the following definition:

Definition 2.1 (Curvature). The curvature of a Riemannian Manifold is a correspondence
that to each pair of vector fields X,Y ∈X (M) associates the map R(X,Y ) : X(M) → X(M)
defined by

R(X,Y )Z = ∇X∇YZ −∇Y∇XZ +∇[X,Y ]Z (1)

∇ is the Riemannian connection of M.

The last term in (1) is needed in order for R to be linear, as we will see soon. [X,Y] is
the Lie bracket, which resembles the derivative of Y along the flow generated by X and thus
being equal to the Lie derrivative LX introduced in an earlier talk. We have already seen a
geometrical interpretation of (1), now we will get to know two more possible interpretations.
As R(X,Y )Z = 0 if M = Rn Euclidean, we can say that R(X,Y )Z effectively measures, how
much M differs from being flat. To see this just plug Z = (z1, ...., zn) ∈ Rn into Definition
2.1.

Another interpretation is possible, consider a coordinate basis {xi} around a point p ∈ M .
Using [ ∂

∂xi
, ∂
∂xj

] = 0 , the last term in (1) drops out and the curvature R can be interpreted

as measuring the non-commutativity of the covariant derivative.
In the now following proposition we would like to study some important properties of the

curvature R.

Proposition 2.2 (Properties of the Riemannian Curvature). .

a) Bilinearity in X(M)× X(M): Let f, g ∈ D(M). X1, X2, Y1, Y2 ∈ X(M)

1. R(fX1 + gX2, Y1) = fR(X1, Y1) + gR(X2, Y1)

2. R(X1, fY1 + gY2) = fR(X1, Y1) + gR(X1, Y2)

b) Linearity R(X,Y ) : X(M) → X(M): Let X,Y, Z,W ∈ X(M) f, g ∈ D

1. R(X,Y )(Z +W ) = R(X,Y )Z +R(X,Y )W

2. R(X,Y )(fZ) = fR(X,Y )Z

Proof. As the proof of (b.) can be found in [dCa], we will focus only on bilinearity. It suffices
to show that R satisfies

R(X1 +X2, Y )Z = R(X1, Y )Z +R(X2, Y )Z

R(fX, Y )Z = fR(X,Y )Z

2



The first equation is trivially true(inserting in the Definition 2.1), for the second

R(fX, Y )Z = ∇fX∇YZ −∇Y∇fXZ +∇[fX,Y ]Z

= f∇X∇YZ −∇Y f∇XZ +∇f [X,Y ]−(Y f)XZ

= f∇X∇YZ − f∇Y∇XZ − (Y f)∇XZ + f∇[X,Y ]Z + (Y f)∇XZ

= fR(X,Y )Z

The next Proposition will be the famous 1. Bianchi identity, named after his founder
Luigi Bianchi (1902). It is valid for symmetric connections.(here Levi-Civita connection) .

Proposition 2.3 (1. Bianchi Identity).

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0

Proof. Just explicitly calculate the expression above,

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y

= ∇X∇YZ −∇Y∇XZ +∇[X,Y ]Z

+∇Y∇ZX −∇Y∇ZX +∇[Y,Z]X

+∇X∇ZY −∇Z∇XY +∇[Z,X]Y

= ∇Y [X,Z] +∇Z [Y,X] +∇X [Z, Y ]

−∇[X,Z]Y −∇[Y,X]Z −∇[Z,Y ]X

= [Y, [X,Z]] + [Z, [Y,X]] + [X, [Z, Y ]]

= 0

The last equation is true due to Jacobi identity for vector fields.

We will now get to know some useful symmetry properties of R. Be aware that from now
on we will denote 〈R(X,Y )Z, T 〉 = (X, Y, Z, T ).

Proposition 2.4 (Useful identities of R). Let X,Y, Z, T ∈ Ξ(M)

i) (X,Y, Z, T ) + (Y, Z,X, T ) + (Z,X, Y, T ) = 0

ii) (X,Y, Z, T ) = −(Y,X,Z, T )

iii) (X,Y, Z, T ) = −(Y,X, T, Z)

iv) (X,Y, Z, T ) = (Z, T,X, Y )

Proof. Before we begin proving all properties, we observe that i) is just the first Bianchi
identity again and that ii) is just a consequence of our definition of the curvature endomor-
phism. We will now show iii) and iv) will follow from i) - iii).
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Observe that the third statment is equivalent to

