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1 The Structure Equations of Rn

Definition 1. A Riemannian manifold is a differentiable manifold M and a choice, for each point p ∈M ,
of a positive definite inner product 〈 , 〉p in TpM which varies differentiably with p. I.e. if X and Y are
differentiable vector fields in M , then p → 〈X,Y 〉p is differentiable in M. The inner product is called a
Riemannian metric on M .

Definition 2. A diffeomorphism ϕ : M → M ′ between two Riemannian manifolds M and M ′ is called an
isometry if

〈x, y〉p = 〈dϕp(x), dϕp(y)〉ϕ(p)

holds for all p ∈M and all pairs x, y ∈ TpM .

Definition 3. Let U ⊂ Rn be an open set. A set e1, . . . , en of n differentiable vector fields such that for
each p ∈ U : 〈ei, ej〉p = δij, where δij is the Kronecker delta, is called orthonormal moving frame. Given an
orthonormal moving frame {ei}, the set of differential 1-forms {ωi} given by ωi(ej) = δij, i, j ∈ {1, . . . , n}
at all p is called the coframe associated to {ei}.
In the following, the terminus “orthonormal” will be implicit. Next, we construct the connection forms on
Rn: By differentiability of the ei : U → Rn they give for any p ∈ U the linear map (dei)p : Rn → Rn. We
can therefore write

(dei)p(v) =
∑
j

(ωij)p(v)ej ,

for any v ∈ Rn = TpRn. Each (ωij)p(v) is linear in v, i.e. (ωij)p is a linear form in Rn ∀i, j ∈ {1, . . . , n}.
Likewise we denote the corresponding differential 1-forms in U with ωij and call them connection forms of
Rn. Then dei =

∑
j ωijej holds at any p. Note that the connection forms are antisymmetric:

〈ei, ej〉 = δij ⇒ 0 = 〈dei, ej〉+ 〈ei, dej〉 = ωij + ωji

Proposition 4 (The structure equations of Rn). Let {ei} be a moving frame in an open set U ⊂ Rn. Let
{ωi} be the coframe associated to {ei} and {ωij} the connection forms of U in the frame {ei}. Then

dωi =
∑
k

ωk ∧ ωki, (1)

dωij =
∑
k

ωik ∧ ωkj (2)
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for i, j, k = 1, . . . , n.

Proof. The proof is not complicated and found in [Car94] Chapter 5.1, Prop. 1.

To clarify what this means and where the names come from consider the following: We denote by x : U ↪→ Rn
the inclusion map. Then to say that the ωi are dual to the frame {ei} is equivalent to the statement
dx =

∑
i ωiei. A curve α(s) in U can be described by the inclusion x together with a moving frame {ei}.

Their differentials describe how the point and the frame in this point are varying:

dx =
∑
i

ωiei, dei =
∑
j

ωijej

The structure equations then follow from the above and that d2x = 0 and d2ei = 0

Lemma 5 (Cartan’s lemma). Let V be a real vector space of dimension n, and let ω1, . . . , ωr : V → R, r ≤ n,
be linear forms in V that are linearly independent. Assume that there exist 1-forms θ1, . . . , θr : V → R, such
that

∑r
i=1 ωi ∧ θi = 0. Then

θi =
∑
j

aijωj , with aij = aji.

Proof. We complete the forms ωi into a basis ω1, . . . , ωr, ωr+1, . . . , ωn of V ∗. Then for some coefficients aij ,
bil

θi =

r∑
j=1

aijωj +

n∑
l=r+1

bilωl.

Now from the hypothesis

0 =

r∑
i=1

ωi ∧ θi =

r∑
i=1

 r∑
j=1

aijωi ∧ ωj +

n∑
l=r+1

bilωi ∧ ωl


=

r∑
i=1

 r∑
j>i

(aij − aji)ωi ∧ ωj +

n∑
l=r+1

bilωi ∧ ωl

 .
From the fact that the ωi ∧ ωk are linearly independent for i < k, i, k = 0, . . . , n necessarily bil = 0 and
aij = aji.

Lemma 6. Let U ⊂ Rn be open and let ω1, . . . , ωn be linearly independent differential 1-forms in U . Assume
that there exists a set of differential 1-forms {ωij}, i, j ∈ {1, . . . , n} satisfying

ωij = −ωij , dωi =
∑
k

ωk ∧ ωki.

Then such a set is unique.

