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1 Preface

In this presentation we state and prove the Closed Subgroup Theorem, also referred to as Cartan’s Theorem. In this, we
will follow [1]. The enumeration of the Propositions and Theorems follows the enumeration in [1] too - given in the
form (no. x.y). Because it is impossible to give rigorous proofs of every Proposition and Theorem in the given time, the
oral presentation is focused on giving an imagination of the used concepts and proving the Closed Subgroup Theorem.

First, we will introduce the concepts of slice charts and integral curves. Here slice charts are just given in the written
presentation. This will be followed by the introduction of one-parameter subgroups and their connection to integral
curves. Using the concept of one-parameter subgroups, we introduce the exponential map and give some properties of
this map - of which two will be proven in the presentation and the others are given in the written presentation. After
this, we start proving the closed subgroup theorem starting with two propositions which are used in the proof but will
(maybe) omitted in the oral presentation.

To prevent an exaggeration in the written part, the theorems in the Preliminaries are not proven. Please refer to [1]
for proofs of those theorems.

2 Preliminaries

The following theorem will be used in the proof of the closed subgroup theorem. More accurate, we are going to show
that something is an embedded submanifold.

Theorem. (no. 7.11) Let G be a Lie group, and suppose H C G is a subgroup that is also an embedded submanifold. Then
H is a Lie group.

At one point we are using slice charts for embedded submanifolds. We recall their definition.

Definition. Let M be a smooth n-manifold. Let S C M and k € IN. We say S satisfies the local k-slice condition if
each point of S is contained in the domain of a smooth chart (U, ¢) for M such that S NU is a single k-slice in U. Here
a k-slice S of U is any subset of the form:

S = {(xl,...,xk,xk“,...,x") eU : xkl =kl xh = c”}

for some constants c**1, ... ¢".

At one point we are going to use the following theorem:

Theorem. (Local Slice Criterion for Embedded Submanifolds, no. 5.8) Let M ba a smooth n-manifold. If S C M is
an embedded k-dimensional submanifold, then S satisfies the local k-slice condition. Conversely, is.S C M is a subset that
satisfies the local k-slice condition, then with the subspace topology, S is a topological manifold of dimension k, and it has
a smooth structure making it into a k-dimensional embedded submanifold of M.

Remark. For proofs of the theorems please refer to the given enumeration in [1].

3 The Exponential Map

3.1 Integral Curves

Suppose G is a manifold and J C IR, J an intervall, define: y : J — G is a smooth curve, then for each t € J, the
velocity vector y’ () is a vector in T,;)G. We want to look at a way to work backwards:

If V is a vector field on G, an integral curve of V is a differentiable curve y : J — G whose velocity at each point
is equal to the value of V" at that point:

Y@=V, VteJ.

If 0 € J, the point y (0) is called the starting point of y.
We use the term of an maximal integral curve for an integral curve that cannot be extended on any open interval. At
last, we want to give an example for an integral curve, which shows why the name integral curve is used.

0 a . .
Example. (no. 9.1) Let W = X5, "V on R2. If we have a smooth y : R — RR? curve in standard coordinates

y (1) = (x(¢), y (1)), then the condition y" = W, for y to be an integral curve is:
O] Ol 4 0] i 0 i ® i
x' (1) — y @) — =x{) — —y(@) —
0x 1y 9y () 9y () 0x 1y

One may see that this gives a system of differential equations

x'()=-y@®),
V) =x(@).
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With the solutions
x()=acos(@)—bsin(t),
y(@) =asin(t)+ bcos(t).
for arbitrary a and b. And thus the name integral curve because we get them as solutions to differential equations.
To conclude the discussion of integral curves we state the following theorem.
Theorem. (no. 9.2) Let V' be a smooth vector field on a smooth manifold M. For each point p € M, there exists € > 0

and a smooth curvey : (—e,€) - M that is an integral curve of V starting at p.

3.2 One-Parameter-Subgroups

Definition. A one-parameter subgroup of G is defined to be a Lie group homomorphism y : R — G, with R
considered as a Lie group under addition.

Theorem. (Characterization of One-Parameter Subgroups, no. 20.1) Let G be a Lie group. The one-parameter sub-
groups of G are precisely the maximal integral curves of left-invariant vector fields starting at the identity.

Proof. Please refer to [1] because in the proof results from chapter 9 are needed.

Proposition. (20.3) Suppose G is a Lie group and H C G is a Lie subgroup. The one-parameter subgroups of H are
precisely those one-parameter subgroups of G whose initial velocities lie in T, H .

