
Seminar “Differential forms and their use”

Differentiable manifolds

Sandra Schluttenhofer and Danilo Ciaffi

December 18, 2014

1 Definitions and properties

Motivation 1.
In R3 we defined a regular surface S as a subset S ⊂ R3 such that for every point p ∈ S there
exists a neighbourhood V of p and a map fα : Uα ⊂ R2 −→ V ∩ S with the property that

(i) fα is a differentiable homeomorphism.

(ii) the differential (dfα)q : Tq(Uα) −→ R3 is injective for all q in Uα.

The map fα is called a parametrization of S around p.

A fundamental property of regular surfaces is the fact that a change of parametrizations is
differentiable, i.e. for any two parametrizations fα : Uα −→ S, fβ : Uβ −→ S with

W := fα(Uα) ∩ fβ(Uβ) 6= ∅

f−1β ◦ fα : f−1α (W ) −→ R2

is differentiable.

Proof of this fundamental property.
As a composition of homeomorphisms f−1 ◦ g is again a homeomorphism. The idea is to use
the inverse function theorem to proof that f−1α ◦ fβ is differentiable. First, we choose a point
x ∈ f−1β (W ), then let (f−1α ◦ fβ)(x) = q. Since the differential dfα is injective for all q ∈ Uα, it
has rank 2 and by - if necessary - rearranging the axes, we can assume that

det

([
∂f1α
∂x |q

∂f1α
∂y |q

∂f2α
∂x |q

∂f2α
∂y |q

])
6= 0

at point q. Now we define an extension of fα to which we can apply the inverse function theorem.

F : Uα × R −→ R3

F (x, y, z) = (f1α(x, y), f2α(x, y), f3α(x, y) + z)

We immediately notice that F (x, y, 0) = fα(x, y) and

dFq =


∂f1α
∂x

∂f1α
∂y

∂f1α
∂z

∂f2α
∂x

∂f2α
∂y

∂f2α
∂z

∂f3α+z
∂x

∂f3α+z
∂y

∂f3α+z
∂z

 =

 0
dfα 0

1
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and therefore (Laplace expansion along the last column)

det(dFq) = det

([
∂f1α
∂x |q

∂f1α
∂y |q

∂f2α
∂x |q

∂f2α
∂y |q

])
6= 0

The inverse function theorem gives us the existence of a neighbourhood M of fα(q) such that
F−1 exists and is differentiable on M . We can now restrict F−1 to a neighbourhood fβ(N) ⊂M ,
where N is a neighbourhood of x in Uβ. In this neighbourhood

F−1 ◦ fβ|N = f−1α ◦ fβ|N

is differentiable as the composition of differentiable maps. Since x was arbitrary f−1α ◦ fβ is
differnetiable on f−1β (W ).

We are going to use this property to formulate a definition that is independent of the ambient
space.

Definition 1 (n-dimensional differentiable manifold).
An n-dimensional differential manifold is a set M with a family of injective maps
fα : Uα ⊂ Rn −→M of open sets Uα ⊂ Rn into M , such that

1.
⋃
α fα(Uα) = M

2. For each pair α, β with fα(Uα)∩ fβ(Uβ) = W = ∅, the sets f−1α (W ) and f−1β (W ) are open

sets in Rn and the maps f−1β ◦ fα : f−1α (W ) −→ Uβ and f−1α ◦ fβ : f−1β (W ) −→ Uα are
differentiable.

3. The family {Uα, fα} is maximal relative to 1. and 2..

A pair (Uα, fα) with p ∈ fα(Uα) is called a parametrization or coordinate system of M at p.
A familiy {Uα, fα}α satisfying 1. and 2. is called a differentiable structure of M .