Proof. Suppose there exists another such set denoted by ω̄ij . Then∑
k

ωk ∧ (ω̄kj − ωkj) = 0.

By Cartan’s Lemma 5, we can write the appearing 1-forms above as

ω̄kj − ωkj =
∑
i

Bj
kiωi, Bj

ki = Bj
ik.

Using additionally that the antisymmetry of ω̄kj − ωkj in k, j one finds that Bj
ki = −Bk

ji. With these:

Bk
ji = −Bj

ki = −Bj
ik = Bi

jk = Bi
kj = −Bk

ij = −Bk
ji = 0, i.e. ω̄kj = ωkj
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2 Surfaces in R3

To make use of the moving frames for describing the geometry of surfaces in R3, we will need one further
definition. It relies on the fact that any immersion x : M → Rn+k of a n-dimensional differentiable manifold
M into euclidean space Rn+k is locally an embedding. This means that for any p ∈ M there exists a
neighbourhood U ⊂M of p such that the restriction x

∣∣
U

: U → Rn+k is an embedding (c.f.[Car94] Chapter
3, Exercise 4).

Definition 7. Let M , n, k and x as above and V ⊂ Rn+k be a neighbourhood of x(p) in Rn+k such that
V ∩ x(M) = x(U). Assume that V is such that there exists a moving frame {e1, . . . , en+k} in V with the
property that, when restricted to x(U), the vectors e1, . . . , en are tangent to x(U). Such a moving frame is
then called an adapted frame.

Let in the following M , M ′ be two-dimensional differentiable manifolds with an immersion x : M → R3.
We define an inner product 〈 , 〉p in TpM as

〈v1, v2〉p = 〈dxp(v1), dxp(v2)〉x(p) ,

where the bracket on the RHS is the canonical inner product on R3. Clearly it is differentiable and positive
definite (since the canonical inner product is), i.e. a Riemannian metric induced by the immersion x.
Let us

• fix a point p ∈M and study a neighbourhood U ⊂M such that the restriction x
∣∣
U
is an embedding,

• choose V ⊂ R3 as in Definition 7 such that V ∩ x(M) = x(U),

• choose an adapted moving frame e1, e2, e3 in V such that, when restricted to x(U), e1 and e2 are
tangent to x(U).

Then we from now on denote by {σi} , {σij}, i, j ∈ {1, 2, 3} the coframe of the adapted frame in and the
connection forms in R3 respectively while omegas are reserved for M . Then we have six structure equations

dσ1 = σ2 ∧ σ21 + σ3 ∧ σ31,

dσ2 = σ1 ∧ σ12 + σ3 ∧ σ32,

dσ3 = σ1 ∧ ω13 + σ2 ∧ σ23,

dσ12 = σ13 ∧ σ32,

dσ13 = σ12 ∧ σ23,

dσ23 = σ21 ∧ σ13.

(3)

The immersion x induces the pullback x∗ of differential forms, in particular x∗(σi) and x∗(σij) in U preserving
the structure equations. This justifies writing for all indices x∗(σi) = ωi and x∗(σij) = ωij . Note that
ω3 = x∗(σ3) = 0, since

x∗(σ3)(v) = σ3(dx(v)) = σ3(v) = 0 ∀q ∈ U, v ∈ TqM

So we can read from the structure equations (3):

dω3 = ω1 ∧ ω13 + ω2 ∧ ω23 = 0

⇒ ω13 = h11ω1 + h12ω2

ω23 = h21ω1 + h22ω2,

(4)

with hij = hji differentiable functions in U, using Cartan’s lemma.

Definition 8. Fix the orientation of U and R3 and choose an adapted frame such that {e1, e2} is in the
orientation of U and {e1, e2, e3} is in the orientation of R3. Then the Gauss map is

e3 : U → S2 ⊂ R3,

and assigns to any vector v ∈ U the unique unit vector e3 perpendicular to v and lying in the orientation of
R3.
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Remark 9. 1. The Gauss map is independent of the choice of the frame.

2. If M is orientable, the Gauss map can be defined globally on M .

3. de3 = ω31e1 + ω32e2 implies that we can write ∀q ∈ U and ∀v = a1e1 + a2e2 ∈ TqM

de3(v) = −
(
h11 h12

h21 h22

)(
a1

a2

)
,

i.e. −hij are the components of the matrix of the differential of the Gauss map in the basis {e1, e2}.

