
Jacobi fields
Introduction to Riemannian Geometry

Prof. Dr. Anna Wienhard und Dr. Gye-Seon Lee

Sebastian Michler, Ruprecht-Karls-Universität Heidelberg, SoSe 2015

July 15, 2015

Contents

1 The Jacobi equation 1
1.1 The form of Jacobi fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Relationship between the spreading of geodesics and curvature . . . . . . . . . . 4

2 Conjugate points 6
2.1 Conjugate points and the singularities of the exponential map . . . . . . . . . . . 7
2.2 Properties of Jacobi fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

In the following let M always denote a Riemannian manifold of dimension n.

1 The Jacobi equation

Jacobi fields provide a means of describing how fast the geodesics starting from a given point
p ∈M tangent to σ ⊂ TpM spread apart, in particular we will see that the spreading is deter-
mined by the curvature K(p, σ).

To understand the abstract definition of a Jacobi field as a vector field along a geodesic satis-
fying a special differential equation we will first have another look at the exponential mapping
introduced in [Car92][Chap. 3, Sec. 2].

Observation 1. Let p ∈ M and v ∈ TpM so, that expp is defined at v ∈ TpM . Furthermore
let f : [0, 1]× [−ε, ε]→M be the parametrized surface given by

f(t, s) = expp tv(s)

with v(s) being a curve in TpM satisfying v(0) = v. In the proof of the Gauss Lemma
([Car92][Chap. 3, Lemma 3.5]) we have seen that

∂f

∂s
(t, 0) = (d expp)tv(0)(tv

′(0)). (1)

We now want to examine the thusly induced vector field J(t) = ∂f
∂s (t, 0) along the geodesic

γ(t) = expp(tv), 0 ≤ t ≤ 1. Since γ is a geodesic we must have D
∂t
∂f
∂t = 0 for all (t, s). Using this

and [Car92][Chap. 4, Lemma 4.1] we get

0 =
D

∂s

(
D

∂t

∂f

∂t

)
=
D

∂t

D

∂s

∂f

∂t
−R

(
∂f

∂s
,
∂f

∂t

)
∂f

∂t

=
D

∂t

D

∂t

∂f

∂s
+R

(
∂f

∂t
,
∂f

∂s

)
∂f

∂t
.

which shows that J statisfies the differential equation D2J
dt2

+R(γ′(t), J(t))γ′(t) = 0.
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We now use the just obtained differential equation to define Jacobi fields along a geodesic:

Definition 2. Let γ : [0, a]→M be a geodesic in M . A vector field J along γ is called a Jacobi
field if it satisfies the Jacobi equation

D2

dt2
J(t) +R(γ′(t), J(t))γ′(t) = 0

for all t ∈ [0, a].

Let us first observe an important property of Jacboi fields:

Proposition 3. Let γ : [0, a]→M be a geodesic in M and J a Jacobi field along γ. Then J is
determined by its initial conditions J(0) and DJ

dt (0).

Proof. We first choose an orthonormal basis {ei}i=1,...,n of TpM which we can extend to parallel,
orthonormal fields e1(t), . . . , en(t) along γ. Then for the Jacobi field J we get

J(t) =
n∑
i=1

fi(t)ei(t)

for smooth functions fi ∈ C∞, i = 1, . . . , n. This yields

D2

dt2
J(t) =

n∑
i=1

f
′′
i (t)ei(t)

and

R(γ′, J)γ′ =

n∑
i=1

〈R(γ′, J)γ′, ei〉ei =

n∑
i=1

 n∑
j=1

fj〈R(γ′, ej)γ
′, ei〉

 ei

so the Jacobi equation is equal to the system

f ′′i +
n∑
j=1

fj〈R(γ′, ej)γ
′, ei〉 = 0 for all i = 1, . . . , n.

Since this is a linear system of the second order, given the initial conditions J(0) and DJ
dt (0)

there exists a C∞ solution of the system defined on [0, a].

Before considering a first example we make two remarks:

Remark 4. The proof of Proposition 3 showed that the Jacobi equation is equal to a linear
system of the second order. For a given geodesic γ there exist therefore exactly 2n linearly
independent Jacobi fields along γ.

Remark 5. Let γ be a geodesic. Then we have

D2

dt2
γ′(t) +R(γ′(t), γ′(t))γ′(t) = 0 + 0 = 0,

so γ′ defines a Jacobi field along γ. Note that, as γ is a geodescis, the field γ′ never vanishes.
Analogous one can see that the field t 7→ tγ′(t) is also a Jacobi field along γ which vanishes if
and only if t = 0.