Proof. Lety : R — H be a one-parameter subgroub. Then the composite map
RL HoG

is a Lie group homomorphism and thus a one-parameter subgroup of G, which clearly satisfiesy' (0) € T,H.

Conversely, suppose y : R — G is a one-parameter subgroup whose initial velocity lies in T,H. Let7 : R — H be
the one-parameter subgroup of H with the same initial velocity $' (0) = y' (0) € T,H subgroupT,G. Using the inclusion
map, we can consider 7 as a one-parameter subgroup of G. Since y and § are one-parameter subgroups with the same initial
velocity, they must be equal.

3.3 The Exponential Map

To prove the Closed Subgroup Theorem we introduce the exponential map of G, as follows:

Definition. For a given Lie group G with Lie algebra g, we define a map exp : ¢ — G called the exponential map of
G by:

VX € gdefine: exp(X) =y (1)
where y is the one-parameter subgroup generated by X.

Remark. The exponential map is well defined because using the identification of one-parameter subgroups as maximal
integral curves we do have two integral curves being equal if they have the same starting velocities.

Proposition. (no. 20.5) Let G be a Lie group. For any X € Lie(G),y (s) = exp(sX) is the one-parameter subgroup of
G generated by X.

Proof: Needs one-parameter subgroup as integral curve of X starting at e. and the rescaling lemma 9.3.

Example. (no. 20.7) If V is a finite-dimensional real vector space, a choice of basis for V' yields isomorphisms GL (V') =
GL (n,R) and gl (V) = gl (n,IR). Tha analysis of the GL (n,R) case shows that the exponential map can be written in
the form:

(o]

1
exp ()= 3 L
k=0 """

where A € gl (V) is a linear map from V to itself and A¥ = A o --- o A is the k-fold composition of A with itself.

Remark. In the following proposition some properties of the exponential map are proven. As one can see some of those
properties hold for the exponential function exp : R — R* too. In fact, the exponential map is a useful generalization.
We get the exponential function as a special case of the exponential map if we identify G = (]R+, ) and g = (R, +).

2
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Proposition. (Properties of the Exponential Map, no. 20.8) Let G be a Lie group and let g be its Lie algebra.
(a) The exponential map is smooth (from g to G).
(b) VX e€g,s5,t€R: exp(s+t) X =exp(sX)+exp(tX).
(c) VX € g.(exp (X))~ = exp(=X).
d) VX €g,neZ : (exp(X))" =exp(nXx).

(e) The differential (d exp), : Tog — T,G is the identity map, under the canonical identifications of both Tyg and T,G
with g itself.

(f) The exponential map restricts to a diffeomorphism from some neighborhood of 0 in g to a neighborhood of e in G.

(g) If H is another Lie group, Yy is its Lie algebra, and ® : G — H is a Lie group of homomorphism, the following
diagram commutes:

o )
lexp

H
O]

g

exp

G

(h) The flow 0 of a left-invariant vector field X is given by 0, = R, px) (right multiplication by exp (1X)).

Proof. The proof is given for completeness but discussion would be beyond the scope of this written discussion.
In this proof, for any X € g we let 0 x, denote the flow of X.

(a) We need to show that the expression 0&)) (1) depends smoothly on X, which amounts to showing that the flow varies
smoothly as the vector filed varies. Define a vector field Z on the product manifold G X g by

Zgx) = (Xg0) €T,G O Txg =T x) (Gx ).

To see that Z is a smooth vector field, chhose any basis (Xl, . Xk) for g, and let (xi) be the corresponding global

coordinates for g, defined by (xi) < x'X;. Let (wi) be any smooth local coordinates for G. If f € C® (G X g) is
arbitrary, then locally we can write

Zf (w'x) =X X, f (w',x'),

where each vector field X; defferentiates f only in the w'-directions. Since this depends smoothly on (w[,xi), it
follows from Prop 8.14 in [1] that Z is smooth. The flow of ® of Z is given by

G)t(g,X): (H(X)(t,g),X).

Then, using the fundamental theorem of flows, ® is smooth. Since exp (X) = zg (@1 (e, X)), where ¢ is the projec-
tion, it follows that exp is smooth.

(b),(c) Follow directly from Proposition 20.5, because t — exp (tX) is a group homomorphism from R to G.
(d) Follows from (b) for nonnegative n and from (c) for negative n.