We can further use the spectral theorem from linear algebra: (hij) is symmetric, so de3 : TM → TS2 is a
self-adjoint linear map and can as such be diagonalised with orthogonal eigenvectors and eigenvalues −λ1,
−λ2.

Definition 10. In the above setup, one defines the Gaussian curvature K of M in p by

K = det(de3)p = λ1λ2 = h11h22 − h2
12

and the mean curvature H of M at p by

H = −1

2
(tr(de3))p =

λ1 + λ2

2
=
h11 + h22

2
,

where all functions are computed at p.

We conclude:

• Since e3 does not depend on the choice of frame, neither do K and H

• H changes sign under change of orientation, while K is invariant

• The structure equations (3) and our previous computation (4) show:

dω12 = ω13 ∧ ω32 = −(h11h22 − h2
12)ω1 ∧ ω2 = −Kω1 ∧ ω2,

ω12 ∧ ω2 + ω1 ∧ ω23 = (h11 + h22)ω1 ∧ ω2 = 2Hω1 ∧ ω2.

Theorem 11 (Gauss). K only depends on the induced metric of M ; that is, if x, x′ : M → R3 are two
immersions with the same induced metrics, then K(p) = K ′(p), where K and K ′ are the Gaussian curvatures
of the immersions x and x′ respectively.

Proof. Let U ⊂ M be a neighbourhood of p and choose a moving frame {e1, e2} in U , orthonormal in the
induced metric. For both immersions we can extend the frames to adapted frames {dx(e1),dx(e2), e3} in
V ⊃ x(U) and {dx′(e1), dx′(e2), e′3} in V ′ ⊃ x′(U). The coframes {σ1, σ2, σ3} and {σ′1, σ′2, σ′3} are pulled
back onto U , where

ωi(ej) = x∗(σi)(ej) = σi(dx(ej)) = δij ,

ω′i(ej) = x′∗(σ′i)(ej) = σ′i(dx
′(ej)) = δij for i, j ∈ {1, 2} .

That is, by duality ω1 = ω′1, ω2 = ω′2. Then, by uniqueness, Lemma 6, ω12 = ω′12 and thus

d(ω12) = d(ω′12) = −Kω1 ∧ ω2 = −K ′ω1 ∧ ω2.

So K = K ′.
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Definition 12. Fix a point p ∈ M and an immersion x : M → R3. The first fundamental form1 Ip :
TpM × TpM → R is the quadratic form associated to the induced metric:

Ip(v, w) = 〈v, w〉p ∀v, w ∈ TpM

The second fundamental form2 IIp : TpM × TpM → R is defined by

IIp(v, w) = −〈de3(v), w〉p ∀v, w ∈ TpM,

where e3 is the Gauss map. In both definitions products of co-frame forms are symmetric products. One
also finds the notation I(v) = I(v, v) and II(v) = II(v, v).

For any p ∈M , in an adapted moving frame they take the forms

Ip(v, w) = ω2
1(v, w) + ω2

2(v, w),

IIp(v, w) = (ω13ω1 + ω23ω2)(v, w) =
∑
ij

hijωi(v)ωj(w), i, j ∈ {1, 2} .

Theorem 13. LetM andM ′ be additionally connected submanifolds in R3. Assume that there exist adapted
frames {ei} in M , {e′i} in M ′, i ∈ {1, 2, 3} and a diffeomorphism f : M →M ′ such that

f∗ω′i = ωi, f∗ω′ij = ωij , i, j ∈ {1, 2, 3}

Then there exists a rigid motion ρ : R3 → R3 such that the restriction ρ
∣∣
M

= f .

Proof. The proof is found in [Car94] Chapter 5.2, Theorem 2.

Corollary 14. Let M and M ′ as above. Assume there exists a diffeomorphism f : M →M ′ that preserves
the first and the second fundamental form, i.e.

Ip(v, v) = I ′f(p)(df(v),df(v)), IIp(v, v) = II ′f(p)(df(v), df(v))

for all p ∈M and all v ∈ TpM . Then there exists a rigid motion ρ : R3 → R3 such that ρ
∣∣
M

= f .

Proof. Consider an adapted frame {ei} in M and define in M ′ a frame {e′i} = {df(ei)}. Since f preserves
inner products, this is again an adapted frame, and f∗ω′i = ωi. Because the second fundamental forms are
preserved, one also has f∗ω′13 = ω13 and f∗ω′23 = ω23. Then one can apply again the uniqueness lemma 6
to see that f∗ω12 = ω12 and the statement follows with Theorem 13.

