Jacobi fields

Introduction to Riemannian Geometry Prof. Dr. Anna Wienhard und Dr. Gye-Seon Lee

Sebastian Michler, Ruprecht-Karls-Universität Heidelberg, SoSe 2015

July 15, 2015

Contents

1	The	e Jacobi equation	1
	1.1	The form of Jacobi fields	3
	1.2	Relationship between the spreading of geodesics and curvature	4
2	Con	ijugate points	6
2	Con 2.1	jugate points Conjugate points and the singularities of the exponential map	6 7

In the following let M always denote a Riemannian manifold of dimension n.

1 The Jacobi equation

Jacobi fields provide a means of describing how fast the geodesics starting from a given point $p \in M$ tangent to $\sigma \subset T_p M$ spread apart, in particular we will see that the spreading is determined by the curvature $K(p, \sigma)$.

To understand the abstract definition of a Jacobi field as a vector field along a geodesic satisfying a special differential equation we will first have another look at the exponential mapping introduced in [Car92][Chap. 3, Sec. 2].

Observation 1. Let $p \in M$ and $v \in T_pM$ so, that \exp_p is defined at $v \in T_pM$. Furthermore let $f : [0,1] \times [-\varepsilon, \varepsilon] \to M$ be the parametrized surface given by

$$f(t,s) = \exp_p tv(s)$$

with v(s) being a curve in T_pM satisfying v(0) = v. In the proof of the Gauss Lemma ([Car92][Chap. 3, Lemma 3.5]) we have seen that

$$\frac{\partial f}{\partial s}(t,0) = (d \exp_p)_{tv(0)}(tv'(0)). \tag{1}$$

We now want to examine the thusly induced vector field $J(t) = \frac{\partial f}{\partial s}(t,0)$ along the geodesic $\gamma(t) = \exp_p(tv), 0 \le t \le 1$. Since γ is a geodesic we must have $\frac{D}{\partial t} \frac{\partial f}{\partial t} = 0$ for all (t,s). Using this and [Car92][Chap. 4, Lemma 4.1] we get

$$0 = \frac{D}{\partial s} \left(\frac{D}{\partial t} \frac{\partial f}{\partial t} \right) = \frac{D}{\partial t} \frac{D}{\partial s} \frac{\partial f}{\partial t} - R \left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t} \right) \frac{\partial f}{\partial t}$$
$$= \frac{D}{\partial t} \frac{D}{\partial t} \frac{\partial f}{\partial s} + R \left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s} \right) \frac{\partial f}{\partial t}.$$

which shows that J statisfies the differential equation $\frac{D^2J}{dt^2} + R(\gamma'(t), J(t))\gamma'(t) = 0.$

We now use the just obtained differential equation to define Jacobi fields along a geodesic:

Definition 2. Let $\gamma : [0, a] \to M$ be a geodesic in M. A vector field J along γ is called a *Jacobi* field if it satisfies the *Jacobi* equation

$$\frac{D^2}{dt^2}J(t) + R(\gamma'(t), J(t))\gamma'(t) = 0$$

for all $t \in [0, a]$.

Let us first observe an important property of Jacboi fields:

Proposition 3. Let $\gamma : [0, a] \to M$ be a geodesic in M and J a Jacobi field along γ . Then J is determined by its initial conditions J(0) and $\frac{DJ}{dt}(0)$.

