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In this paper we will examine a crooked Farey tesselation whose tiling group has a surprising
connection to the figure eight-knot complement. Crooked Farey tesselations arise from Farey
tesselations by suitably bending them into the 3-dimensional hyperbolic space H3.

The first chapter will be dedicated to introducing crooked Farey tesselations as well as recalling
the notion of the 3-dimensional hyperbolic space H3. We will then introduce the aforementioned
crooked Farey tesselation, investigate its properties and illustrate its connection to the figure-
eight knot complement.

1 Prerequisites

We start with introducing the 3-dimensional hyperbolic space along with a selection of essential
notions and facts.

1.1 The 3-dimensional hyperbolic space H3

The 3-dimensional hyperbolic space is defined in complete analogy with the hyperbolic plane.
We set

H3 = {(x, y, u) ∈ R3 | u > 0}

and for every piecewise differentiable curve γ in H3 parametrized by

t 7→ (x(t), y(t), u(t)) with a ≤ t ≤ b

we define the hyerbolic length of γ to be

lhyp(γ) =

b∫
a

√
x′(t)2 + y′(t)2 + u′(t)2

u(t)
dt.
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We then make the following definition:

Definition 1 (3-dimensional hyperbolic space). The 3-dimensional hyperbolic sapce is the space
H3 endowed with the metric

dhyp(P,Q) = inf {lhyp(γ) | γ piecewise differentiable curve from P to Q}

That (H3, dhyp) is in fact a metric space can be seen in a manner identical to the 2-dimensional
case. As in dimension 2 we set the norm of a vector v at the point P = (x, y, u) ∈ H3 to be

‖v‖hyp =
1

u
‖v‖euc

For a more complete and comprehensive coverage of the hyperbolic space we refer the reader to
[Bon09, Chapter 9]. However, we will be needing the following notions, also defined analogously
to the 2-dimensional case:

Definition 2. A hyperbolic plane in the hyperbolic space H3 is the intersection H of H3 with
a euclidean sphere centered on the xy-plane or with a vertical euclidean plane.

Definition 3. A horosphere centered at z ∈ C is the intersection with H3 of a euclidean sphere
S which is tangent to the xy-plane C ⊂ R3 and lies above the xy-plane. A horosphere centered
at ∞ is just a horizontal euclidean plane contained in H3.

1.2 Crooked Farey tesselations

Given real numbers s1, s3, s5 ∈ R with s1 + s3 + s5 = 0 we can obtain a tesselation of the
hyperbolic plane H2. We do so by considering the two ideal triangles T+ and T− with vertices
0, 1,∞ and −es5 , 0,∞, respectively. Considering the linear maps

ϕ1(z) =
es5z + 1

es5z + e−s1 + 1
and ϕ3(z) = e−s5

z − 1

−z + es3 + 1

the tesselation then consists of all triangles of the form ϕ(T+) and ϕ(T−) as ϕ ranges over all
elements of the transformation group Γ generated by ϕ1 and ϕ3.

Now let s1, s3, s5 be complex numbers and T+ and T− be the ideal triangles in the hyperbolic
space H3 with vertices 0, 1,∞ and −es5 , 0,∞, respectively. The linear fractional maps ϕ1 and
ϕ3 from before also define isometries on the hyperbolic space (H3, dhyp). With edges labeled
form E1 to E5 the following figure illustrates this constellation:

Figure 1: Bending the Farey tesselation in hyperbolic space H3 (cf. [Bon09, Figure 10.1])
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Definition 4. The familty T of all triangles ϕ(T±) where ϕ ranges over all elements of the
transformation group Γ generated by ϕ1 and ϕ3 is called a crooked Farey tesselation in H3.