(X,Y, Z, Z) = 0

= 〈∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z,Z〉

Note that the following holds

〈∇Y∇XZ,Z〉 = Y 〈∇XZ,Z〉 − 〈∇XZ,Z〉 and,

〈∇[X,Y ]Z,Z〉 =
1

2
[X,Y ]〈Z,Z〉

Using this and the product rule to calculate,

(X,Y, Z, Z) = Y 〈∇XZ,Z〉 −X〈∇YZ,Z〉+
1

2
[X,Y ]〈Z,Z〉

=
1

2
Y (X, 〈Z,Z〉)− 1

2
X(Y, 〈Z,Z〉) + 1

2
[X,Y ]〈Z,Z〉

= −1

2
[X,Y ]〈Z,Z〉+ 1

2
[X,Y ]〈Z,Z〉

= 0

To see that iv) holds we will use i) and perform cyclic permutations, leaving us with 4
equations. Summing up and using iii), which we just showed, we come to the claimed
equality:

(X,Y, Z, T ) + (Y, Z,X, T ) + (Z,X, Y, T ) = 0

(T,X, Y, Z) + (T,X, Y, Z) + (T,X, Y, Z) = 0

(Z, T,X, Z) + (Z, T,X, Z) + (Z, T,X, Z) = 0

(Y, Z,X, T ) + (Y, Z,X, T ) + (Y, Z,X, T ) = 0

⇒ 2(Z,X, Y, T ) + 2(T, Y, Z,X) = 0

(Z,X, Y, T ) = (Y, T, Z,X)

We now try to find a expression for the curvature R locally in a coordinate system (U,
x) at point p ∈ M . The procedure is as usual denote ∂

∂xi
= Xi. We put

R(Xi, Xj)Xk = Rl
ijkXl

By Rl
ijk we mean the components of the curvature R expressed in the chart (U,x). Our aim

is now to express these components in terms of the Christoffel Symbols Γi
jk, the coefficients

of the Riemannian connection. In order to do so, write:

X = uiXi, Y = vjXj, Z = wkXk

As we have already seen in Proposition 2.2, R is linear. Thus the components ui, vj, wk can
be pulled out of the expression above. We write:

R(X,Y )Z = Rl
ijku

ivjwkXl
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We can now simply calculate:

R(Xi, Xj)Xk = ∇Xj
∇Xi

Xk −∇Xi
∇Xj

Xk

= ∇Xj
(Γl

ikXl)−∇Xi
(Γl

jkXl)
pr
= (∇Xj

Γl
ik −∇Xi

Γl
jk)Xl

+ (Γl
ikΓ

s
jl − Γl

jkΓ
s
il)Xs

= (
∂

∂xj

Γs
ik −

∂

∂xi

Γs
jk + Γl

jkΓ
s
jl − Γl

jkΓ
s
il)Xs

Thus we can identify: ⇒ Rs
ijk = Γl

jkΓ
s
jl − Γl

jkΓ
s
il +

∂

∂xj

Γs
ik −

∂

∂xi

Γs
jk

Please notice the double summation in the fourth equality. At this point it is important to
emphazise, that Γi

jk is not a tensor on M, as the covariant derivative is not linear in all its
arguments. However, we notice that the value of R(X,Y )Z solely depends on the values of
the function Rl

ijk at the point p, and the values of X,Y,Z at p. The curvature, being linear
in all arguments, is a tensor. Thus, we conclude that the Christoffels in the last statement
above must have been combined in such a way that the additional term in the transformation
rule for Γi

jk drops out, which can be shown by direct calculation of the expression for Ri
ijk.

Put,

〈R(Xi, Xj)Xk, Xs〉 = Rl
ijkgls = Rijks

we can now express the identies of Proposition 2.4 via:

Rijks +Rjkis +Rkijs = 0

Rijks = −Rjiks

Rijks = −Rijsk

Rijks = Rksij

2.2 Sectional curvature

We will now talk about the sectional curvature, an important simplification of the Rieman-
nian Curvature Tensor as it completely determines it. As we want the sectional curvature
K to be independent of our choice of coordinates, a normalisation factor is required:

Definition 2.5. Let V be vector space, x, y ∈ V

|x ∧ y| ≡
√

|x|2|y|2 − 〈x, y〉

|x ∧ y| is the area of a parallelogram in V spanned by x and y.

We now will show that the sectional curvature K, which we will define, is with Defini-
tion 2.5 as claimed, independent on the choice of the vectors x, y. We formulate:
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Proposition 2.6. Let σ ⊂ TpM be a two-dimensional subspace of the tangent space, let the
vectors x, y ∈ σ be linearly independent. Then,

K(x, y) =
(x, y, x, y)

|x ∧ y|2

is independent of the choice of x, y ∈ σ.