Proof. We first choose an orthonormal basis $\{e_i\}_{i=1,\dots,n}$ of T_pM which we can extend to parallel, orthonormal fields $e_1(t), \dots, e_n(t)$ along γ . Then for the Jacobi field J we get

$$J(t) = \sum_{i=1}^{n} f_i(t)e_i(t)$$

for smooth functions $f_i \in C^{\infty}, i = 1, ..., n$. This yields

$$\frac{D^2}{dt^2}J(t) = \sum_{i=1}^n f_i''(t)e_i(t)$$

and

$$R(\gamma',J)\gamma' = \sum_{i=1}^{n} \langle R(\gamma',J)\gamma', e_i \rangle e_i = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} f_j \langle R(\gamma',e_j)\gamma', e_i \rangle \right) e_i$$

so the Jacobi equation is equal to the system

$$f_i'' + \sum_{j=1}^n f_j \langle R(\gamma', e_j) \gamma', e_i \rangle = 0 \text{ for all } i = 1, \dots, n.$$

Since this is a linear system of the second order, given the initial conditions J(0) and $\frac{DJ}{dt}(0)$ there exists a C^{∞} solution of the system defined on [0, a].

Before considering a first example we make two remarks:

Remark 4. The proof of Proposition 3 showed that the Jacobi equation is equal to a linear system of the second order. For a given geodesic γ there exist therefore exactly 2n linearly independent Jacobi fields along γ .

Remark 5. Let γ be a geodesic. Then we have

$$\frac{D^2}{dt^2}\gamma'(t) + R(\gamma'(t),\gamma'(t))\gamma'(t) = 0 + 0 = 0,$$

so γ' defines a Jacobi field along γ . Note that, as γ is a geodescis, the field γ' never vanishes. Analogous one can see that the field $t \mapsto t\gamma'(t)$ is also a Jacobi field along γ which vanishes if and only if t = 0.

We will now give an example of Jacobi fields on manifolds of constant curvature:

Example 6 (Jacobi fields on manifolds of constant curvature). Let M be a Riemannian manifold of constant sectional curvature K and let $\gamma : [0, l] \to M$ be a normalized geodesic on M. Further let J be a Jacobi field along γ , normal to γ' .

Applying [Car92][Chap. 4, Lemma 3.4] and using the fact that $|\gamma'| = 1$ as well as that J is normal to γ' we have for every vector field T along γ

$$\langle R(\gamma',J)\gamma',T\rangle = K\left\{\langle\gamma',\gamma'\rangle\langle J,T\rangle - \langle\gamma',T\rangle\langle J,\gamma'\rangle\right\} = K\langle J,T\rangle = \langle KJ,T\rangle,$$

which yields

$$R(\gamma', J)\gamma' = KJ,\tag{2}$$

i. e. the Jacobi equation is of the form

$$\frac{D^2}{dt^2}J + KJ = 0.$$

Now let w(t) be a parallel field along γ with $\langle \gamma'(t), w(t) \rangle = 0$ and |w(t)| = 1 for all $t \in [0, l]$. Then

$$J(t) = \begin{cases} \frac{\sin(t\sqrt{K})}{\sqrt{K}}w(t), & \text{if } K > 0, \\ tw(t) & \text{if } K = 0, \\ \frac{\sinh(t\sqrt{-K})}{\sqrt{-K}}w(t) & \text{if } K < 0 \end{cases}$$

is a solution for Equation (2) with initial conditions J(0) = 0 and J'(0) = w(0). This can be easily verified, for example in the case K > 0 we have

$$\frac{D^2}{dt^2}J(t) + KJ(t) = \frac{D}{dt} \left(\cos(t\sqrt{K})w(t) + \frac{\sin(t\sqrt{K})}{\sqrt{K}}\underbrace{\frac{D}{dt}(w(t))}_{=0} \right) + K\frac{\sin(t\sqrt{K})}{\sqrt{K}}w(t)$$
$$= -\sqrt{K}\sin(t\sqrt{K})w(t) + \sqrt{K}\sin(t\sqrt{K})w(t)$$
$$= 0$$

for all $t \in [0, l]$ just as desired.

1.1 The form of Jacobi fields

So far we have seen one systematic way to construct a Jacobi field along a geodesic using the exponential mapping. The next proposition and corollary will show that all possible Jacobi fields J with J(0) = 0 along a geodesics are essentially of this form.