Before introducing further concepts let us look at some basic examples:

Example 5. The bending of the standard Farey tesselation, i. e. if we set s1 = s3 = s5 = 0
looks like

Figure 2: The standard Farey tesselation (cf. [Bon09, Figure 10.2])

If we slightly move the si away from 0, e. g. if we set s1 ≈ 0.19 + 0.55i, s3 ≈ 0.15 + 0.42i and
s5 = 0.04− 0.97i we obtain:

Figure 3: Slighly bending the farey tesselation (cf. [Bon09, Figure 10.3])

To study the action of the tiling groups of such crooked Farey tesselations as well as the “foot-
prints” of these actions on the boundary Ĉ of H3 we introduce the following concepts:

Definition 6. A kleinian group is a group Γ of isometries of the hyperbolic space (H3, dhyp)
whose action on H3 is discontinuous.

Let now P0 be an arbitrary point in H3.
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Definition 7. A limit point of the orbit Γ(P0) is a point P ∈ R3 ∪ {∞} for which there exists
a sequence (γn)n∈N of elements of Γ such that γn(P0) 6= P for all n ∈ N and

P = lim
n→∞

γn(P0).

Definition 8. The limit set of the kleinian group Γ is the set ΛΓ of all limit points of the orbit
Γ(P0) for P0 ∈ H3.

The definition of a limit set is indeed well-defined as the following lemma shows:

Lemma 9. The limit set ΛΓ of a kleinian group Γ is contained in the Riemann sphere Ĉ
bounding the hyperbolic space H3 and is independent of the point P0 ∈ H3 chosen.

Proof. [Bon09, Lemma 10.1].

1.3 Poincareé’s Polyhedron Theorem

Before introducing the main crooked Farey tesselation we intend to study we have to give the
Poincaré Polyhedron Theorem, which will prove an essential part in the investigations to follow.
To do so, we first fix some basic terminology:

Definition 10. A polyhedron in the hyperbolic space H3 is a region X in H3 delimited by
finitely many polygons, called its faces.

A polygon is thereby a subset F of a hyperbolic plane of H3 corresponding to a polygon in H2.
The face glueing data is defined in complete analogy with the case of polyongs in H2. Given
gluing maps ϕi : Fi → Fi±1 for the faces, each of them extends to an isometry ϕi : H3 → H3.
The group of isometries generated by these extended gluing maps will be called the tiling group.

Definition 11. Let X be a polyhedron and Γ a tiling group associated to gluing data for X.
The images of X under the elements of Γ form a tesselation of H3 if

• As γ ranges over all elements of Γ the tiles γ(X) cover H3

• The intersection of two distinct tiles γ(X) and γ′(X) consists only of vertices, edges and
faces of γ(X)

• (Local finiteness) For every P ∈ H3, there exists a ball Bε(P ) which meets only finitely
many tiles γ(X)

Furthermore the bending of the boundary of a hyperbolic polyhedron along an edge is given by
its dihedral angle defined as in euclidean geometry. We can now state the Poincaré Polyhedron
Theorem which is a 3-dimensional version of the Tesselation Theorem (cf. [Bon09, Theorem
6.1]) and of Poincaré’s Polygon Theorem (cf. [Bon09, Theorem 6.25]):

Theorem 12 (Poincaré Polyhedron Theorem). For a connected polyhedron X ⊂ H3 with face
gluing data as defined above, suppose in addition that the following three conditions hold:

1. (Dihedral Angle Condition) For every edge E of X the dihedral angles along the edges that
are glued to E add up to 2π

nE
for some integer nE ≥ 1 depending on E.

2. (Edge Orientation Condition) The edges of X can be oriented in such a way that whenever
a gluing map ϕi : Fi → Fi±1 sends an edge E to an edge E′ it sends the orientation of E
to the orientation of E′.

3. (Horosphere Condition) For every ideal vertex ξ of X we can select a horosphere Sξ such
that whenever the gluing map ϕi : Fi → Fi±1 sends the ideal vertex to the ideal vertex ξ′,
it also sends Sξ to Sξ′.
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Then, as γ ranges over all the elements of the tiling group Γ generated by the extended gluing
maps ϕi : H3 → H3, the tiles γ(X) form a tesselation of the hyperbolic space H3 and X is a
fundamental domain for this action.

In addition, the tiling group Γ acts discontinuously on H3, the two quotient spaces (H3/Γ, dhyp)
and (X, dX) are isometric, and these two metric spaces are complete.

Proof. [Bon09, Theorem 10.9].