Example 1 (The real projective space).
We identify the real projective space PnR with the quotient space Rn+1 \ {0}/∼, where ∼ is the

equivalence relation given by

(x1, . . . , xn+1) ∼ (λx1, . . . , λxn+1) λ ∈ R, λ 6= 0

We denote an element in x ∈ PnR by x = [x1, . . . , xn+1]. In order to proof that the real projective
space is a differentiable manifold, we need to find a family satisfying 1. and 2. in definition 1.
Let

Vi = {[x1, . . . , xn+1]|xi 6= 0} ⊂ PnR

and define the functions fi : Rn −→ Vi by fi(y1, . . . , yn) = [y1, . . . , yi−1, 1, yi, . . . , yn].
We claim that {Vi, fi}(i∈{1,...,n+1}) is a differential structure on M .

First we note that fi : Rn −→ Vi is bijective. Moreover, f−1i (Vi) = Rn is open in Rn and⋃n
i=1 fi(Rn) = PnR.

We have fi(Rn) ∩ fj(Rn) = Vi ∩ Vj 6= ∅. We need to show that f−1i (Vi ∩ Vj) is open in Rn and
that f−1j ◦ fi is differentiable. Note that

Vi ∩ Vj = {[x1, . . . , xn+1|xi 6= 0 ∧ xj 6= 0} = {[x1
xi
, . . . ,

xi−1
xi

, 1,
xi+1

xi
, . . . ,

xn
xi

]|xi 6= 0 ∧ xj 6= 0}

With that observation we get

f−1i (Vi ∩ Vj) = {
(
x1
xi
, . . . ,

xi−1
xi

,
xi+1

xi
, . . . ,

xn
xi

)
|xj 6= 0 ∧ xi 6= 0} = {(x1, . . . , xn)|xj 6= 0}
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which is open in Rn. Moreover, we have (without loss of generality i > j)

f−1j ◦ fi(x1, . . . , xn) = f−1j ([x1, . . . , xi−1, 1, xi, . . . , xn+1])

= f−1j ([
x1
xj
, . . . ,

xj−1
xj

, 1,
xj+1

xj
, . . . ,

xi−1
xj

,
1

xj
,
xi
xj
, . . . ,

xn+1

xj
])

= (
x1
xj
, . . . ,

xj−1
xj

,
xj+1

xj
, . . . ,

xi−1
xj

,
1

xj
,
xi
xj
, . . . ,

xn+1

xj
)

which is differentiable on f−1i (Vi ∩ Vj).

Definition 2 (differentiable map between manifolds).
Let M1 and M2 be n resp. m-dimensional manifolds. A map ϕ : M1 −→ M2 is differentiable
at a point p ∈ M1 if given a parametrization g : V ⊂ Rm −→ M2 around ϕ(p), there exists a
parametrization f : U ⊂ Rn −→M1 around p such that ϕ(f(U)) ⊂ g(V ) and the map

g−1 ◦ ϕ ◦ f : U ⊂ Rn −→ Rm

is differentiable at f−1(p). The map ϕ is differentiable on an open set of M1 if it is differentiable
at all points of this set.
We call a differentiable map ϕ1 : M1 −→ M2 = R a differentiable function on M1 and a
differentiable map ϕ2 : I ⊂ R −→M2 a differentiable curve on M2.

The differentiability of a map between manifolds is well-defined, i.e. independent of the choice
of parametrizations, because the change of parametrizations is by definition differentiable.

Motivation 2.
In R3 a tangent vector v at a point p to a differentiable curve α : I ⊂ R −→ S ⊂ R3, α(0) = p on
a regular surface S is simply defined as v := α′(0) = [α′1(0), α′2(0), α′3(0)]t. Again, since we do
not necessarily have the ambient space Rn, we need an alternative characterization. The idea
is that a tangent vector is fully characterized by the derivatives of functions along this tangent
vector.
Let ϕ : R3 −→ R be differentiable in a neighbourhood of p ∈ S. We calculate the directional
derivative of ϕ in direction of the tangent vector v:

d

dt
(ϕ ◦ α)|t=0 =

3∑
i=1

∂ϕ

∂αi

∂αi
∂t
|t=0 =

(
3∑
i=1

α′i(0)
∂

∂αi

)
ϕ

Notice that we can get the coordinates of v by applying the operator
(∑3

i=1 α
′
i(0) ∂

∂αi

)
to the

functions ϕ1(x, y, z) = (x, 0, 0), ϕ2(x, y, z) = (0, y, 0), ϕ3(x, y, z) = (0, 0, z). This observation
motivates the following definition:

Definition 3 (tangent vector).
Let {0} ⊂ I be an open subset of R and α : I −→ M a differentiable curve on a differentiable
manifold M through p ∈ M , α(0) = p. Let D be the set of functions on M , which are
differentiable at p. The tangent vector to the curve α at p is the map

α′(0) : D −→ R

given by

α′(0)ϕ =
d

dt
(ϕ ◦ α)|t=0, ϕ ∈ D

A tangent vector at p ∈ M is the tangent vector to some differential curve α : I −→ M with
α(0) = p.
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Proposition 1. The set TpM of tangent vectors at a point p ∈ M of an n-dimensional differ-
entiable manifold M , called the tangent space, is an n-dimensional real vector space.

Proof. Choose a parametrization f : U ⊂ Rn −→ M around p, without loss of generality
p = f(~0), and a curve α : I −→M on M through p, α(0) = p. Let ϕ ∈ D.
Then by definition f−1 ◦ α ◦ id ≡ f−1 ◦ α : I −→ Rn is differentiable. Therefore, we can
write f−1 ◦ α = (x1(t), . . . , xn(t)) with differentiable functions xi : I −→ R. We also write
ϕ ◦ f(q) = ϕ(x1, . . . , xn), where q = (x1, . . . , xn) ∈ U . Then we have

α′(0)ϕ =
d

dt
(ϕ ◦ α)|t=0 =

d

dt
(ϕ ◦ f ◦ f−1 ◦ α)|t=0

=
d

dt
ϕ(x1(t), . . . , xn(t))|t=0

= (

n∑
i=1

x′i(0)(
∂

∂xi
)|0)ϕ

This observation leads us to the assumption that TpM , the tangent space to M at p, is equal
to Tf = 〈( ∂

∂xi
)|0|i = 1, . . . , n〉. (Notice that ∂

∂xi
depends on the choice of f !). We have already

seen that TpM ⊂ Tf .

For the other direction, Tf ⊂ TpM , let v ∈ Tf , i.e. v =
∑n

i=1 λi(
∂
∂xi

)|0 ∈ Tf . We now have
to look for a curve α for which v is the tangent vector at p.
Let α : I −→ M be given by f−1 ◦ α(t) = (λ1t, . . . , λnt) = ~x(t) or equivalently α(t) :=
f(λ1t, . . . , λnt) where f is the given parametrization of M around p. Then

α′(0) =
n∑
i=1

x′i(0)
∂

∂xi
|0 =

n∑
i=1

λi(
∂

∂xi
)|0

Finally, TpM = Tf is an n-dimensional vector space and the chosen parametrization f determines
a basis {( ∂

∂xi
)|0}(i=1,...,n)

of TpM .

Motivation 3.
We first consider the case of a differentiable map ϕ : S1 −→ S2 between two regular surfaces S1
and S2 in R3. At a point p ∈ S1 the differential dϕp is a map from the tangent space TpS1 to
the tangent space Tϕ(p)S2. It maps a tangent vector v = α′(0) to a curve α, α(0) = p, to the
tangent vector w = (ϕ ◦ α)′(0) to the curve ϕ ◦ α, (ϕ ◦ α)(0) = ϕ(p).
To accept that this is well-defined we need to check that dϕp(v), v = α′(0) is independent of the
choice of the curve α. Moreover, we will proof that dϕp is linear.