We will now give an example of Jacobi fields on manifolds of constant curvature:
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Example 6 (Jacobi fields on manifolds of constant curvature). Let M be a Riemannian man-
ifold of constant sectional curvature K and let γ : [0, l] → M be a normalized geodesic on M .
Further let J be a Jacobi field along γ, normal to γ′.

Applying [Car92][Chap. 4, Lemma 3.4] and using the fact that |γ′| = 1 as well as that J is
normal to γ′ we have for every vector field T along γ

〈R(γ′, J)γ′, T 〉 = K
{
〈γ′, γ′〉〈J, T 〉 − 〈γ′, T 〉〈J, γ′〉

}
= K〈J, T 〉 = 〈KJ, T 〉,

which yields
R(γ′, J)γ′ = KJ, (2)

i. e. the Jacobi equation is of the form

D2

dt2
J +KJ = 0.

Now let w(t) be a parallel field along γ with 〈γ′(t), w(t)〉 = 0 and |w(t)| = 1 for all t ∈ [0, l].
Then

J(t) =


sin(t
√
K)√

K
w(t), if K > 0,

tw(t) if K = 0,
sinh(t

√
−K)√

−K w(t) if K < 0

is a solution for Equation (2) with initial conditions J(0) = 0 and J ′(0) = w(0). This can be
easily verified, for example in the case K > 0 we have

D2

dt2
J(t) +KJ(t) =

D

dt

cos(t
√
K)w(t) +

sin(t
√
K)√

K

D

dt
(w(t))︸ ︷︷ ︸
=0

+K
sin(t
√
K)√

K
w(t)

= −
√
K sin(t

√
K)w(t) +

√
K sin(t

√
K)w(t)

= 0

for all t ∈ [0, l] just as desired.

1.1 The form of Jacobi fields

So far we have seen one systematic way to construct a Jacobi field along a geodesic using the
exponential mapping. The next proposition and corollary will show that all possible Jacobi
fields J with J(0) = 0 along a geodesics are essentially of this form.

Proposition 7. Let γ : [0, a]→M be a geodesic and let J be a Jacobi field along γ with J(0) =
0. Put DJ

dt (0) = w and γ′(0) = v. Consider w as an element of Tav
(
Tγ(0)M

)
and construct a

curve v(s) in Tγ(0)M with v(0) = av and v′(0) = aw. Put f(t, s) = expp(
t
av(s)), p = γ(0) and

define a Jacobi field J by J(t) = ∂f
∂s (t, 0). Then J = J on [0, a].

Proof. According to Proposition 3 it suffices to show that J(0) = J(0) and DJ
dt (0) = DJ

dt . Using
Equation (1) we have

J(t) =
∂f

∂s
(t, 0) = (d expp)tv(tw), (3)

which yields J(0) = (d expp)0(0) = 0 = J(0) as we have (d expp)0(w) = w for all w as seen in
the proof of [Car92][Chapter 3, Proposition 2.9].
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Furthermore we have

D

dt

∂f

∂s
(t, 0) =

D

dt
((d expp)tv(tw)) =

D

dt
(t(d expp)tv(w))

= (d expp)tv(w) + t
D

dt
((d expp)tv(w)),

so we get
DJ

dt
(0) =

D

dt

∂f

∂s
(0, 0) = (d expp)0(w) = w =

DJ

dt
(0)

just as desired.

Corollary 8. Let γ : [0, a]→M be a geodesic. If J is a Jacobi field along γ with J(0) = 0 then
we have

J(t) = (d expp)tγ′(0)
(
tJ ′(0)

)
.

Proof. The statement follows immediately from Proposition 7 and Equation (3).

An analogous construction than that in Proposition 7 can also be obtained for Jacobi fields J
that do not satisfy J(0) = 0. For details see [Car92][Chap. 5, Exercise 2].

1.2 Relationship between the spreading of geodesics and curvature

We will now use the previously introduced Jacobi fields to obtain a relationship between the
spreading of geodesics originating from the same point and the curvature at this point.

Proposition 9. Let p ∈ M and γ : [0, a] → M be a geodesic with γ(0) = p, γ′(0) = v. Let
w ∈ Tv(TpM) with |w| = 1 and let J be a Jacobi field along γ given by

J(t) = (d expp)tv(tw).

Then the Taylor expansion of |J(t)|2 about t = 0 is given by

|J(t)|2 = t2 − 1

3
〈R(v, w)v, w〉t4 +R(t)

where limt→0
R(t)
t4

= 0.