We see that the local geometry of a surface in R3 is completely determined by the two fundamental forms.
The first gives the metric. But how can we interpret the second form? Let α : (−ε, ε) → M be a curve
parametrised by s with α(0) = p and α′(0) = v ∈ TpM . Let us abbreviate the expressions x(α(s)) with
x(s) and ei(α(s)) with ei(s). Then it is easy to show that〈

d2x

ds2
(0), e3(0)

〉
= IIp(v).

With k(s) the curvature of α(s) and n(s) the principal normal of α(s), we can write〈
d2x

ds2
(0), e3(0)

〉
= k(0) 〈n(0), e3(0)〉 .

Definition 15. The expression k 〈n, e3〉 is called the normal curvature kN(v) of the surface in the direction
v = α′(0) at the point p which only depends on the tangent vector v at p, since

IIp(v) = −〈de3(v), v〉p = kN(v) ∀p ∈M , v ∈ TpM.

The maximum and minimum of IIp(v) for vectors v on the unit circle S1 ⊂ TpM are the eigenvalues λ1 and
λ2 of (−de3), called the principal curvatures. The corresponding vectors generate the eigenspaces of (−de3)
and give the principal directions at p.

1Sometimes called first quadratic form, e.g. in [Car94].
2Sometimes called second quadratic form.
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3 Intrinsic Geometry of Surfaces

The aim of this section is to develop intrinsic geometric properties of a two-dimensional submanifold of R3.
Our starting point is:

• A Two-dimensional Riemannian manifold M together with metric 〈, 〉.

• For each point p ∈ M choose a neighbourhood U ⊂ M such that one can define orthonormal vector
fields e1 and e2 on U .

• The corresponding coframe is {ω1, ω2}.

• We have to analyse the behaviour of geometric entities under change of basis. Therefore denote be
{ē1, ē2} another moving frame related to {e1, e2} via Equation (5).

Lemma 16 (Theorem of Levi-Civita). Let M be a two-dimensional Riemannian manifold. Let U ⊂ M
be an open set where a moving orthonormal frame {e1, e2} is defined, and let {ω1, ω2} be the associated
coframe. Then there exists a unique 1-form ω12 = −ω21 such that

dω1 = ω12 ∧ ω2 and dω2 = ω21 ∧ ω1.

Proof. Uniqueness: Lemma 6.
Existence: Define

ω(e1) = dω1(e1, e2),

ω(e2) = dω2(e1, e2).

This is possible since ω1 = ω1(e1) and respectively ω2. The above choice has the desired properties:

dω1(e1, e2) ≡ ω12(e1) = ω12(e1)ω2(e2)− ω12(e2)ω2(e1)︸ ︷︷ ︸
=0

≡ (ω12 ∧ ω2)(e1, e2).

The other calculation works similarly.

Now, we wish to define geometric entities. This means that we wish to combine the forms ω1, ω2 and ω12

into something which does not depend on the choice of coordinates. So lets investigate the behaviour of ω12

under a change of frame.
First, we have to perform a change of frame of our moving frame.

Lemma 17. Let {e1, e2} and {ē1, ē2} be moving frames in U . If {ē1, ē2} has the same orientation like
{e1, e2}, we obtain: (

ē1

ē2

)
=

(
f g
−g f

)
·
(
e1

e2

)
, (5)

where f, g are differentiable functions on U satisfying f2 + g2 = 1. If the orientation is opposite, we obtain:(
ē1

ē2

)
=

(
f g
g −f

)
·
(
e1

e2

)
.

Proof. Consider the first case. The change of frame shall be orientation preserving, i.e. the matrix of the
transformation has determinant 1. Besides the system {ē1, ē2} shall be orthonormal, i.e. 〈ē1, ē2〉 = 0 and
〈ē1, ē1〉 = 1 = 〈ē2, ē2〉. These conditions fix the matrix of the transformation to the above form. f and g
are by definition differentiable.
The second case is analogous except for the determinant which shall be −1 here.

Now, we proceed with the transformation law of ω12.
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Lemma 18. Let {ē1, ē2} and {e1, e2} be moving frames being related to each other as stated in Lemma 17.
If both have the same orientation, then

ω12 = ω̄12 − τ,

where τ = fdg − gdf . If the above orientations are opposite,

ω12 = −ω̄12 − τ.