Proof. We choose parametrizations (f, U) around p and (g, V ) around ϕ(p). Let ϕ(x, y) =
(ϕ1(x, y), ϕ2(x, y)), be the coordinate expression of ϕ with respect to the chosen parametriza-
tions, let α(t) = (α1(t), α2(t)), then β(t) = ϕ(α(t)) = ϕ(α1(t), α2(t)). We get

dϕp(v) = β′(0) = (ϕ ◦ α)′(0) =

(
2∑
i=1

∂ϕ1

∂αi
α′i(0),

2∑
i=1

∂ϕ2

∂αi
α′i(0)

)
This does not depend on α but only on the coordinates v = [α′1(0), α′2(0)] w.r.t the basis that is
determined by the choice of parametrization. Moreover the map dϕp can be written as:

dϕp(v) = β′(0) =

[
∂ϕ1

∂α1

∂ϕ1

∂α2
∂ϕ2

∂α1

∂ϕ2

∂α2

][
α′1(0)
α′2(0)

]
︸ ︷︷ ︸

=v

Therefore it is a linear map.
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Definition 4 (The differential).
Let M1,M2 be n- respectively m-dimensional differentiable manifolds and ϕ : M1 −→ M2 a
differentiable map. For all p ∈M the differential of ϕ at p is the linear map

dϕp : TpM1 −→ Tϕ(p)M2

v 7−→ dϕp(v)

such that for all differentiable curves α : (−ε, ε) −→ M1 with α(0) = p, α′(0) = v the following
relation holds:

dϕp(v) = (ϕ ◦ α)′(0) (1)

In order for the definition to be well-defined, the differential (1) has to be independent of the
choice of α. By taking parametrizations around p and ϕ(p), we reduce the problem to a map
between Rn and Rm, where the claim can be proven analogous to motivation 3.

Definition 5 (immersion, embedding, submanifold).
Let M , N be m- respectively n-dimensional differentiable manifolds and ϕ : M −→ N differen-
tiable.

• ϕ is called an immersion, if dϕp : TpM −→ Tφ(p)M is injective for all p ∈M .

• ϕ is called an embedding, if it is an immersion and a homeomorphism onto ϕ(M) ⊂ N ,
where ϕ(M) has the topology induced by N.

• If M ⊂ N and the inclusion ι : M −→ N is an embedding, then M is called a submanifold
of N .

Example 2 (alternative representation of the projective plane).
We can model the projective space in two dimensions, P2

R as the quotient space of the sphere
S2 = {p ∈ R3|‖p‖ = 1} by the equivalence relation p ∼ q :⇔ q = ±p, i.e. P2

R = S2
/∼

. Basically,

we identify antipodal points.
We are now looking for a differentiable structure for this representation of the projective plane.
To find this we first look at a well-known differentiable structure on the sphere:

f+i : Ui −→ S2

f−i : Ui −→ S2 i = 1, 2, 3

U1 = {(x1, x2, x3) ∈ R3;x1 = 0, x22 + x23 < 1}
U2 = {(x1, x2, x3) ∈ R3;x2 = 0, x21 + x23 < 1}
U3 = {(x1, x2, x3) ∈ R3;x3 = 0, x21 + x22 < 1}

f+1 (~x) = f+1 (0, x2, x3) = (
√

1− (x22 + x23), x2, x3)

f−1 (~x) = f−1 (0, x2, x3) = (−
√

1− (x22 + x23), x2, x3)

f+2 (~x) = f+2 (x1, 0, x3) = (x1,
√

1− (x21 + x23), x3)

f−2 (~x) = f+2 (x1, 0, x3) = (x1,−
√

1− (x21 + x23), x3)

f+3 (~x) = f+3 (x1, x2, 0) = (x1, x2,
√

1− (x21 + x22))

f−3 (~x) = f−3 (x1, x2, 0) = (x1, x2,−
√

1− (x21 + x22))
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Now let π : S2 −→ P2
R be the canonical projection; π(p) = {p,−p}. Then π(f+i (Ui)) = π(f−i (Ui))

(but not necessarily π(f+i (~x)) = π(f−i (~x)).We claim that by defining

gi = π ◦ f+i

we obtain a differentiable structure on P2
R. Condition 1 in definition 1 is obviously fullfilled. For

condition 2 we observe that

g−1i ◦ gj = (π ◦ f+i )−1 ◦ (π ◦ f+j ) = (f+i )−1 ◦ π−1 ◦ π ◦ f+j = (f+i )−1f+j

where we used the fact that gi is injective in the second step. Hence, (g−1i ◦ gj) is differentiable
and therefore (gi, Ui) is a differentiable structure.