Proof. We have J(0) = (d expp)0(0) = 0 and J ′(0) = w hence the first three coefficients of the
Taylor expansion are

〈J, J〉(0) = 〈J(0), J(0)〉 = 〈0, 0〉 = 0

〈J, J〉′(0) =
(
〈J ′, J〉+ 〈J, J ′〉

)
(0) = 2〈J, J ′〉(0) = 2〈J(0), J ′(0)〉 = 2〈0, w〉 = 0,

〈J, J〉′′(0) = 2〈J ′, J ′〉(0) + 2〈J ′′, J〉(0) = 2〈w,w〉 = 2

As J is a Jacobi field we have J ′′(0) = −R(γ′, J)γ′(0) = 0 which yields

〈J, J〉′′′(0) = 6〈J ′, J ′′〉(0) + 2〈J ′′′, J〉(0) = 0

To calculate the fourth coefficient observe that

D

dt

[
R(γ′, J)γ′

]
(0) = R(γ′, J ′)γ′(0),

since for any W we have

d

dt
〈R(γ′,W )γ′, J〉 =

d

dt
〈R(γ′, J)γ′,W 〉 = 〈D

dt
R(γ′, J)γ′,W 〉+ 〈R(γ′, J)γ′,W ′〉,
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so we get

〈D
dt

(R(γ′, J)γ′),W 〉 =
d

dt
〈R(γ′,W )γ′, J〉 − 〈R(γ′, J)γ′,W ′〉

= 〈D
dt
R(γ′,W )γ′, J〉+ 〈R(γ′,W )γ′, J ′〉 − 〈R(γ′, J)γ′,W ′〉

= 〈R(γ′, J ′)γ′,W 〉+ 〈D
dt
R(γ′,W )γ′, J〉 − 〈R(γ′, J)γ′,W ′〉

which for t = 0 yields the desired identity. Together with the Jacobi equation we obtain that
J ′′′(0) = −R(γ′, J ′)γ′(0) so we get

〈J, J〉′′′′(0) = 8〈J ′, J ′′′〉(0) + 6〈J ′′, J ′′〉(0) + 2〈J ′′′′, J〉(0)

= −8〈J ′, R(γ′, J ′)γ′〉(0)

= −8〈R(v, w)v, w〉

just as desired.

From Proposition 9 we can now draw an important corollary:

Corollary 10. If γ : [0, l] → M is parametrized by arc length, and 〈w, v〉 = 0, the expression
〈R(v, w)v, w〉 is the sectional curvature at p with respect to the plane σ generated by v and w.
Therefore in this situation

|J(t)|2 = t2 − 1

3
K(p, σ)t4 +R(t)

and

|J(t)| = t− 1

6
K(p, σ)t3 + R̃(t) with lim

t→0

R̃(t)

t3
= 0. (4)

Proof. The first statement is an immediate application of Proposition 9 and for the second
statement we just have to compare the coefficients of the Taylor expansion with the coefficients
of the Taylor expansion raised to the power of two.

With this knowledge we can now make a statement about the relation between geodesics and
curvature:

Remark 11 (Relation between geodesics and curvature). Let

f(t, s) = expp tv(s), t ∈ [0, δ], s ∈ (−ε, ε)

be a parametrized surface where δ is chosen so small that expp tv(s) is defined and v(s) is a
curve in TpM with |v(s)| = 1, v(0) = v and v′(0) = w, |w| = 1.

Our first observation is that the rays t 7→ tv(s), t ∈ [0, δ] starting from the origin 0 ∈ TpM
deviate from the ray t 7→ tv(0) with the velocity∣∣∣∣( ∂∂stv(s))(0)

∣∣∣∣ =

∣∣∣∣t( ∂∂sv(s))(0)

∣∣∣∣ = |tv′(0)| = |tw| = t.

On the other hand Equation (4) tells us that the geodesics t 7→ expp(tv(s)) deviate from the
geodesic γ(t) = expp tv(0) with a velocity that differs from t by a term of the third order of t

given by −1
6K(p, σ)t3.