Proof. In this proof we will make have use of the first structure equation of Rn (dωi =
∑

k ωk ∧ ωki, (1)) in
combination with the fact that the connection form is unique (Lemma 6).
Transformation (5) implies: (

ω̄1

ω̄2

)
=

(
f g
−g f

)
·
(
ω1

ω2

)
(6)

which can be checked explicitly. Therefore the inverse transformation is:(
ω1

ω2

)
=

1

f2 + g2︸ ︷︷ ︸
=1

(
f −g
g f

)
·
(
ω̄1

ω̄2

)
.

Differentiating the transformation law of ω1 we can conclude:

dω1 = df ∧ ω̄1 + fdω̄1 − dg ∧ ω̄2 − g dω̄2

Structure Eq.
= df ∧ ω̄1 + f ·

∑
k

ω̄k ∧ ω̄k1 − dg ∧ ω̄2 − g ·
∑
k

ω̄k ∧ ω̄k2

= df ∧ ω̄1 + f · (ω̄1 ∧ ω̄11︸︷︷︸
=0

+ω̄2 ∧ ω̄21︸︷︷︸
=−ω̄12

)− dg ∧ ω̄2 − g · (ω̄1 ∧ ω̄12 + ω̄2 ∧ ω̄22︸︷︷︸
=0

)

= df ∧ ω̄1 − dg ∧ ω̄2 − (fω̄2 + gω̄1) ∧ ω̄12

Transformation Law
= df ∧ (fω1 + gω2)− dg ∧ (−gω1 + fω2)− ω2 ∧ ω̄12

= (fdf + gdg) ∧ ω1 + (gdf − fdg) ∧ ω2 + ω̄12 ∧ ω2.

The first term vanishes since f2 + g2 = 1 implies d(f2 + g2) = d(1) which gives 2fdf + 2gdg = 0. So we
are left with:

dω1 = [ω̄12 − (fdg − gdf)] ∧ ω2 ≡ (ω̄12 − τ) ∧ ω2.

Similarly one shows:

dω2 = − (ω̄12 − τ) ∧ ω1.

This is exactly the form of the structure equations for ω1 and ω2 with ω12 replaced by ω̄12. Since the
connection forms are unique (Lemma 6) we conclude:

ω12 = ω̄12 − τ. (7)

Let us continue by developing some geometric intuition for the form τ .

Lemma 19. Let p ∈ U ⊂ M be a point and let γ : I → U be a curve such that γ(t0) = p. Let φ0 =
angle(e1(p), ē1(p)). Then

φ(t) =

∫ t

t0

(
f
dg

dt
− gdf

dt

)
dt+ φ0

is a differentiable function such that

cosφ(t) = f(t), sinφ(t) = g(t), φ(t0) = φ0, dφ = γ∗τ.
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Proof. First we show that

f(t) cosφ(t) + g(t) sinφ(t) = 1 for all t ∈ I. (8)

By definition of φ we know φ′ = fg′ − f ′g. Thus,

(f cosφ+ g sinφ)′ = f ′ cosφ− fφ′ sinφ+ g′ sinφ+ gφ′ cosφ

= (g′ + fgf ′ − f2g) sinφ+ (f ′ + gfg′ − g2f ′) cosφ. (9)

Again we use ff ′ + gg′ = 0 (since f2 + g2 = 1). The coefficients of (9) therefore read:

g′ + fgf ′ − f2g = g′ − g2g′ − f2g′ = g′ − g′ · (g2 + f2) = g′ − g′ = 0,

f ′ + gfg′ − g2f ′ = f ′ − g2f ′ − f2f ′ = f ′ − f ′ · (g2 + f2) = f ′ − f ′ = 0.

So (f cosφ + g sinφ)′ vanishes for all t ∈ I and (f cosφ + g sinφ) is constant which can be evaluated at
t = t0.

e2

e1
f(t0)

g(t0)

φ0

1

We realise that cos(t0) = f(t0) and sin(t0) = g(t0) (results from f2 + g2 = 1). This implies:

f(t0) cosφ(t0) + g(t0) sinφ(t0) = (f2 + g2)(t0) = 1.

Altogether we showed (8). The lemma follows immediately:

(f − cosφ)2 + (g − sinφ)2 = f2 + g2︸ ︷︷ ︸
=1

−2f cosφ− 2g sinφ︸ ︷︷ ︸
(8)
=−2

+1 = 0

showing cosφ(t) = f(t) and sinφ(t0) = g(t) for all t ∈ I.

