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1 Preface
In this presentation we state and prove the Closed Subgroup Theorem, also referred to as Cartan’s Theorem. In this, we
will follow [1]. The enumeration of the Propositions and Theorems follows the enumeration in [1] too - given in the
form (no. x.y). Because it is impossible to give rigorous proofs of every Proposition and Theorem in the given time, the
oral presentation is focused on giving an imagination of the used concepts and proving the Closed Subgroup Theorem.
First, we will introduce the concepts of slice charts and integral curves. Here slice charts are just given in the written

presentation. This will be followed by the introduction of one-parameter subgroups and their connection to integral
curves. Using the concept of one-parameter subgroups, we introduce the exponential map and give some properties of
this map - of which two will be proven in the presentation and the others are given in the written presentation. After
this, we start proving the closed subgroup theorem starting with two propositions which are used in the proof but will
(maybe) omitted in the oral presentation.
To prevent an exaggeration in the written part, the theorems in the Preliminaries are not proven. Please refer to [1]

for proofs of those theorems.

2 Preliminaries
The following theorem will be used in the proof of the closed subgroup theorem. More accurate, we are going to show
that something is an embedded submanifold.

Theorem. (no. 7.11) Let 𝐺 be a Lie group, and suppose 𝐻 ⊂ 𝐺 is a subgroup that is also an embedded submanifold. Then
𝐻 is a Lie group.

At one point we are using slice charts for embedded submanifolds. We recall their definition.

Definition. Let 𝑀 be a smooth 𝑛-manifold. Let 𝑆 ⊂ 𝑀 and 𝑘 ∈ ℕ. We say 𝑆 satisfies the local 𝑘-slice condition if
each point of 𝑆 is contained in the domain of a smooth chart (𝑈, 𝜙) for 𝑀 such that 𝑆 ∩ 𝑈 is a single 𝑘-slice in 𝑈 . Here
a 𝑘-slice 𝑆 of 𝑈 is any subset of the form:

𝑆 = {(𝑥1, … , 𝑥𝑘, 𝑥𝑘+1, … , 𝑥𝑛) ∈ 𝑈 ∶ 𝑥𝑘+1 = 𝑐𝑘+1, … , 𝑥𝑛 = 𝑐𝑛}

for some constants 𝑐𝑘+1, … , 𝑐𝑛.

At one point we are going to use the following theorem:

Theorem. (Local Slice Criterion for Embedded Submanifolds, no. 5.8) Let 𝑀 ba a smooth 𝑛-manifold. If 𝑆 ⊂ 𝑀 is
an embedded 𝑘-dimensional submanifold, then 𝑆 satisfies the local 𝑘-slice condition. Conversely, is 𝑆 ⊂ 𝑀 is a subset that
satisfies the local 𝑘-slice condition, then with the subspace topology, 𝑆 is a topological manifold of dimension 𝑘, and it has
a smooth structure making it into a 𝑘-dimensional embedded submanifold of 𝑀 .

Remark. For proofs of the theorems please refer to the given enumeration in [1].

3 The Exponential Map
3.1 Integral Curves
Suppose 𝐺 is a manifold and 𝐽 ⊂ ℝ, 𝐽 an intervall, define: 𝛾 ∶ 𝐽 → 𝐺 is a smooth curve, then for each 𝑡 ∈ 𝐽 , the
velocity vector 𝛾′ (𝑡) is a vector in 𝑇𝛾(𝑡)𝐺. We want to look at a way to work backwards:
If 𝑉 is a vector field on 𝐺, an integral curve of 𝑉 is a differentiable curve 𝛾 ∶ 𝐽 → 𝐺 whose velocity at each point

is equal to the value of 𝑉 at that point:

𝛾′ (𝑡) = 𝑉𝛾(𝑡) ∀𝑡 ∈ 𝐽.

If 0 ∈ 𝐽 , the point 𝛾 (0) is called the starting point of 𝛾 .
We use the term of anmaximal integral curve for an integral curve that cannot be extended on any open interval. At
last, we want to give an example for an integral curve, which shows why the name integral curve is used.