In particular we get that locally the geodesics spread apart less than the rays in TpM if
Kp(σ) > 0 and more apart if Kp(σ) < 0 and that for small t the value K(p, σ)t3 furnishes
and approximation for the extent of this spread with an error of order t3.
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2 Conjugate points

We will now explore the relationship between the singularities of the exponential mapping and
Jacobi fields and then derive some further properties of Jacobi fields. We start with a central
definition:

Definition 12. Let γ : [0, a] → M be a geodesic. The point γ(t0) is said to be conjugate
to γ(0) along γ for t0 ∈ (0, a], if there exists a Jacobi field J along γ, not identically zero,
with J(0) = 0 = J(t0). The maximum number of such linearly independent fields is called the
multiplicity of the conjugate point γ(t0).

If we expand the definition naturally to γ(0) we immediately get that γ(t0) is conjugate to γ(0)
if and only if γ(0) is conjugate to γ(t0).

Lemma 13. Let γ : [0, a] → M be a geodesic and J1, . . . , Jk be Jacobi fields along γ with
Ji(0) = 0 for i = 1, . . . , k. Then J1, . . . , Jk are linearly independent if and only if J ′1(0), . . . , J ′k(0)
are linearly independent.

Proof. We first assume that J1, . . . , Jk are linearly independent Jacobi fields with Ji(0) = 0 for
i = 1, . . . , k. If J ′1(0), . . . , J ′k(0) were not linearly independent we would have

λ1J
′
1(0) + . . .+ λkJ

′
k(0) = 0,∃i ∈ {1, . . . , k} s. t. λi 6= 0.

Without loss of generality assume that λ1 6= 0 then we have

J ′1(0) = (−λ2
λ1

)J ′2(0) + . . .+ (−λk
λ1

)J ′k(0) =

(
(−λ2
λ1

)J2 + . . .+ (−λk
λ1

)Jk

)′
(0).

Since J1(0) =
[
(−λ2

λ1
)J2 + . . .+ (−λk

λ1
)Jk

]
(0) Proposition 3 yields J1 = (−λ2

λ1
)J2 + . . .+(−λk

λ1
)Jk

which would be a contradiction.

For the converse assume that J1, . . . , Jk are linearly dependent, i. e.

λ1J1 + . . .+ λkJk = 0,∃i ∈ {1, . . . , k} s. t. λi 6= 0.

Once again assuming that λ1 6= 0 we infer J1 = (−λ2
λ1

)J2 + . . . + (−λk
λ1

)Jk which would imply

that J ′1(0) = (−λ2
λ1

)J ′2(0) + . . .+ (−λk
λ1

)J ′k(0) which cannot be the case.

Remark 14. As M is a manifold of dimension n we have that dimTpM = n for all p ∈ M .
Hence along any geodesic γ : [0, a] → M we get from Lemma 13 that there exist exactly n
linearly indepedent Jacobi fields along γ which vanish at γ(0).

Furthermore we have seen in Remark 4 that for a geodesic γ : [0, a]→M the field J(t) = tγ′(t)
is a Jacobi field along γ that never vanishes for t 6= 0. Hence this Jacobi does not satisfy
J(0) = 0 = J(t0) for any t0 ∈ (0, a] so the multiplicity of any conjugate point can never exceed
n− 1.

Let us now consider conjugate points on the sphere Sn = {x ∈ Rn+1 | |x| = 1}:

Example 15. From [Car92][Chaper 6] we know that the sphere has constant sectional curvature

1. As we have seen in the proof of Example 6 the Jacobi equation is then of the form D2

dt2
J+J = 0

and for every geodesic γ of Sn we know that J(t) = (sin t)w(t) with w(t) being a parallel field
along γ with 〈γ′(t), w(t)〉 = 0 and |w(t)| = 1 is a Jacobi field along γ. We have

J(0) = (sin 0)w(0) = 0 = (sinπ)w(π) = J(π),
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i. e. the point γ(π) is conjugate to γ(0).

As TpS
n has dimension n we can choose n− 1 linearly independent parallel fields w(t) along γ

satisfying the required conditions. Hence γ(π) is a conjugate point of multiplicity n− 1.

Definition 16. The set of (first) conjugate points to the point p ∈ M for all geodesics that
start at p is called the conjugate locus of p and is denoted by C(p).

2.1 Conjugate points and the singularities of the exponential map

The following proposition will be an important result relating conjugate points with the singu-
larities of the exponential map:

Proposition 17. Let γ : [0, a]→ M be a geodesic and put γ(0) = p. The point q = γ(t0), t0 ∈
(0, a] is conjugate to p along γ if and only if v0 = t0γ

′(0) is a critical point of expp. In addition,
the multiplicity of q as a conjugate point of p is equal to the dimension of the kernel of the linear
map (d expp)v0.