Now we are able to define our first intrinsic geometrical object.

Proposition 20. In an oriented surface the 2-form ω1 ∧ ω2 ≡ σ does not depend on the choice of frames
and is called area element of M .

Proof. σ does not depend on the choice of frame since

ω1 ∧ ω2 = (fω̄1 − gω̄2) ∧ (gω̄1 + fω̄2) = f2ω̄1 ∧ ω̄2 − g2ω̄2 ∧ ω̄1 = (f2 + g2) ω̄1 ∧ ω̄2 = ω̄1 ∧ ω̄2.

where we used (6) and the fact that ωi ∧ ωj = −ωj ∧ ωi including ωi ∧ ωi = 0.
The interpretation as area element is obtained as follows. Let vi = ai1e1 + ai2e2, i ∈ {1, 2} be two linearly
independent vectors at a point p ∈M . Then

σ(v1, v2) = (ω1 ∧ ω2)(v1, v2)

= ω1(v1)ω2(v2)− ω2(v1)ω1(v2) = a11a22 − a21a12 ≡ det(aij) ≡ area(v1, v2).

Remark 21. Since σ does not depend on the choice of frames it is globally defined.
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Now, we are ready for our second geometric entity.

Proposition 22. Let M be a Riemannian manifold of dimension two. For each p ∈M , we define a number
K(p) by choosing a moving frame {e1, e2} around p and setting

dω12(p) = −K(p)(ω1 ∧ ω2)(p). (10)

Then K(p) does not depend on the choice of frames, and it is called the Gaussian curvature of M at p.

Proof. Let {ē1, ē2} another moving frame around p. We have two cases.

1. Suppose the orientations are the same: We have ω12 = ω̄12 − τ with τ = fdg − gdf , therefore dτ = 0
and we conclude dω12 = dω̄12. It follows that:

−Kω1 ∧ ω2 = dω12 = dω̄12 = −K̄ω̄1 ∧ ω̄2 = −K̄ω1 ∧ ω2.

This shows the proposition.

2. Suppose the orientations are not the same. Here we obtain dω12 = d(−ω̄12 − τ) = −dω̄12 but
additionally ω1 ∧ ω2 = −ω̄1 ∧ ω2. The two signs cancel in the above computation.

The next frame-independent quantity is the covariant derivative of vectors.

Definition 23. Let M be a Riemannian manifold and let Y be a differentiable vector field on M . Let
p ∈ M,x ∈ TpM , and consider a curve α : (−ε, ε) → M with α(0) = p and α′(0) = x. To define the
covariant derivative (∇xY )(p) of Y relative to x in p, we choose a moving frame {ei} around p, express
Y (α(t)) in this frame

Y (α(t)) =
∑

yi(t)ei, i ∈ {1, 2},

and set

(∇xY )(p) =

2∑
i=1

 dyi
dt

∣∣∣∣
t=0

+

2∑
j=1

ωij(x)yj(0)

 ei,

where the convention is made that ωii = 0.

Lemma 24. The covariant derivative does not depend on the choice of frames.

Proof. Let {e1, e2} and {ē1, ē2} be two orthonormal frames around p. Assume that they have the same
orientation. Then Y (α(t)) =

∑
yi(t)ei =

∑
ȳi(t)ēi with(

y1

y2

)
=

(
f −g
g f

)
·
(
ȳ1

ȳ2

)
,

(
e1

e2

)
=

(
f −g
g f

)
·
(
ē1

ē2

)
, (11)

f, g differentiable functions with f2 + g2 = 1. By definition,

∇xY =

(
dy1

dt
+ ω21(x)y2

)
e1 +

(
dy2

dt
+ ω12(x)y1

)
e2

where the functions are taken at t = 0. Using (11), ω12 = ω̄12 − τ and ff ′ + gg′ = 0, we arrive after a long
and painful computation at

∇xY =

(
dȳ1

dt
+ ω̄21(x)ȳ2

)
ē1 +

(
dȳ2

dt
+ ω̄12(x)ȳ1

)
ē2.

Because it’s fun. Let us take a look at this computation.
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∇xY =

(
dy1

dt
+ ω21(x)y2

)
e1 +

(
dy2

dt
+ ω12(x)y1

)
e2

=

(
d(fȳ1 − gȳ2)

dt
− (ω̄12 − τ)(x)(gȳ1 + fȳ2)

)
(fē1 − gē2) + . . .