Example 3 (Immersion of the projective plane in R4).
We define the map ϕ : R3 −→ R4 by ϕ(x, y, z) = (x2 − y2, xy, xz, yz) for (x, y, z) ∈ R3.
Let S2 := {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} be the unit sphere and let π be the canoncial
projection of S2 onto the real projective plane. First, we observe that ϕ is symmetric, i.e.
ϕ((x, y, z)) = ϕ((−x,−y,−z)). Now we define the map θ : P2

R −→ R4 by θ({p,−p}) = ϕ(p).
This is well-defined because of the previous observation. We claim that θ is an immersion of P2

R
into R4. We have already seen that π is a local diffeomorphism. It is therefore enough to show
that ϕ|S2 is an immersion. We will prove this by using the parametrization of S2 that we found
in the previous example. We have

f+3 (~x) = f+3 (x1, x2, 0) = (x1, x2,
√

1− (x21 + x22))

and composed with ϕ

ϕ ◦ f+3 (~x) = ϕ ◦ f+3 (x1, x2, 0) = (x21 − x22, x1x2, x1
√

1− (x21 + x22), x2

√
1− (x21 + x22))

To simplify the equation we will define D12 =
√

1− (x21 + x22) and we get

ϕ ◦ f+3 (~x) = (x21 − x22, x1x2, x1D12, x2D12)

The differential d(ϕ ◦ f+3 ) is injective, since

D(ϕ ◦ f+3 )(x, y) =

[
2x y D12 + x ∂

∂xD12 y ∂
∂xD12

−2y x x ∂
∂yD12 D12 + ∂

∂yD12

]
has full row rank, i.e. has rank 2. An analogous argument for the other parametrizations shows
that ϕ|S2 is an immersion and therefore θ is also an immersion from P2

R into R4.

Remark 1. The immersion in the previous example is actually an embedding. Therefore the
projective plane can be embedded in R4, it can be shown, however, that it cannot be embedded in
R3.

2 Differential forms on manifolds

We want now to extend the notion of differential forms for differentiable manifolds.

Definition 6. Let Mn an n-dimensional differentiable manifold. An exterior k-form w in M
is the choice, for every p ∈ M , of an element w(p) of the space Λk(TpM)∗ of alternate k-linear
forms of the tangent TpM .

6



Definition 7. Given an exterior k-form w and fα : Uα → Mn a parametrization, around
p ∈ fα(Uα) we define the representation of w in this parametrization as the exterior k-form in
Uα ⊂ Rn given by

wα(v1, . . . , vn) = w(dfα(v1), . . . , dfα(vn)), with v1, . . . , vn ∈ Rn

If we change coordinates to a different fβ : Uβ →Mn we obtain

(f−1β ◦ fα)∗wβ(v1, . . . , vn) =w(d(f−1β ◦ fα)(v1), . . . , d(f−1β ◦ fα)(vk))

=w((dfβ ◦ d(f−1β ◦ fα))(v1), . . . , (dfβ ◦ d(f−1β ◦ fα))(vk))

=wα(v1, . . . , vn)

i.e. (f−1β ◦ fα)∗wβ = wα.

Definition 8. A differential form of order k or differential k-form in a differentiable manifold
Mn is an exterior k-form such that, in some coordinate system, its representation is differentiable.