Proof. We could explicitly calculate that for another basis {x′, y′} ∈ σ, K(x, y) = K(x′, y′).
Being lazy, we observe that we can pass from the basis {x, y} of σ to any other basis, denoted
by {x′, y′}, by simply iterating following transformations, however, it is clear that K(x, y)
stays invariant under these transformations.

1.) {x, y} → {y, x}

2.) {x, y} → {λx, y}

3.) {x, y} → {x+ λy, y}

In other words, when we change basis of σ both the numerator and denominator change by
the square determinant of the transformation matrix.

Finally we are able to define the sectional curvature.

Definition 2.7 (Sectional curvature). At a fixed point p ∈ M and a two-dimensional sub-
space lying in the tangent space, σ ∈ TpM , K(x, y) = K(σ) ∈ R, {x, y} being any basis of
σ, is called sectional curvature of σ at p.

As stated earlier, we will now show that indeed, ifK(σ) is known for all σ, R is completely
determined. We will state this fact, in the following important Lemma:

Lemma 2.8. V vector space with inner product 〈 , 〉, dim V ≥ 2.
We define the tri-linear mappings, R : V × V × V → V, and R′ : V × V × V → V in such a
way that Proposition 2.4 holds by

(x, y, z, t) = 〈R(x, y)z, t〉, (x, y, z, t)′ = 〈R′(x, y)z, t〉

In the case that x, y are linearly independent,

K(σ) =
(x, y, x, y)

|x ∧ y|2
, K ′(σ) =

(x, y, x, y)′

|x ∧ y|2
,

again σ is a two-dimensional subspace spanned by x, y.
If ∀σ ⊂ V,K(σ) = K ′(σ), then R = R′.

Proof. Observe that we only have to show that ∀x, y, z, t ∈ V (x, y, z, t) = (x, y, z, t)′ holds.
As K(σ) = K ′(σ) by hypothesis, the first line holds ∀x, y ∈ V

(x, y, x, y) = (x, y, x, y)′

(x+ z, y, x+ z, y) = (x+ z, y, x+ z, y)′
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Using linearity of R and R′:

(x, y, x, y) + 2(x, y, z, y) + (z, y, z, y) = (x, y, x, y)′ + 2(x, y, z, y)′ + (z, y, z, y)′

⇒ (x, y, z, y) = (x, y, z, y)′

Using same trick as before and what we just obtained, but now in the second and fourth
argument:

(x, y + t, z, y + t) = (x, y + t, z, y + t)′

⇒ (x, y, z, t) + (x, t, z, y) = (x, y, z, t)′ + (x, t, z, y)′

2.4.iv)⇒ (x, y, z, t)− (x, y, z, t)′ = (y, z, x, t) + (y, z, x, t)′

We realize that (x, y, z, t)−(x, y, z, t)′ is invariant under cyclic permutations of the first three
arguments. Using now the Bianchi identity 2.4.i):

3[(x, y, z, t)−(x, y, z, t)′] = 0

⇒ (x, y, z, t) = (x, y, z, t)′ ∀x, z, y, t ∈ V

Now we want to characterize an important class of Riemannian Manifolds, those with
constant curvature. We will do this by means of the components Rijkl of the curvature
in an orthonormal basis. Manifolds with constant curvature do play an important role in
the development of Riemannian Geometry but also in physics. We will study them in the
following Lemma and Corollary.

Lemma 2.9. M is a Riemannian Manifold, p point of M .
Be R′ : TpM × TpM × TpM → TpM a tri-linear mapping ∀X,Y,W,Z ∈ TpM :

〈R′(X,Y,W ), Z〉 = 〈X,W 〉〈Y, Z〉 − 〈Y,W 〉〈X,W 〉

M with curvature R has constant sectional curvature K0 if and only if R = K0R
′.

Proof. Set K(p, σ) = K0 ∀σ ∈ TpM , denote:

〈R′(X,Y,W ), Z〉 = (X,Y,W,Z)′

The notation above makes sense since R′ fullfills Proposition 2.4. Now for all pairs of vectors
X,Y ∈ TpM , we have:

(X,Y,X, Y )′ = 〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2 = |X ∧ Y |2

Thus,

R(X,Y,X, Y ) = K0|X ∧ Y |2 = K0R
′(X,Y,X, Y )

Using Lemma 2.8, which implies that ∀X,Y,W,Z,

R(X,Y,W,Z) = K0R
′(X,Y,W,Z)

⇒ R = K0R
′

The Converse is trivial.
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It is convenient to express a condition for K(p, σ = K0) in terms of the coefficients Rijkl:

Corollary 2.10. Let M be a n - dimensional Riemannian Manifold, p point of M. {e1, ..., en}
is an orthonormal basis of the tangent space TpM . The coefficients of the curvature R
expressed in the basis: Rijkl = 〈R(ei, ej)ek, el〉, i, j, k, l = 1, ..., n. Then K(p, σ) = const =
K0 ∀σ ∈ TpM , if and only if:

Rijkl = K0(δijδkl − δilδjk)

So the searched expression is K(p, σ) = K0, if and only if Rijij−Rijji = K0 ∀ i 6= j, Rijkl = 0
else.