(e) Let X € g be arbitrary, and let o : R — g be the curve o (t) = tX. Then o' (0) = X, and Proposition 20.5 implies

d
(d exp), (X) = (d exp), (0’ (O)) = (expoc)’ (0) = o exp(tX)=X.

=0
(f) Follows from (e) using the inverse function theorem.

(g) We have to show: exp (CI)*X) = @ (exp (X)) for every X € g. We will show that Vt € R it holds: exp (tCD*X) =
@ (exp (tX)). The left-hand side is, by Proposition 20.5, the one-parameter subgroup generated by @, X. Thus, if we
put o (1) = @ (exp (tX)), it suffices to show that ¢ is a Lie group homomorphism satisfying ¢’ (0) = (CI)*X) .tisa

e

Lie group homomorphism because it is a composition of homomorphisms. And the initial velocity is given by:

, d
O'(O)ZE

d
=OCID (exp(tX)) = dd <E

exp (tX)> =d® (X,) = (®.X) .

t =0
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(h) Use the fact that for any g € G the map L, takes integral curves of X to integral curves of X. Thus the map
te L, (exp (tX)) is the integral curve starting at g, which means it is equal to 955’;()) (). It follows that

Rexpux) (&) = gexp(t1X) = Lg (exp(1X)) = 6% () = (0x)) ().

Proposition. (no. 20.9) Let G be a Lie group, and let H C G be a Lie supgroup. With Lie (H) conidered as a subalgebra
of Lie (G) in the usual way, the exponential map of H is the restriction to Lie (H) of the exponential map of G, and

Lie(H)={X € Lie(G) : exp(tX) € HVt € R}

Proof. The fact that the exponential map of H is the restriction of that of G is an immediate consequence of Proposi-
tion 20.3. To prove the second assertion, by the way we have identified Lie (H) as a subalgebra of Lie (G), we need to
establish the following equivalence for every X € Lie (G):

expX)e HVte R X, e T,H.

Assume first that exp(tX) € HVt. Since H is weakly embedded in G by Theorem 19.25, it follows that the curve
t = exp(tX) is smooth as a mup into H, and thus X, = y' (0) € T,H. Conversely, if X, € T,H, then Proposition 20.3
implies that exp (tX) € H forallt.

4 The Closed Subgroup Theorem

Proposition. (no. 20.10) Let G be a Lie group and let g be its Lie algebra. For any X,Y € g, there is a smooth function
Z : (e,€) — g for some € > 0 such that the following identity holds Vt € (e, €):

(exp(tX))(exp (tY)) = exp (t X+Y)+1Z (t)) .

Proof. Since the exponential map is a diffeomorphism os some neighborhood of the origin in g, there is some € > 0 such
that the map ¢ : (—e€,€) — g defined by

¢ (1) = exp™! (exp (1X) exp (1Y)
is smooth. It obviously satisfies ¢ (0) = 0 and

exp(tX)exp(tY) =exp(¢ ().
Observe that we can write ¢ as the composition

exXey 1

R, 6x6 2L g2,
whereey (1) = exp (1X) andey (t) = exp (tY). The result of Problem 7-2 shows thatdm, .,y (X, Y) = X+Y for X, Y € T,G,
which implies
¢’ (0) = <(d exp)o)_l (e () + ¢} (0)) = X+,
Therefore, Taylortheorem yields
dO=t(X+Y)+12Z 1)
for some smooth function Z.

Corollary. (no. 20.11) Under the hypotheses of the proceeding proposition,

lim [exp <%X) exp <%Y>]” =expt(X+Y)).

n—oo

Proof. The conclusion of the preceeding lemma gives that for anyt € R and any sufficently largen € Z,

2

(ex(23)) (exn (4)) =ewn (L x e+ 52 (£)).
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and then Proposition 20.8(d) yields

(e (32)) (e (7))

(exp <£(X+Y)+ ;—222 <£>>>"
st
exp <t(X+Y)+ ;Z <;>> .

Theorem. (Closed Subgroup Theorem, no. 20.12) Suppose G is a Lie group and H C G is a subgroup that is also a
closed subset of G. Then H is an embedded Lie subgroup.

Proof. By Proposition 7.11 it suffices to show that H is an embedded submanifold of G. We begin by identifying a subspace
Lie (G) that will turn out to be the Lie algebra of H.
Let g = Lie(G), and define a subset §) C gby

h={X€gq:exp(tX)€ H VteR}.