Proposition 7. Let $\gamma : [0, a] \to M$ be a geodesic and let J be a Jacobi field along γ with J(0) = 0. Put $\frac{DJ}{dt}(0) = w$ and $\gamma'(0) = v$. Consider w as an element of $T_{av}(T_{\gamma(0)}M)$ and construct a curve v(s) in $T_{\gamma(0)}M$ with v(0) = av and v'(0) = aw. Put $f(t,s) = \exp_p(\frac{t}{a}v(s)), p = \gamma(0)$ and define a Jacobi field \overline{J} by $\overline{J}(t) = \frac{\partial f}{\partial s}(t, 0)$. Then $\overline{J} = J$ on [0, a].

Proof. According to Proposition 3 it suffices to show that $J(0) = \overline{J}(0)$ and $\frac{DJ}{dt}(0) = \frac{D\overline{J}}{dt}$. Using Equation (1) we have

$$\overline{J}(t) = \frac{\partial f}{\partial s}(t,0) = (d \exp_p)_{tv}(tw), \tag{3}$$

which yields $\overline{J}(0) = (d \exp_p)_0(0) = 0 = J(0)$ as we have $(d \exp_p)_0(w) = w$ for all w as seen in the proof of [Car92][Chapter 3, Proposition 2.9].

Furthermore we have

$$\begin{split} \frac{D}{dt} \frac{\partial f}{\partial s}(t,0) &= \frac{D}{dt}((d\exp_p)_{tv}(tw)) = \frac{D}{dt}(t(d\exp_p)_{tv}(w)) \\ &= (d\exp_p)_{tv}(w) + t\frac{D}{dt}((d\exp_p)_{tv}(w)), \end{split}$$

so we get

$$\frac{D\overline{J}}{dt}(0) = \frac{D}{dt}\frac{\partial f}{\partial s}(0,0) = (d\exp_p)_0(w) = w = \frac{DJ}{dt}(0)$$

just as desired.

Corollary 8. Let $\gamma : [0, a] \to M$ be a geodesic. If J is a Jacobi field along γ with J(0) = 0 then we have

$$J(t) = (d \exp_p)_{t\gamma'(0)} \left(t J'(0) \right).$$

Proof. The statement follows immediately from Proposition 7 and Equation (3). \Box

An analogous construction than that in Proposition 7 can also be obtained for Jacobi fields J that do not satisfy J(0) = 0. For details see [Car92][Chap. 5, Exercise 2].

1.2 Relationship between the spreading of geodesics and curvature

We will now use the previously introduced Jacobi fields to obtain a relationship between the spreading of geodesics originating from the same point and the curvature at this point.

Proposition 9. Let $p \in M$ and $\gamma : [0, a] \to M$ be a geodesic with $\gamma(0) = p, \gamma'(0) = v$. Let $w \in T_v(T_pM)$ with |w| = 1 and let J be a Jacobi field along γ given by

$$J(t) = (d \exp_p)_{tv}(tw).$$

Then the Taylor expansion of $|J(t)|^2$ about t = 0 is given by

$$|J(t)|^{2} = t^{2} - \frac{1}{3} \langle R(v, w)v, w \rangle t^{4} + R(t)$$

where $\lim_{t\to 0} \frac{R(t)}{t^4} = 0$.

Proof. We have $J(0) = (d \exp_p)_0(0) = 0$ and J'(0) = w hence the first three coefficients of the Taylor expansion are

$$\langle J, J \rangle(0) = \langle J(0), J(0) \rangle = \langle 0, 0 \rangle = 0 \langle J, J \rangle'(0) = (\langle J', J \rangle + \langle J, J' \rangle) (0) = 2 \langle J, J' \rangle(0) = 2 \langle J(0), J'(0) \rangle = 2 \langle 0, w \rangle = 0, \langle J, J \rangle''(0) = 2 \langle J', J' \rangle(0) + 2 \langle J'', J \rangle(0) = 2 \langle w, w \rangle = 2$$