Example. (no. 9.1) Let 𝑊 = 𝑥 𝜕
𝜕𝑦

− 𝑦 𝜕
𝜕𝑥

on ℝ2. If we have a smooth 𝛾 ∶ ℝ → ℝ2 curve in standard coordinates
𝛾 (𝑡) = (𝑥 (𝑡) , 𝑦 (𝑡)), then the condition 𝛾′ = 𝑊𝛾(𝑡) for 𝛾 to be an integral curve is:

𝑥′ (𝑡)
𝜕

𝜕𝑥|
𝛾(𝑡)

+ 𝑦′ (𝑡)
𝜕
𝜕𝑦 |

𝛾(𝑡)
= 𝑥 (𝑡)

𝜕
𝜕𝑦 |

𝛾(𝑡)
− 𝑦 (𝑡)

𝜕
𝜕𝑥|

𝛾(𝑡)

One may see that this gives a system of differential equations

𝑥′ (𝑡) = −𝑦 (𝑡) ,
𝑦′ (𝑡) = 𝑥 (𝑡) .
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With the solutions

𝑥 (𝑡) = 𝑎 𝑐𝑜𝑠 (𝑡) − 𝑏 𝑠𝑖𝑛 (𝑡) ,
𝑦 (𝑡) = 𝑎 𝑠𝑖𝑛 (𝑡) + 𝑏 𝑐𝑜𝑠 (𝑡) .

for arbitrary 𝑎 and 𝑏. And thus the name integral curve because we get them as solutions to differential equations.

To conclude the discussion of integral curves we state the following theorem.

Theorem. (no. 9.2) Let 𝑉 be a smooth vector field on a smooth manifold 𝑀 . For each point 𝑝 ∈ 𝑀 , there exists 𝜖 > 0
and a smooth curve 𝛾 ∶ (−𝜖, 𝜖) → 𝑀 that is an integral curve of 𝑉 starting at 𝑝.

3.2 One-Parameter-Subgroups
Definition. A one-parameter subgroup of G is defined to be a Lie group homomorphism 𝛾 ∶ ℝ → 𝐺, with ℝ
considered as a Lie group under addition.

Theorem. (Characterization of One-Parameter Subgroups, no. 20.1) Let 𝐺 be a Lie group. The one-parameter sub-
groups of 𝐺 are precisely the maximal integral curves of left-invariant vector fields starting at the identity.

Proof. Please refer to [1] because in the proof results from chapter 9 are needed.

Proposition. (20.3) Suppose 𝐺 is a Lie group and 𝐻 ⊂ 𝐺 is a Lie subgroup. The one-parameter subgroups of 𝐻 are
precisely those one-parameter subgroups of 𝐺 whose initial velocities lie in 𝑇𝑒𝐻 .

Proof. Let 𝛾 ∶ ℝ → 𝐻 be a one-parameter subgroub. Then the composite map

ℝ
𝛾

−→ 𝐻 ↪ 𝐺

is a Lie group homomorphism and thus a one-parameter subgroup of 𝐺, which clearly satisfies 𝛾′ (0) ∈ 𝑇𝑒𝐻 .
Conversely, suppose 𝛾 ∶ ℝ → 𝐺 is a one-parameter subgroup whose initial velocity lies in 𝑇𝑒𝐻 . Let ̂𝛾 ∶ ℝ → 𝐻 be

the one-parameter subgroup of 𝐻 with the same initial velocity ̂𝛾 ′ (0) = 𝛾′ (0) ∈ 𝑇𝑒𝐻𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑇𝑒𝐺. Using the inclusion
map, we can consider ̂𝛾 as a one-parameter subgroup of 𝐺. Since 𝛾 and ̂𝛾 are one-parameter subgroups with the same initial
velocity, they must be equal.

3.3 The Exponential Map
To prove the Closed Subgroup Theorem we introduce the exponential map of G, as follows:

Definition. For a given Lie group 𝐺 with Lie algebra 𝔤, we define a map 𝑒𝑥𝑝 ∶ 𝔤 → 𝐺 called the exponential map of
𝐺 by:

∀𝑋 ∈ 𝔤 define: 𝑒𝑥𝑝 (𝑋) = 𝛾 (1)

where 𝛾 is the one-parameter subgroup generated by 𝑋.

Remark. The exponential map is well defined because using the identification of one-parameter subgroups as maximal
integral curves we do have two integral curves being equal if they have the same starting velocities.

Proposition. (no. 20.5) Let 𝐺 be a Lie group. For any 𝑋 ∈ 𝐿𝑖𝑒 (𝐺) , 𝛾 (𝑠) = 𝑒𝑥𝑝 (𝑠𝑋) is the one-parameter subgroup of
𝐺 generated by 𝑋.