We need to show that Yy is a linear subspace of g. It is obvious from the definiton that Yy is closend under scalar multiplication:
if X €, and lett € R be arbitrary. Then exp (%X) and exp (ﬁY) are in H and because H is a closed subgroup of G,
(20.5) implies thatexp (t (X +Y)) € H. Thus X +Y €}, so } is a subspace.

Next we show that there is a neighborhood U of the origin in ¢ on which the exponential map of G is a diffeomorphism,
and which has the property that

(1) exp (Uﬂf)) =(exp(U))N H.

This will enable us to construct a slice chart for H in a neighborhood of the identity, and we will then use left translation to
get a slice chart in a neighborhood of any point of H.

IfU C g is any neighborhood of 0 on which exp is a diffeomorphism, then exp (U n f)) C (exp(U)) N H by defini-
ton of . So to find a neighborhood satisfying (?), all we need to do is to show that U can be chosen small enough that
(exp(U))N H C exp (U n E)). Assume this is not possible.

Choose a linear subspaceb C g that is complementary to}), so that g = @b as vector spaces. Then the map® : hb — G
given by ® (X,Y) = exp (X) exp (Y) is a diffeomorphism in some neighborhood of (0, 0). Choose neighborhoods Uy of 0 in
g and U, of (0,0) in § @ b such that both exply, and @y, are diffeomorphisms on their images. Let {U,-} be a countable
neighborhood basis for g at 0 - for example a countable sequence of coordinate balls whose radii approach zero. If we set
V; =exp (U,-) and U; = @~ (V[), then {V,} and {U,} are neighborhood bases of G at e and §) @ b at (0,0), respectively.
By discarding finitely many terms at the beginning of the sequence, we may assume tthat U; C Uy and U; c Uy, for all i.

Our assumption implies that for each i, there exists h; € (exp (Ui)) N H such that h; & exp (Ui n f)) This means
h; = exp (Z,-) for some Z; € U;. Because exp (U,-) =0 (FI,-), we can also write

h; = exp (X,») exp (Y,)
forsome (X,-, Y,-) € U,. IfY; were zero, then we would have exp (Z,-) = exp (X,-) € exp (I)) But because exp is injective on
Uy, this implies X; = Z; € U;NY, which contradicts our assumption that h; & exp (U,- N f)) Since {U,} is a neighborhood
basis, Y; — 0 fori — oo. Observe that exp (X,-) € H by definition of b, so it follows that exp (Y,) = (exp (X,-))_1 h;e H

as well.

Choose an inner product on b and let | - | denote the norm associated with this inner product. If we define ¢; = |Y;],
than we have ¢; — 0 asi — oo. The sequence (c,-_lY,-) lies on the unit sphere in b, so replacing it by a sequence we may

assume that ci_lYi — Y € b, with |Y| = 1 by continuty. In particular, Y # 0. We will show that exp(tY) € H,Vt € R,
which implies that Y € Y. Since ) n'b = {0}, this is a contradiction.

. . ; !
Lett € R be arbitrary, and for each i, let n; be the greatest integer less than of equal to - Then
i

t
|n; — —| <1,
c.

1

which implies

nic;—t| <¢; =0,
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son;c; = t. Thus,
nY; = (n,-c,-) (c,-_IY,») - 1Y,

which implies exp (n,»Y,-) — exp(tY) by continuity. But exp (nil’i) = (exp (Y,-))ni € H, so the fact that H is closed
implies exp (1Y) € H. This completes the proof of the existence of U satisfying (20.6).

Choose any linear isomorphism E : g — R™ that sends § to R¥. The composite map ¢ o exp™' : exp(U) — R"
is then a smooth chart for G, and ¢ ((exp(U))N H) = E (U N f)) is the slice obtaned by setting the last m — k coordi-
nates equal to zero. Moreover, if h € H is arbitrary, the left translation map Ly, is a diffeomorphism from exp (U) to a
neighborhood of h. Since H is a subgroup, L, (H) = H, and so

Ly (expU) 0 H) = Ly (exp(U) 1 H,
and ¢ o L;l is a slice chart for H in a neighborhood of h. Thus H is an embedded submanifold of G, hence a Lie subgroup.
Corollary. (no. 20.13) If G is a Lie group and H is any subgroup of G, the following are equivalent:
(a) H is closed in G.
(b) H is an embedded submanifold of G.
(c) H is an embedded Lie subgroup of G.

References

[1] John M. Lee. Introduction to Smooth Manifolds. Springer, 2nd edition, 2013.