Proof. By definition we have that the point q = γ(t0) is a conjugate point of p along γ if and
only if there exists a non-zero Jacobi field J along γ with J(0) = J(t0) = 0. Let v = γ′(0) and
w = J ′(0). By Corollary 8 we know that the Jacobi field is of the form

J(t) = (d expp)tv(tw), t ∈ [0, a],

in particular we get that J is non-zero if and only if w 6= 0. Therefore q is conjugate to p if and
only if

0 = J(t0) = (d expp)t0v(t0w), w 6= 0,

that is if and only if t0v is a critical point of expp which proves the first assertion.

For the second assertion we know that the multiplicity of q is equal to the number of linearly
independent Jacobi fields J1, . . . , Jk which are zero at 0 and at t0. From the construction above
and Lemma 13 we get that the multiplicity of q is equal to the dimension of the kernel of
(d expp)t0v.

2.2 Properties of Jacobi fields

We will now give some more properties of Jacobi fields using the tools introduced before:

Proposition 18. Let J be a Jacobi field along the geodesic γ : [0, a]→M . Then

〈J(t), γ′(t)〉 = 〈J ′(0), γ′(0)〉t+ 〈J(0), γ′(0)〉.

Proof. The Jacobi equation yields

〈J ′, γ′〉′ = 〈J ′′, γ′〉 = −〈R(γ′, J)γ′, γ′〉 = 0,

therefore we must have 〈J ′, γ′〉 = 〈J ′(0), γ′(0)〉. In addition

〈J, γ′〉′ = 〈J ′, γ′〉 = 〈J ′(0), γ′(0)〉.

We can integrate the last equation in t to obtain

〈J, γ′〉 = 〈J ′(0), γ′(0)〉t+ 〈J(0), γ′(0)〉

as desired.
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From the last proposition we can draw two immediate corollaries:

Corollary 19. If 〈J, γ′〉(t1) = 〈J, γ′〉(t2), t1, t2 ∈ [0, a], t1 6= t2, then 〈J, γ′〉 does not depend on
t; in particular, if J(0) = J(a) = 0, then 〈J, γ′〉(t) ≡ 0.

Proof. By Proposition 18 we have 〈J(t), γ′(t)〉 = 〈J(0), γ′(0)〉 for all t ∈ [0, a] and if J(0) =
J(a) = 0 we have 〈J(0), γ′(0)〉 = 0.

Corollary 20. Suppose that J(0) = 0. Then 〈J ′(0), γ′(0)〉 = 0 if and only if 〈J, γ′〉(t) ≡ 0; in
particular the space of Jacobi fields J with J(0) = 0 and 〈J, γ′〉(t) ≡ 0 has dimension equal to
n− 1.

Proof. The first assertion is immediate from Proposition 18. Furthermore in case of J(0) = 0
and 〈J, γ′〉(t) ≡ 0 we have n− 1 degrees of freedom for J ′(0) and hence by applying once again
Lemma 13 we get that the dimension of the space of such Jacobi fields is n− 1 .

We now come to our last result:

Proposition 21. Let γ : [0, a] → M be a geodesic. Let V1 ∈ Tγ(0)M and V2 ∈ Tγ(a)M . If
γ(a) is not conjugate to γ(0) there exists a unique Jacobi field J along γ with J(0) = V1 and
J(a) = V2.

Proof. Let J be the space of Jacobi fields with J(0) = V1 and define the mapping

θ : J → Tγ(a)M, θ(J) = J(a).

Since γ(a) is not conjugate to γ(0) we know that θ is injective. Indeed if J1 6= J2 with
J1(a) = J2(a), then J1− J2 would be a non-zero Jacobi field with (J1− J2)(0) = V1− V1 = 0 =
J1(a)− J2(a) = (J1 − J2)(a) which would be a contradiction.

Since θ is a linear injection and we have dimJ = dimTγ(a)M we see that θ is in fact an

isomorphism. Hence there exists J ∈ J with J(0) = V1 and J(a) = V2. As θ is an isomorphism
the uniqueness is clear as well.

Corollary 22. Let γ : [0, a] → M be a geodesic in M and let J ⊥ be the space of Jacobi
fields with J(0) = 0 and J ′(0)⊥γ′(0). Let {J1, . . . , Jn−1} be a basis of J ⊥. If γ(t), t ∈ (0, a],
is not conjugate to γ(0), then {J1(t), . . . , Jn−1(t)} is a basis for the orthogonal complement
{γ′(t)}⊥ ⊂ Tγ(t)M of γ′(t).
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