. . .+

(
d(gȳ1 + fȳ2)

dt
+ (ω̄12 − τ)(x)(fȳ1 − gȳ2)

)
(gē1 + fē2)

= A+B + C

with

A := −ω̄12(x)(gȳ1 + fȳ2)(fē1 − gē2) + ω̄12(x)(fȳ1 − gȳ2)(gē1 + fē2)

B :=

(
d(fȳ1)

dt
− d(gȳ2)

dt

)
(fē1 − gē2) +

(
d(gȳ1)

dt
+
d(fȳ2)

dt

)
(gē1 + fē2)

C := τ(x)(gȳ1 + fȳ2)(fē1 − gē2)− τ(x)(fȳ1 − gȳ2)(gē1 + fē2)

First of all take a look at A.

A = ω̄12(x) [(gȳ1 + fȳ2)(−fē1 + gē2) + (fȳ1 − gȳ2)(gē1 + fē2)]

= ω̄12(x)
[
(f2 + g2)ȳ1ē2 + (−f2 − g2)ȳ2ē1 + fg(ȳ2ē2 + ȳ1ē1 − ȳ2ē2 − ȳ1ē1)

]
= ω̄12(x) [ȳ1ē2 − ȳ2ē1]

= ω̄12(x)ȳ1ē2 + ω̄21(x)ȳ2ē1.

So all terms involving ω12 are invariant under change of frames. A similar calculation shows that B and C
is invariant as well.
When the orientations of the frames are opposite, the proof is similar.

The covariant derivative can be used to give a geometric interpretation of the connection form ω12. We
obtain ∇xe1 = ω12(x)e2 or

ω12(x) = 〈∇xe1, e2〉 . (12)

Remark 25. For the induced metric of surfaces M ⊂ R3 it can be shown that the covariant derivative is
just the projection of the usual derivative in R3 onto the tangent plane of M .
Note that the covariant derivative is R-bilinear, tensorial in the lower argument and a derivation and additive
in the main argument:

∇fXY = f∇XY,
∇X(fY ) = df(X) · Y + f∇XY,

∇X(Y1 + Y2) = ∇XY1 +∇XY2.

The covariant derivative makes it possible to define a variety of geometric entities (parallel transport,
geodesics, geodesic curvature, etc.).

Definition 26. A vector field Y along a curve α : I →M is said to be parallel along α if ∇α′(t)Y = 0 for
all t ∈ I.

Remark 27. For a general manifold it is not trivial what is meant by ∇α′(t) since α′(t) /∈ Tα(t)M but
rather in TtI. In this case one pushes the tangential vector α′(t) to I to our main manifold M by using the
differential map dα : TxI → Tα(x)M,v 7→ dα(v) such that dα(v)(φ) = v(φ ◦ α).

Definition 28. A curve α : I →M is a geodesic if α′(t) is a parallel field along α, i.e. ∇α′(t)α
′(t) = 0 for

all t ∈ I.
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Definition 29. Assume that M is oriented, and let α : I → M be a differentiable curve parametrized by
arc length s with α′(s) 6= 0 for all s ∈ I.3 In a neighbourhood of a point α(s) ∈M , consider a moving frame
{e1, e2} in the orientation of M such that, restricted to α, e1(α) = α′(s). The geodesic curvature kg of α
in M is defined by

kg = (α∗ω12)
(
d
ds

)
where d

ds is the canonical basis of R.

A nice way to think about geodesic curvature is the following. The geodesic curvature measures the deviation
of a curve of being a geodesic. A differentiable curve is a geodesic if and only if its geodesic curvature
vanishes. To show this we state the even more general following proposition.

Proposition 30. Let α : I → M and {e1, e2} be as in Definition 29 (here we do not need to assume that
M is orientable). Then e1 is parallel along α if and only if α∗ω12 = 0.

Proof. By definition e1 is parallel along α if and only if ∇e1e1 = 0. Thus, 〈∇e1e1, e1〉 = 0 and it follows that

∇e1e1 = 0 ⇔ 0 = 〈∇e1e1, e2〉
(12)
= ω12(e1).

And ω12(e1) = 0 if and only if α∗ω12 = 0.