From all this, it follows that a differential k-form is the choice, for each parametrization
(Uα, fα) of a differential form wα in Uα in such a way that for a different parametrization
(Uβ, fβ) with fα(Uα) ∩ fβ(Uβ) 6= ∅, applies that wα = (f−1β ◦ fα)∗wβ.

A remarkable and important fact is that all operations defined for differential forms in Rn
can naturally be extended to differential forms on manifolds through their local representations.
Indeed, given a differential form w in M , dw is the differential form whose local representation
is dwα. Since

dwα = d(f−1β ◦ fα)∗wβ = (f−1β ◦ fα)∗dwβ

it follows that dw is well defined as differential form on M .

3 Vector fields

The concept of vector field is closely associated with differential forms. Let us first define what
it is.

Definition 9. A vector field on a differentiable manifold M is a correspondence that associates
to each point p ∈M a vector X(p) ∈ TpM . The vector field X is said to be differentiable if Xϕ
is differentiable for each differentiable ϕ : M → R.

Let fα : Uα → Mn be a parametrization for M and Xi = ∂
∂xi

, i = 1, . . . , n, the basis
associated to the parametrization. Then a vector field, for each point p can be described in the
parametrization through its local expression

X(p) =

n∑
i=1

ai(p)Xi

where each ai is a C∞ function.
We can now denote with X(M) the set of all vector fields on M and observe that given

X,Y ∈ X(M) and f ∈ C∞(M), we can define the sum (X+Y )(p) = X(p)+Y (p) and a product
(fX)(p) = fX(p), that give X(M) a structure of vector space.

Lemma 1. Let X and Y be differentiable vector fields on a differentiable manifold. Then there
exists a unique Z ∈ X(M) such that, for every differentiable function ϕ, Zϕ = (XY − Y X)ϕ.

The vector field so defined is called bracket and it is denoted as [X,Y ]ϕ = (XY − Y X)ϕ.
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Proof. To prove that if such Z exists then it is unique, let f : U →M be a parametrization and

X =
∑
i

ai
∂

∂xi
and Y =

∑
i

bi
∂

∂xi

be the expressions of X and Y in the parametrization f . Then

XY ϕ = X

(∑
j

bj
∂ϕ

∂xj

)
=
∑
ij

ai
∂bj
∂xi

∂ϕ

∂xj
+
∑
ij

aibj
∂2ϕ

∂xi∂xj

Y Xϕ = Y

(∑
i

ai
∂ϕ

∂xi

)
=
∑
ij

bj
∂ai
∂xj

∂ϕ

∂xi
+
∑
ij

aibj
∂2ϕ

∂xi∂xj

So

(XY − Y X)ϕ =
∑
i

(∑
j

(
ai
∂bj
∂xi
− bi

∂aj
∂xi

) ∂

∂xj

)
ϕ

It follows that any Z with the required properties must be expressed in this form in any coor-
dinate system, hence it is unique.

To see that it always exists, it is enough to define Zα in each coordinate neighborhood by
the expression just given. By uniqueness Zα = Zβ in fα(Uα)∩ fβ(Uβ), thus Z is well defined on
all M .

Let’s now see some of the properties of this bracket.

Proposition 2. Given X,Y, Z ∈ X(M), a, b ∈ R and f, g ∈ C∞(M), then:

1. [X,Y ] = −[Y,X]

2. [aX + bY, Z] = a[X,Z] + b[Y,Z]

3. [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

4. [fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X

There exist an interesting correlation between exterior differentiation of differential forms
and the operation of bracket. For the case of 1-forms, it applies the following.