As J is a Jacobi field we have $J''(0) = -R(\gamma', J)\gamma'(0) = 0$ which yields

$$\langle J, J \rangle^{\prime\prime\prime}(0) = 6 \langle J', J'' \rangle(0) + 2 \langle J''', J \rangle(0) = 0$$

To calculate the fourth coefficient observe that

$$\frac{D}{dt} \left[R(\gamma', J)\gamma' \right](0) = R(\gamma', J')\gamma'(0),$$

since for any W we have

$$\frac{d}{dt}\langle R(\gamma',W)\gamma',J\rangle = \frac{d}{dt}\langle R(\gamma',J)\gamma',W\rangle = \langle \frac{D}{dt}R(\gamma',J)\gamma',W\rangle + \langle R(\gamma',J)\gamma',W'\rangle,$$

so we get

$$\begin{split} \langle \frac{D}{dt}(R(\gamma',J)\gamma'),W\rangle &= \frac{d}{dt}\langle R(\gamma',W)\gamma',J\rangle - \langle R(\gamma',J)\gamma',W'\rangle \\ &= \langle \frac{D}{dt}R(\gamma',W)\gamma',J\rangle + \langle R(\gamma',W)\gamma',J'\rangle - \langle R(\gamma',J)\gamma',W'\rangle \\ &= \langle R(\gamma',J')\gamma',W\rangle + \langle \frac{D}{dt}R(\gamma',W)\gamma',J\rangle - \langle R(\gamma',J)\gamma',W'\rangle \end{split}$$

which for t = 0 yields the desired identity. Together with the Jacobi equation we obtain that $J'''(0) = -R(\gamma', J')\gamma'(0)$ so we get

$$\langle J, J \rangle^{\prime\prime\prime\prime}(0) = 8 \langle J', J^{\prime\prime\prime} \rangle(0) + 6 \langle J^{\prime\prime}, J^{\prime\prime} \rangle(0) + 2 \langle J^{\prime\prime\prime\prime}, J \rangle(0)$$

= -8 \langle J', R(\gamma', J')\gamma'\rangle(0)
= -8 \langle R(v, w)v, w \langle

just as desired.

From Proposition 9 we can now draw an important corollary:

Corollary 10. If $\gamma : [0, l] \to M$ is parametrized by arc length, and $\langle w, v \rangle = 0$, the expression $\langle R(v, w)v, w \rangle$ is the sectional curvature at p with respect to the plane σ generated by v and w. Therefore in this situation

$$|J(t)|^{2} = t^{2} - \frac{1}{3}K(p,\sigma)t^{4} + R(t)$$

and

$$|J(t)| = t - \frac{1}{6}K(p,\sigma)t^3 + \tilde{R}(t) \text{ with } \lim_{t \to 0} \frac{\tilde{R}(t)}{t^3} = 0.$$
(4)

Proof. The first statement is an immediate application of Proposition 9 and for the second statement we just have to compare the coefficients of the Taylor expansion with the coefficients of the Taylor expansion raised to the power of two. \Box

With this knowledge we can now make a statement about the relation between geodesics and curvature:

Remark 11 (Relation between geodesics and curvature). Let

$$f(t,s) = \exp_p tv(s), t \in [0,\delta], s \in (-\varepsilon,\varepsilon)$$

be a parametrized surface where δ is chosen so small that $\exp_p tv(s)$ is defined and v(s) is a curve in T_pM with |v(s)| = 1, v(0) = v and v'(0) = w, |w| = 1.

Our first observation is that the rays $t \mapsto tv(s), t \in [0, \delta]$ starting from the origin $0 \in T_pM$ deviate from the ray $t \mapsto tv(0)$ with the velocity

$$\left|\left(\frac{\partial}{\partial s}tv(s)\right)(0)\right| = \left|t\left(\frac{\partial}{\partial s}v(s)\right)(0)\right| = |tv'(0)| = |tw| = t.$$

On the other hand Equation (4) tells us that the geodesics $t \mapsto \exp_p(tv(s))$ deviate from the geodesic $\gamma(t) = \exp_p tv(0)$ with a velocity that differs from t by a term of the third order of t given by $-\frac{1}{6}K(p,\sigma)t^3$.