2 The crooked Farey tesselation T8

In this section we will be examining the following crooked Farey tesselation:

Definition 13. Let T8 denote the crooked Farey tessellation corresponding to the parameters
s1 = 2π

3 i, s3 = −2π
3 i and s5 = 0.

Figure 4: An approximation of T8 (cf. [Bon09, Figure 11.1])

For the tiling group Γ8 of T8 we obtain:

Lemma 14. Let ω = e
π
3
i. The tiling group Γ8 of T8 is the transformation group generated by

ϕ1(z) =
z + 1

z + ω−1
and ϕ3(z) =

z − 1

−z + ω−1
.

Proof. To see these equalities first note that ω3 =
(
e
π
3
i
)3

= eπi = −1, so in particular we have

ω2 − ω + 1 =
ω3 + 1

ω + 1
= 0

and

1 + ω−2 = 1− ω = −ω2 = ω−1.

From the first chapter we know that the tiling group Γ8 is generated by

ϕ1(z) =
es5z + 1

es5z + e−s1 + 1
and ϕ3(z) = e−s5

z − 1

−z + es3 + 1
.

Using the calculations above we obtain

5



ϕ1(z) =
e0z + 1

e0z + e−
2π
3
i + 1

=
z + 1

z + 1 + e−
2π
3
i

=
z + 1

z + ω−1

and

ϕ3(z) = e−0 z − 1

−z + e−
2π
3
i + 1

=
z − 1

−z + ω−1

as desired.

2.1 The tiling group Γ8

We now want to examine the tiling group Γ8. In particular, we will show that it acts discontin-
uously on the hyperbolic space H3, i. e. that it is a Kleinian group.

In order to understand the tiling group Γ8 it will prove helpful to study an enlargement of this
group, namely the transformation group generated by ϕ1, ϕ3 and the translation τ defined by

τ(z) = z + ω.

Definition 15. Let Γ̂8 denote the transformation group generated by ϕ1, ϕ3 and τ .

In particular, as we will see later, it is the transformation group Γ̂8 which will provide the
connection to the figure-eight knot complement.

We want to give a fundamental domain for the action Γ̂8. For this let ∆1 be the tetrahedron
with ideal vertices at 0, 1,∞ and ω and ∆2 be the tetrahedron with ideal vertices at 0, 1,∞ and
ω−1 = 1− ω. Furthermore let ∆ be the union of ∆1 and ∆2. Then ∆ is a polyhedron with five
ideal vertices, nine edges and six faces. The following figure offers a top view of ∆1 and ∆2:

Figure 5: A top view of ∆1 and ∆2 (cf. [Bon09, Figure 11.3])

We will consider the following gluing isometries for ∆ to show that Γ̂8 acts discontinuously on
H3:

ψ1 = τ, ψ3 = ϕ4 ◦ ϕ2 and ψ5 = τ ◦ ϕ3

Note that ψ1 maps [0, 1 − ω,∞] to [ω, 1,∞], ψ3 maps [0, 1, ω] to [∞, 1 − ω, 1] and ψ5 maps
[0, 1, 1− ω] to [0, ω,∞].

Proposition 16. The group Γ̂8 acts discontinuously and freely on the hyberpbolic space H3 and
the ideal polyhedron ∆ is a fundamental domain for this action.
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Proof. Set

ψ2 = ψ−1
1 , ψ4 = ψ−1

3 and ψ6 = ψ−1
5

and denote by (∆, dhyp) the thusly obtained quotient space.

Applying the gluing maps ψ1, ψ3 and ψ5 the edges [0, 1], [∞, 1 − ω], [∞, 1] and [0, ω] are glued
together as are [0,∞], [ω,∞], [1, 1−ω] and [ω, 1]. If we orient each of the above edges [a, b] from
a to b, the orientations are respected by the gluing maps ψi, in particular the Edge Orientation
Condition of Poincaré’s Polyhedron Theorem holds.

By Figure 5 we see that the dihedral angles of ∆ along the edges [0,∞], [1,∞], [ω,∞] and
[1− ω,∞] are 2π

2 ,
2π
3 ,

π
3 and π

3 , respectively.