Proposition 3. Let ω be a differential 1-form on a differentiable manifold M and X,Y ∈ X(M).
Then

dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ])

Proof. As usual, let f : U →M be a parametrization and

X =
∑
i

ai
∂

∂xi
and Y =

∑
i

bi
∂

∂xi

be the expressions of X and Y in the parametrization f . First of all, we notice that if our claim
holds for Xi and Yj , then holds for

∑
Xi and

∑
Yj . Next, we claim that if it holds for X and Y ,

it also does for θX and ϕY , when θ, ϕ are differentiable functions. First of all, we notice that

dω(θX,ϕY ) = θϕdω(X,Y ) = θϕ{Xω(Y )− Y ω(X)− ω([X,Y ])}

by definition. By the properties of the bracket

(θX)ω(ϕY )− (ϕY )ω(θX)− ω([θX,ϕY ]) =

=θX(ϕ)ω(Y ) + (θϕX)ω(Y )− ϕY (θ)ω(X)− (θϕY )ω(X)

− θϕω([X,Y ])− θX(ϕ)ω(Y ) + ϕY (θ)ω(X) =

=θϕ{Xω(Y )− Y ω(X)− ω([X,Y ])} =

=θϕdω([X,Y ])
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that proves our claim. It follows that we just have to prove our statement for vectors ∂
∂xi
, ∂
∂xj

,

and since their bracket is 0, it suffices to prove that

dω

(
∂

∂xi
,
∂

∂xj

)
=

∂

∂xi
ω

(
∂

∂xj

)
− ∂

∂xj
ω

(
∂

∂xi

)
Notice that if the property above applies to two 1-forms, then it applies to their sum. Thus

we can again restrict and prove that

d(αdxk)

(
∂

∂xi
,
∂

∂xj

)
=

∂

∂xi
αdxk

(
∂

∂xj

)
− ∂

∂xj
αdxk

(
∂

∂xi

)
where α is a differentiable function. The above reduces to

(dα ∧ dxk)
(
∂

∂xi
,
∂

∂xj

)
= δkj

∂α

∂xi
− δki

∂α

∂xj

that is true by definition of exterior product.

We can also observe that, with basically the same proof, one can generalize the last propo-
sition for a differentiable k-form ω:

dω(X1, . . . , Xk+1) =

k+1∑
i=1

(−1)i+1Xiω(X1, . . . , X̂i, . . . , Xk+1)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . Xk+1)

where each Xi is a differentiable vector field and X̂i means that Xi is missing.

4 Orientation

As for surfaces we might need to know “which side” we are walking on. Of course it is not
always possible to determine, but we can give a generalization of the concept of orientation for
manifolds.

Definition 10. A differentiable manifold M is orientable if it has a differentiable structure
{(Uα, fα)} such that for each pair α, β with fα(Uα) ∩ fβ(Uβ) 6= ∅, the differential of the change
of coordinates f−1β ◦ fα has positive determinant. Otherwise M is called non-orientable.

Since on manifolfds we can not generally use arrows, we can let ordered basis of the tangent
space be the needle of our compass. Indeed two different basis can be brought one into the other
by a regular linear transformation T of the tangent space at a point, so we will define equivalent
two basis such that the determinant of T is positive. This is of course an equivalence relation
between ordered basis of TpM and an equivalence class is called orientation at p. Let’s take now
a closer look to what happens when we consider the orientation at two points: obviously it is
not sure that, a priori, they have the same orientation. If for each point p the orientation at p
specifies also an orientation for an arbitrary point in a neighborhood, the orientation is said to
be coherent.

Thinking about this you will realize that this is a very intuitive definition, and it corresponds
to the idea we had previously that a surface is orientable if any closed path leads back to the
starting point on the same side of the surface. This gives us the input for an equivalent definition
of orientation for manifolds.

Definition 11. A differentiable manifold M is orientable if we can assign an orientation to each
point of M such that the orientations at any two sufficiently near points in M are coherent. If
the orientation is specified, M is called oriented manifold.
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Remark 2. If M is orientable, there are always exactly two orientations, that can be positive
or negative in according with the orientation they acquire when seen as local ordered basis at a
point. Moreover, if two orientations are the same at a point, then they are equal.

Let’s now go back to differential forms and take a look at how orientation is connected to
them.