In particular we get that locally the geodesics spread apart less than the rays in T_pM if $K_p(\sigma) > 0$ and more apart if $K_p(\sigma) < 0$ and that for small t the value $K(p,\sigma)t^3$ furnishes and approximation for the extent of this spread with an error of order t^3 .

2 Conjugate points

We will now explore the relationship between the singularities of the exponential mapping and Jacobi fields and then derive some further properties of Jacobi fields. We start with a central definition:

Definition 12. Let $\gamma : [0, a] \to M$ be a geodesic. The point $\gamma(t_0)$ is said to be *conjugate* to $\gamma(0)$ along γ for $t_0 \in (0, a]$, if there exists a Jacobi field J along γ , not identically zero, with $J(0) = 0 = J(t_0)$. The maximum number of such linearly independent fields is called the *multiplicity* of the conjugate point $\gamma(t_0)$.

If we expand the definition naturally to $\gamma(0)$ we immediately get that $\gamma(t_0)$ is conjugate to $\gamma(0)$ if and only if $\gamma(0)$ is conjugate to $\gamma(t_0)$.

Lemma 13. Let $\gamma : [0, a] \to M$ be a geodesic and J_1, \ldots, J_k be Jacobi fields along γ with $J_i(0) = 0$ for $i = 1, \ldots, k$. Then J_1, \ldots, J_k are linearly independent if and only if $J'_1(0), \ldots, J'_k(0)$ are linearly independent.

Proof. We first assume that J_1, \ldots, J_k are linearly independent Jacobi fields with $J_i(0) = 0$ for $i = 1, \ldots, k$. If $J'_1(0), \ldots, J'_k(0)$ were not linearly independent we would have

$$\lambda_1 J'_1(0) + \ldots + \lambda_k J'_k(0) = 0, \exists i \in \{1, \ldots, k\} \text{ s. t. } \lambda_i \neq 0.$$

Without loss of generality assume that $\lambda_1 \neq 0$ then we have

$$J_1'(0) = \left(-\frac{\lambda_2}{\lambda_1}\right)J_2'(0) + \ldots + \left(-\frac{\lambda_k}{\lambda_1}\right)J_k'(0) = \left(\left(-\frac{\lambda_2}{\lambda_1}\right)J_2 + \ldots + \left(-\frac{\lambda_k}{\lambda_1}\right)J_k\right)'(0).$$

Since $J_1(0) = \left[(-\frac{\lambda_2}{\lambda_1}) J_2 + \ldots + (-\frac{\lambda_k}{\lambda_1}) J_k \right] (0)$ Proposition 3 yields $J_1 = (-\frac{\lambda_2}{\lambda_1}) J_2 + \ldots + (-\frac{\lambda_k}{\lambda_1}) J_k$ which would be a contradiction.

For the converse assume that J_1, \ldots, J_k are linearly dependent, i. e.

$$\lambda_1 J_1 + \ldots + \lambda_k J_k = 0, \exists i \in \{1, \ldots, k\}$$
s. t. $\lambda_i \neq 0$.

Once again assuming that $\lambda_1 \neq 0$ we infer $J_1 = (-\frac{\lambda_2}{\lambda_1})J_2 + \ldots + (-\frac{\lambda_k}{\lambda_1})J_k$ which would imply that $J'_1(0) = (-\frac{\lambda_2}{\lambda_1})J'_2(0) + \ldots + (-\frac{\lambda_k}{\lambda_1})J'_k(0)$ which cannot be the case.

Remark 14. As M is a manifold of dimension n we have that dim $T_pM = n$ for all $p \in M$. Hence along any geodesic $\gamma : [0, a] \to M$ we get from Lemma 13 that there exist exactly n linearly independent Jacobi fields along γ which vanish at $\gamma(0)$.