The inversion across the sphere of radius 1 centered at 0 defines an isometry of H3 that ex-
changes 0 and ∞ and fixes 1, ω and 1−ω. In particular we get that the dihedral angle ∆ along
the edge [0, a] is equal to the dihedral angle along [∞, a] for a = 1, ω or 1− ω.

From these considertaions we conclude that the sum of the dihedral angles of ∆ along the edges
that are glued to [0, 1] is equal to 2π

3 + π
3 + 2π

3 + π
3 = 2π and similarly one can see that the sum

of the dihedral angles along the edges that are glued to [0,∞] adds up to 2π
3 + π

3 + π
3 + 2π

3 = 2π.
Therefore the Dihedral Angle Condition of Poincaré’s Polyhedron Theorem is satisfied.

To prove the Horosphere Condition let S0, S1, Sω and S1−ω denote the horospheres at 0, 1, ω
and 1 − ω, repectively, that have euclidean diameter 1, and let S∞ be the horizontal plane of
equation u = 1. For any face [a, b, c] the horospheres Sa, Sb and Sc are tangent to each other.
So in particular, if [a, b, c] is glued to [a′, b′, c′] then the gluing map must send Sa, Sb and Sc to
horospheres centered at a′, b′ and c′ and tangent to each other.

Following from [Bon09, Lemma 8.4] there are only three such horospheres satisfying this condi-
tion, namely Sa′ , Sb′ and Sc′ . Therefore, if a gluing map ϕ sends an ideal vertex a of ∆ to ϕ(a),
it also sends the horospheres Sa to Sϕ(a).

Hence by the Poincaré Polyhedron Theorem the group Γ̂′8 generated by ψ1, ψ3 and ψ5 acts
discontinuously on H3 and admits ∆ as a fundamental domain. By [Bon09, Theorem 10.11] we
also obtain that Γ̂′8 acts freely.

Now every element of Γ̂′8 can be expressed as a composition of terms ψ±1
i , so in particular as a

composition of τ±1, ϕ±1
1 ϕ±1

3 . Conversely we have τ = ψ1, ϕ3 = ψ−1
1 ◦ψ5 and ϕ1 = ψ−1

3 ◦ψ
−1
5 ◦ψ1.

This shows Γ̂′8 = Γ̂8 and hence our assertion.

We furthemore have the following result:

Proposition 17. The quotient space (H3/Γ̂8, dhyp) is locally isometric to the hyperbolic space
(H3, dhyp).

Proof. This is an immediate consequence of [Bon09, Theorem 10.11].

Since Γ8 is contained in Γ̂8 an immediate consequence of Proposition 16 is:

Corollary 18. The tiling group Γ8 acts discontinuously on the hyperbolic space H3.
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2.2 The limit set of Γ8

We will now calculate the limit set of the Kleinian group Γ8. Once again the enlarged group Γ̂8

will prove an important tool in this process as we will see that their limit sets coincide.

Lemma 19. The limit set of the enlarged group Γ̂8 is the whole Riemann sphere Ĉ.

Proof. The proof is essentially the same as the one of [Bon09, Lemma 10.7].

To see that the two groups Γ8 and Γ̂8 have the same limit set we first recall the following
algebraic notion:

Definition 20. A normal subgroup of a transformation group Γ is a transformation group Γ′

contained in Γ and such that for every γ ∈ Γ and γ′ ∈ Γ′ the composition γ ◦ γ′ ◦ γ−1 is also an
element of Γ′.

The reason we are recalling this notion is due to the following observation:

Proposition 21. If Γ′ is a normal subgroup of the Kleinian group Γ and if the limit set of Γ′

has at least two elements, then the limit sets ΛΓ and ΛΓ′ coincide.