2.3 Ricci and scalar curvature

Another geometric object, with great importance especially for general relativity, is the Ricci
Curvature and the scalar curvature, which in some sense condense the information encoded
in the curvature R. We define:

Definition 2.11 (Ricci Curvature and scalar curvature). Let M be an n-dim Riemannian
Manifold, p a point on M . Consider a unit vector x = zn with {z1, ..., zn−1} being the
orthonormal basis of the hyperplane in TpM orthogonal to x, then the Ricci Curvature is
given by:

Ricp(x) =
1

n− 1

n−1∑
i=1

〈R(x, zi)x, zi〉 = Ricp(x, x)

and the scalar curvatureKs is given by:

Ks(p) =
1

n

n∑
j=1

Ricp(zj) =
1

n(n− 1)

n∑
j=1

n−1∑
i=1

〈R(zi, zj)zi, zj〉

So the Ricci Curvature Ricp(x) is the sum of the sectional curvature of planes spanned
by x and other elements of an orthonormal basis. Both do not Ricp(x) and Ks(p) depend
on the choice of the corresponding orthonormal basis, we will prove this by noting that
Ricp(x, y) =

1
n−1

∑n−1
i=1 〈R(x, zi)y, zi〉 as the trace of the linear map from TpM → TpM .

Proof. Define the bilinear form Q on TpM : x, y ∈ TpM :

Q(x, y) = tr(z → R(x, z)y)

Choose x to be a unit vector, then extend x to an orthonormal basis of TpM {z1, ..., zn−1, zn =
x}. Then the trace of the mapping z → R(x, z)y is given by:

Q(x, y) =
n−1∑
i=1

〈R(x, zi)y, zi〉

2.4.iv)
=

n−1∑
i=1

〈R(y, zi)x, zi〉

= Q(y, x)
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We note Q is symmetric, observe Q(x, x) = (n − 1)Ricp(x); This completes the proof that
Ricp(x) is intrinsically defined.
Notice Q, being a bilinear form, on TpM corresponds to a linear and self- adjoint mapping
Ks:

〈Ks(x), y〉 = Q(x, y)

And again, take an orthonormal basis {z1, ..., zn}, the trace of K(x) is given now:

tr(Ks) =
n∑

j=1

〈K(zj), zj〉

=
n∑

j=1

Q(zj, zj)

= (n− 1)
n∑

j=1

Ricp(zj)

= n(n− 1)Ks(p)

This completes the proof.

(This procedure in general is called contraction. By this, we mean choosing two indices
of a tensor of rank (a, b), one contra- and one covariant, set them equal and finally sum over.
Thus, obtaining a tensor of rank (a− 1, b− 1). The Ricci tensor emerges by contraction out
of the curvature tensor. The Ricci Scalar by contraction of the Ricci Tensor)

As always, it is convenient to express the Ricci Tensor, the bilinear form 1
n−1

Q, locally

in a coordinate system. As before Xi =
∂
∂xi

, we will denote by gij = 〈Xi, Xj〉 and gij denotes

the inverse of the matrix, gikg
kl = δij. We now express the coefficients of the Ricci Tensor in

the basis Xi:

1

n− 1
Rik =

1

n− 1

n∑
j=1

Rj
ijk =

1

n− 1

n∑
s,j=1

Rijksg
sj

Ks =
1

n(n− 1)

n∑
i,k=1

Rikg
ik

For the last statement observe, that for A : TpM → TpM , a linear, self-adjoint mapping
and B : TpM × TpM → R the associated bilinear form (B(X,Y ) = 〈A(X), Y 〉), then
tr(A) =

∑
ik B(Xi, Xk)g

ik.
This talk will conclude with an important Lemma, which will be useful in later talks.

Lemma 2.12. Be f: A ⊂ R2 a parametrized surface, (s, t) the usual coordinates of R2, a
vector field V (s, t) along f . For each (s, t):

D

∂t

D

∂s
V − D

∂s

D

∂t
V = R

(
∂f

∂s
,
∂f

∂t

)
V

Proof. Calculate the left side of the equation, can be found in [dCa].
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