Proposition 4. Any non vanishing n-form ω on a differentiable n-dimensional manifold M
determines a unique orientation for which ω is positively oriented at each point. Conversely, if
M is given an orientation, there is a smooth nonvanishing n-form that is positively oriented at
each point.

Because of this proposition, if M is a smooth n-dimensional differentiable manifold, any
nonvanishing n-form on M is called an orientation form. If M is oriented and ω is an orientation
form determining the given orientation, we also say that ω is (positively) oriented. It is easy to
check that if ω and ω̃ are two positively oriented smooth forms on M , then ω̃ = fω for some
strictly positive smooth real-valued function f .

Proposition 5. Suppose M and N are differentiable manifolds of dimension n. If F : M → N is
a local diffeomorphism and N is oriented, then M has a unique orientation, called the pullback
orientation induced by F, such that F sends positively oriented basis of TpM into positively
oriented basis in TF (p)N . Such diffeomorphisms are called orientation-preserving.

Proof. For each p ∈ M there is a unique orientation on TpM that makes the isomorphism
dFp : TpM → TF (p)N orientation-preserving. This defines a pointwise orientation on M and
provided it is continuous, it is the unique orientation on M with respect to which F is orientation-
preserving. To see that it is continuous, just choose an orientation form ω for N and notice that
F ∗ω is an orientation form for M .

We want to use these results to have some more detailed information on the manifolds.

Proposition 6. Any open subset U ⊂M of a differentiable orientable manifold is orientable.

Proof. It is enough to restrict an orientation form of M to U .

For the viceversa it is less trivial.

Proposition 7. Let V = (Vi)i∈I be an open covering for a differentiable manifold M . Let’s
suppose each Vi to be oriented and the restriction of the orientation forms from Vi and Vj to
Vi ∩ Vj to be equal for i 6= j. Then there exists a unique orientation for M with the given
restriction on each Vi.

Proof. Let us denote ωi the orientation form for Vi for each i, ωp the orientation form with
respect to p and consider a partition of unity φi. We can define ω as ω =

∑
i∈I φiωi, with φiωi

extended to an n-form on the whole M (just setting it to 0 in M \ SuppM (φi)). This is still an
orientation form, since given p ∈ Vi ⊂ M and b1, ..., bn basis for TpM , with ωi,p(b1, ..., bn) > 0,
we have ωj,p(b1, ..., bn) > 0 for each other j with p ∈ Vj , and in the following

ωp(b1, ..., bn) =
∑
i

φi(p)ωi,p(b1, ..., bn)

all terms are greater or equal than 0. So ω is an orientation form on M and b1, ..., bn are
positively oriented with respect to ω, and this orientation satisfies the properties we desired. If
τ is an other orientation form giving M an orientation that satisfies the same properties, then
τ = fω and τp(b1, ..., bn) = f(p)ωp(b1, ..., bn). Since both τp and ωp are positive on b1, ..., bn then
f(p) > 0, and so ω and τ determine the same orientation.
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Proposition 8. Let M be a differentiable manifold and V1, V2 coordinate neighborhoods such
that V1 ∪ V2 = M and V1 ∩ V2 := W is connected. Then M is orientable.

Let’s conclude making an idea of how all of it works with a couple exercises.

Exercise 1. Show that the sphere Sn is orientable.

Carry out. Let’s consider the stereographic projection π : Sn → Rn. We can use it to cover Sn
with two open sets such that their intersection is connected.

Exercise 2. Prove that the projective space PnR is orientable for n odd and non-orientable for n
even.

Carry out. Let’s see PnR as Sn/{±1}. The function f : Sn → Sn defined by f(p) = −p is an
orientation-preserving diffeomorphism if n is odd and orientation-reversing if n is even, because
if we extend f to a diffeomorphism f̃ of the whole Rn+1 by the same formula, df̃

(
∂
∂xi

)
= −

(
∂
∂xi

)
.

On the other hand, f̃ carries the outward normal vector to the outward normal vector, so that
the orientation stays coherent for n odd but not if n is even.
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