Proof. Let ξ ∈ ΛΓ′ and γ ∈ Γ. Fix a base point P0 ∈ H3 and consider its orbit Γ′(P0) under
the action of Γ′. We have a sequence (γ′n)n∈N ∈ Γ′ such that limn→∞ γ

′
n(P0) = ξ in R3 ∪ {∞}

for the euclidean metric. Furthermore we obtain

γ(ξ) = lim
n→∞

γ ◦ γ′n(P0) = lim
n→∞

η′n(P ′0)

with P ′0 = γ(P0) and η′n = γ ◦ γ′n ◦ γ−1 ∈ Γ′. From Lemma 9 we know that the limit set is
independent of the base point, i. e. γ(ξ) must be in ΛΓ′ for every ξ ∈ ΛΓ′ and γ ∈ Γ.

By [Bon09, Lemma 10.2] we know that ΛΓ′ is closed in Ĉ. As ΛΓ′ has at least two elements
by hypothesis, [Bon09, Proposition 10.3] yields that ΛΓ ⊆ ΛΓ′ . As Γ′ is contained in Γ we
furthermore have ΛΓ′ ⊆ ΛΓ.

Due to Proposition 21 it will suffice to prove that Γ8 is a normal subgroup of Γ̂8 in order to
show that the limit set of Γ8 is the whole Riemann sphere. To do so we first prove the following
lemma:

Lemma 22. The following equations hold

τ−1 ◦ ϕ1 ◦ τ = ϕ−1
3 (1)

τ−1 ◦ ϕ3 ◦ τ = ϕ2
3 ◦ ϕ1 ◦ ϕ3 (2)

τ ◦ ϕ1 ◦ τ−1 = ϕ2
1 ◦ ϕ3 ◦ ϕ1 (3)

τ ◦ ϕ3 ◦ τ−1 = ϕ−1
1 . (4)

Proof. We will first prove that

ψ5 ◦ ψ−1
1 ◦ ψ

−1
3 ◦ ψ

−1
5 ◦ ψ1 = IdH3 (5)

To see this observe that the gluing map ψ1 sends the edge [0,∞] of ∆ to the edge [ω,∞], which
is sent by ψ6 = ψ−1

5 to [1, 1−ω], which is sent by ψ4 = ψ−1
3 to [ω, 1], which is sent by ψ2 = ψ−1

1
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to [0, 1− ω] which then is sent to back to [0,∞] by ψ5.

In particular the mapping ψ5 ◦ ψ−1
1 ◦ ψ

−1
3 ◦ ψ

−1
5 ◦ ψ1 fixes the point S0 ∩ [0,∞] provided by the

horosphere S0. As Γ̂8 is a free action (Proposition 16) this map must be the identity on all of H3.

If we substitute ψ1 = τ, ψ3 = ϕ4 ◦ ϕ2 and ψ5 = τ ◦ ϕ3 in 5 we get

τ ◦ ϕ3 ◦ τ−1 ◦ ϕ1 ◦ ϕ3 ◦ ϕ−1
3 ◦ τ

−1 ◦ τ = IdH3

which yields
τ−1 ◦ ϕ1 ◦ τ = ϕ−1

3

thus proving 1.

Using the same reasoning as above one finds that

ψ−1
5 ◦ ψ

−1
3 ◦ ψ1 ◦ ψ3 = IdH3 .

Substituting again we get

ϕ−1
3 ◦ τ

−1 ◦ ϕ1 ◦ ϕ3 ◦ τ ◦ ϕ−1
3 ◦ ϕ

−1
1 = IdH3

which simplifies to
τ−1 ◦ ϕ1 ◦ ϕ3 ◦ τ = ϕ3 ◦ ϕ1 ◦ ϕ3

Applying 1 to the left-hand side of this equation we get

τ−1 ◦ ϕ3 ◦ τ = ϕ2
3 ◦ ϕ1 ◦ ϕ3

which proves 2. Using 2 we furthermore obtain

ϕ =
(
τ ◦ ϕ3 ◦ τ−1

)
◦
(
τ ◦ ϕ3 ◦ τ−1

)
◦
(
τ ◦ ϕ1 ◦ τ−1

)
◦
(
τ ◦ ϕ3 ◦ τ−1

)
= ϕ−2

1 ◦
(
τ ◦ ϕ1 ◦ τ−1

)
◦ ϕ−1

1

which shows 3. Finally 4 is an immediate consequence of 1.