Furthermore we have seen in Remark 4 that for a geodesic $\gamma : [0, a] \to M$ the field $J(t) = t\gamma'(t)$ is a Jacobi field along γ that never vanishes for $t \neq 0$. Hence this Jacobi does not satisfy $J(0) = 0 = J(t_0)$ for any $t_0 \in (0, a]$ so the multiplicity of any conjugate point can never exceed n-1.

Let us now consider conjugate points on the sphere $\mathbf{S}^n = \{x \in \mathbf{R}^{n+1} \mid |x| = 1\}$:

Example 15. From [Car92][Chaper 6] we know that the sphere has constant sectional curvature 1. As we have seen in the proof of Example 6 the Jacobi equation is then of the form $\frac{D^2}{dt^2}J+J=0$ and for every geodesic γ of \mathbf{S}^n we know that $J(t) = (\sin t)w(t)$ with w(t) being a parallel field along γ with $\langle \gamma'(t), w(t) \rangle = 0$ and |w(t)| = 1 is a Jacobi field along γ . We have

$$J(0) = (\sin 0)w(0) = 0 = (\sin \pi)w(\pi) = J(\pi),$$

i. e. the point $\gamma(\pi)$ is conjugate to $\gamma(0)$.

As $T_p \mathbf{S}^n$ has dimension n we can choose n-1 linearly independent parallel fields w(t) along γ satisfying the required conditions. Hence $\gamma(\pi)$ is a conjugate point of multiplicity n-1.

Definition 16. The set of (first) conjugate points to the point $p \in M$ for all geodesics that start at p is called the *conjugate locus* of p and is denoted by C(p).

2.1 Conjugate points and the singularities of the exponential map

The following proposition will be an important result relating conjugate points with the singularities of the exponential map:

Proposition 17. Let $\gamma : [0, a] \to M$ be a geodesic and put $\gamma(0) = p$. The point $q = \gamma(t_0), t_0 \in (0, a]$ is conjugate to p along γ if and only if $v_0 = t_0 \gamma'(0)$ is a critical point of \exp_p . In addition, the multiplicity of q as a conjugate point of p is equal to the dimension of the kernel of the linear map $(d \exp_p)_{v_0}$.

Proof. By definition we have that the point $q = \gamma(t_0)$ is a conjugate point of p along γ if and only if there exists a non-zero Jacobi field J along γ with $J(0) = J(t_0) = 0$. Let $v = \gamma'(0)$ and w = J'(0). By Corollary 8 we know that the Jacobi field is of the form

$$J(t) = (d \exp_p)_{tv}(tw), t \in [0, a],$$

in particular we get that J is non-zero if and only if $w \neq 0$. Therefore q is conjugate to p if and only if

$$0 = J(t_0) = (d \exp_n)_{t_0 v}(t_0 w), w \neq 0,$$

that is if and only if $t_0 v$ is a critical point of \exp_p which proves the first assertion.

For the second assertion we know that the multiplicity of q is equal to the number of linearly independent Jacobi fields J_1, \ldots, J_k which are zero at 0 and at t_0 . From the construction above and Lemma 13 we get that the multiplicity of q is equal to the dimension of the kernel of $(d \exp_p)_{t_0v}$.

2.2 Properties of Jacobi fields

We will now give some more properties of Jacobi fields using the tools introduced before:

Proposition 18. Let J be a Jacobi field along the geodesic $\gamma : [0, a] \to M$. Then

$$\langle J(t), \gamma'(t) \rangle = \langle J'(0), \gamma'(0) \rangle t + \langle J(0), \gamma'(0) \rangle.$$

Proof. The Jacobi equation yields

 $\langle J',\gamma'\rangle'=\langle J'',\gamma'\rangle=-\langle R(\gamma',J)\gamma',\gamma'\rangle=0,$

therefore we must have $\langle J',\gamma'\rangle = \langle J'(0),\gamma'(0)\rangle$. In addition

$$\langle J, \gamma' \rangle' = \langle J', \gamma' \rangle = \langle J'(0), \gamma'(0) \rangle.$$

We can integrate the last equation in t to obtain

$$\langle J, \gamma' \rangle = \langle J'(0), \gamma'(0) \rangle t + \langle J(0), \gamma'(0) \rangle$$

as desired.