Corollary 31. A differentiable curve α : I →M is a geodesic if and only if its geodesic curvature vanishes
everywhere.

Proposition 32. Let M be oriented and let α : I →M be a differentiable curve parametrized by arc length
s with α′(s) 6= 0, s ∈ I. Let V be a parallel vector field along α and let φ(s) = angle(V, α′(s)) where the
angle is measured in the given orientation. Then

kg(s) =
dφ

ds
.

Proof. Let us choose frames {e1, e2} and {ē1, ē2} around α(s) such that e1 = V/|V | and ē1 = α′(s). Let e2

and ē2 be normal in positive direction to e1 and ē1 respectively and ω12 and ω̄12 the respective connection
forms. Then φ = angle(e1, ē1).
By Lemma 19 and equation (7) we know dφ:

dφ = α∗ω̄12 − α∗ω12. (13)

Since e1 is parallel along α it follows with the help of Proposition 30 α∗ω12 = 0. We are left with

kg ≡ (α∗ω12)

(
d

ds

)
= dφ

(
d

ds

)
=
dφ

ds
.

Let us see how this enables us to understand the geodesic curvature descriptively.

Remark 33. Let p ∈ M and D ⊂ M an open neighbourhood of p homeomorphic to a disk with smooth
boundary ∂D. Parametrize the boundary ∂D by α (by arc length).
Let q ∈ ∂D and V0 ∈ TqM, |V0| = 1. Let V (s) be the parallel transport of V0 along α. Generally, there will
be a non-vanishing angle between V0 and the vector at q obtained by parallel transport.
Use the frames {e1(s) = α′(s), e2}, {ē1(s) = V (s), ē2}4 we obtain:

−
∫
∂D

α∗(ω12)
(13)
=

∫
∂D

dφ = φ.

3A differential curve is called parametrized by arc length if its velocity has unit norm at every point.
4Note that these frames are different from those used in the proof of Proposition 32. Therefore the other term in (13) vanishes.
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The integral on the left-hand side can be evaluated as well by using Stoke’s theorem:

φ = −
∫
∂D

α∗(ω12) = −
∫
D

dω12
(10)
=

∫
D
Kσ.

By elementary calculus we interpret the Gaussian curvature as:

K(p) = lim
D→p

φ

areaD

where we take the limit in the sense that area(D) → 0 and p is element of all D. Thus, the Gaussian
curvature measures how different from identity is parallel transport along small circles about p.

List of intrinsic geometrical objects

• Area element σ ≡ ω1 ∧ ω2 (only for orientable manifolds globally defined).

• Gaussian curvature: dω12(p) = −K(p)(ω1 ∧ ω2)(p).

• Covariant derivative of vectors

– Parallel transport (∇α′(t)X = 0)

– Geodesics (∇α′(t)α
′(t) = 0)

• Geodesic curvature

Remark 34 (General remarks on notation). In differential geometry there exists another broadly known
formulation. It starts with differentiable manifolds. Those are equipped by additional structure: the covariant
derivative. This is completely independent of a potentially existent metric.
With the help of the covariant derivative it is possible to define entities like torsion, Riemann curvature,
Ricci curvature, scalar curvature, parallel transport, geodesics, etc. The notion of covariant derivative can
be generalized (https: // en. wikipedia. org/ wiki/ Ehresmann_ connection ).
If we consider a pseudo-Riemannian manifold (a manifold endowed with a metric tensor which does not
need to be positive-definite but only non-degenerate) it can be shown that there exists a unique (torsion-free)
covariant derivative known as Levi-Civita connection which is in some sense compatible with the covariant
derivative.
To embed our discussion into another formulation I give the corresponding equations but do no derive them.
Note that all signs depend on conventions. τ is the torsion 2-form, Rklij is the Riemann tensor and [ , ] is
the Lie bracket.

First structure equation Second structure equation

dωi =
∑

k ωk ∧ ωki dωij =
∑

k ωik ∧ ωkj
dωi =

∑
k ωk ∧ ωki + τ dωij =

∑
k ωik ∧ ωkj + 1

2

∑
j,lRklij ωk ∧ ωl

∇XY −∇YX − [X,Y ] = τ(X,Y ) [∇X ,∇Y ]Z −∇[X,Y ]Z = R(X,Y )Z

One can nicely observe that the existence of the structure equations express the fact that Rn has a Levi-Civita
connection (which is torsion-free) and flat (vanishing Riemann tensor).
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