With these calculations done we may now prove the following fact:

Lemma 23. The group Γ8 is a normal subgroup of the enlarged group Γ̂8.

Proof. Let γ ∈ Γ̂8 and γ′ ∈ Γ8. If we have γ = ϕ±1
1 or γ = ϕ±1

3 we immediately get that
γ ◦ γ′ ◦ γ−1 ∈ Γ8. In the case of γ = τ±1 the calculations from Lemma 22 show that we also
have γ ◦ γ′ ◦ γ−1 ∈ Γ8 since Γ8 is generated by ϕ1 and ϕ3.

As every γ ∈ Γ̂8 can be expressed as a composition of terms ϕ±1
1 , ϕ±1

3 and τ±1 this already
proves the general result.

In particular we obtain the following result:

Corollary 24. The limit set of the Kleinian group Γ8 is equal to Ĉ.

9



3 The connection to the figure-eight knot complement

In this chapter we will illustrate that the resulting quotient space of the action of Γ̂8 on H3 is
homeomorphic to the complement of the figure-eight knot. By the figure-eight knot we mean
the following figure in R3:

Figure 6: The figure-eight knot (cf. [Rat06, Figure 10.3.4])

Theorem 25. The complement of the figure-eight knot in R̂3 is homeomorphic to the quotient
space H/Γ̂8.

Proof. We will give a sketch of the proof. The basic idea is to show that the complement of the
figure-eight knot can be homeomorphically deformed into the space ∆ from chapter 2. Recall
that ∆ was a fundamental domain for the action of Γ̂8. Furthermore we obtained the quotient
space ∆ by gluing ∆ together by the following isometries:

ψ1 = τ, ψ3 = ϕ4 ◦ ϕ2 and ψ5 = τ ◦ ϕ3

with ϕi defined as in chapter 2. By the Poincaré Polyhedron Theorem we know that the spaces
∆ and H3/Γ̂8 are isometric with respect to their induced metrices.

To see that the complement of the figure-eight knot can be homeomorphically deformed into ∆
we fill follow [Rat06, §10.3]. First note that ∆1 corresponds to the left and ∆2 corresponds to
the right tetrahedron in Figure 7 with the edges indicating the gluing patterns to obtain ∆:

Figure 7: The gluing pattern of the two tetrahedrons ∆1 and ∆2 (cf. [Rat06, Figure 10.3.2])

Let K denote the figure-eight knot. We put K on top of ∆1 and add two directed arcs a and b
to the knot which will correspond to the two edges a and b from Figure 7.
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Figure 8: Draping the knot K over ∆1 (cf. [Rat06, Figure 10.3.5])

Now consider the boundary sides of A,B,C and D from ∆1. If we glue the side A according to
the given pattern, the quotient space is homeomorphic to a closed disk with two points removed.
The space is further homeomorphic to a disk with one interior point and part of its boundary
removed. The following figure illustrates this procedure:

Figure 9: Deforming side A (cf. [Rat06, Figure 10.3.6])

In particular we see that the disk in (d) spans the part of K that follows the contour of side A
so we can glue them together. In a similar manner one can see that the sides B,C and D give
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rise to disks spanning the parts of K on the sides B,C and D, respectively.

Let L denote the result of gluing the thusly obtained disks to the parts of K as indicated above.
Each of the arcs a and b meets all of the disks we glued. Collapsing a and b to points we see
that L has the homotopy type of a 2-sphere. In particular this yields that R̂3 − L is the union
of two open 3-balls.

We now cut the complement of the figure-eight knot R̂3 − L along the interiors of the cells
of L corresponding to the disks and split apart a and b along their interiors. This yields two
connected 3-manifolds with boundaries. The boundaries are 2-spheres minus four points and
they have the same cell decomoposition as the two tetrahedrons above.

The interiors of these two manifolds with boundary are open 3-balls, so they are in fact closed
3-balls minus four points on their boundaries. In particular there is a function from the disjoint
union of these manifolds with boundary to the disjoint union of ∆1 and ∆2 which induces a
homeomorphism R̂3 −K to ∆.
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