From the last proposition we can draw two immediate corollaries:

Corollary 19. If $\langle J, \gamma' \rangle(t_1) = \langle J, \gamma' \rangle(t_2), t_1, t_2 \in [0, a], t_1 \neq t_2$, then $\langle J, \gamma' \rangle$ does not depend on t; in particular, if J(0) = J(a) = 0, then $\langle J, \gamma' \rangle(t) \equiv 0$.

Proof. By Proposition 18 we have $\langle J(t), \gamma'(t) \rangle = \langle J(0), \gamma'(0) \rangle$ for all $t \in [0, a]$ and if J(0) = J(a) = 0 we have $\langle J(0), \gamma'(0) \rangle = 0$.

Corollary 20. Suppose that J(0) = 0. Then $\langle J'(0), \gamma'(0) \rangle = 0$ if and only if $\langle J, \gamma' \rangle(t) \equiv 0$; in particular the space of Jacobi fields J with J(0) = 0 and $\langle J, \gamma' \rangle(t) \equiv 0$ has dimension equal to n-1.

Proof. The first assertion is immediate from Proposition 18. Furthermore in case of J(0) = 0 and $\langle J, \gamma' \rangle(t) \equiv 0$ we have n-1 degrees of freedom for J'(0) and hence by applying once again Lemma 13 we get that the dimension of the space of such Jacobi fields is n-1.

We now come to our last result:

Proposition 21. Let $\gamma : [0, a] \to M$ be a geodesic. Let $V_1 \in T_{\gamma(0)}M$ and $V_2 \in T_{\gamma(a)}M$. If $\gamma(a)$ is not conjugate to $\gamma(0)$ there exists a unique Jacobi field J along γ with $J(0) = V_1$ and $J(a) = V_2$.

Proof. Let \mathcal{J} be the space of Jacobi fields with $J(0) = V_1$ and define the mapping

$$\theta: \mathcal{J} \to T_{\gamma(a)}M, \theta(J) = J(a).$$

Since $\gamma(a)$ is not conjugate to $\gamma(0)$ we know that θ is injective. Indeed if $J_1 \neq J_2$ with $J_1(a) = J_2(a)$, then $J_1 - J_2$ would be a non-zero Jacobi field with $(J_1 - J_2)(0) = V_1 - V_1 = 0 = J_1(a) - J_2(a) = (J_1 - J_2)(a)$ which would be a contradiction.

Since θ is a linear injection and we have dim $\mathcal{J} = \dim T_{\gamma(a)}M$ we see that θ is in fact an isomorphism. Hence there exists $\overline{J} \in \mathcal{J}$ with $\overline{J}(0) = V_1$ and $\overline{J}(a) = V_2$. As θ is an isomorphism the uniqueness is clear as well.

Corollary 22. Let $\gamma : [0,a] \to M$ be a geodesic in M and let \mathcal{J}^{\perp} be the space of Jacobi fields with J(0) = 0 and $J'(0) \perp \gamma'(0)$. Let $\{J_1, \ldots, J_{n-1}\}$ be a basis of \mathcal{J}^{\perp} . If $\gamma(t), t \in (0,a]$, is not conjugate to $\gamma(0)$, then $\{J_1(t), \ldots, J_{n-1}(t)\}$ is a basis for the orthogonal complement $\{\gamma'(t)\}^{\perp} \subset T_{\gamma(t)}M$ of $\gamma'(t)$.

References

[Car92] Manfredo P.do Carmo, Riemannian Geometry, Birkhäuser, 1992.