Proof: Needs one-parameter subgroup as integral curve of 𝑋 starting at 𝑒. and the rescaling lemma 9.3.

Example. (no. 20.7) If 𝑉 is a finite-dimensional real vector space, achoice of basis for 𝑉 yields isomorphisms𝐺𝐿 (𝑉 ) ≅
𝐺𝐿 (𝑛,ℝ) and 𝔤𝔩 (𝑉 ) ≅ 𝔤𝔩 (𝑛,ℝ). Tha analysis of the 𝐺𝐿 (𝑛,ℝ) case shows that the exponential map can be written in
the form:

𝑒𝑥𝑝 (𝐴) =
∞

∑
𝑘=0

1
𝑘!

𝐴𝑘,

where 𝐴 ∈ 𝔤𝔩 (𝑉 ) is a linear map from 𝑉 to itself and 𝐴𝑘 = 𝐴 ∘ ⋯ ∘ 𝐴 is the k-fold composition of 𝐴 with itself.

Remark. In the following proposition some properties of the exponential map are proven. As one can see some of those
properties hold for the exponential function 𝑒𝑥𝑝 ∶ ℝ → ℝ+ too. In fact, the exponential map is a useful generalization.
We get the exponential function as a special case of the exponential map if we identify 𝐺 = (ℝ+, ⋅) and 𝔤 = (ℝ, +).
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Proposition. (Properties of the Exponential Map, no. 20.8) Let 𝐺 be a Lie group and let 𝔤 be its Lie algebra.

(a) The exponential map is smooth (from 𝔤 to 𝐺).

(b) ∀𝑋 ∈ 𝔤, 𝑠, 𝑡 ∈ ℝ ∶ 𝑒𝑥𝑝 (𝑠 + 𝑡) 𝑋 = 𝑒𝑥𝑝 (𝑠𝑋) + 𝑒𝑥𝑝 (𝑡𝑋) .

(c) ∀𝑋 ∈ 𝔤, (𝑒𝑥𝑝 (𝑋))−1 = 𝑒𝑥𝑝 (−𝑋) .

(d) ∀𝑋 ∈ 𝔤, 𝑛 ∈ ℤ ∶ (𝑒𝑥𝑝 (𝑋))𝑛 = 𝑒𝑥𝑝 (𝑛𝑋) .

(e) The differential (𝑑 𝑒𝑥𝑝)0 ∶ 𝑇0𝔤 → 𝑇𝑒𝐺 is the identity map, under the canonical identifications of both 𝑇0𝔤 and 𝑇𝑒𝐺
with 𝔤 itself.

(f) The exponential map restricts to a diffeomorphism from some neighborhood of 0 in 𝔤 to a neighborhood of 𝑒 in 𝐺.

(g) If 𝐻 is another Lie group, 𝔥 is its Lie algebra, and Φ ∶ 𝐺 → 𝐻 is a Lie group of homomorphism, the following
diagram commutes:

𝔤 𝔥

𝐺 𝐻

𝑒𝑥𝑝
Φ∗

Φ

𝑒𝑥𝑝

(h) The flow 𝜃 of a left-invariant vector field 𝑋 is given by 𝜃𝑡 = 𝑅𝑒𝑥𝑝(𝑡𝑋) (right multiplication by 𝑒𝑥𝑝 (𝑡𝑋)).

Proof. The proof is given for completeness but discussion would be beyond the scope of this written discussion.
In this proof, for any 𝑋 ∈ 𝔤 we let 𝜃(𝑋) denote the flow of 𝑋.

(a) We need to show that the expression 𝜃(𝑒)
(𝑋) (1) depends smoothly on 𝑋, which amounts to showing that the flow varies

smoothly as the vector filed varies. Define a vector field Ζ on the product manifold 𝐺 × 𝔤 by

Ζ(𝑔,𝑋) = (𝑋𝑔, 0) ∈ 𝑇𝑔𝐺 ⊕ 𝑇𝑋𝔤 ≅ 𝑇(𝑔,𝑋) (𝐺 × 𝔤) .

To see that Ζ is a smooth vector field, chhose any basis (𝑋1, … , 𝑋𝑘) for 𝔤, and let (𝑥𝑖) be the corresponding global
coordinates for 𝔤, defined by (𝑥𝑖) ↔ 𝑥𝑖𝑋𝑖. Let (𝑤𝑖) be any smooth local coordinates for 𝐺. If 𝑓 ∈ 𝐶∞ (𝐺 × 𝔤) is
arbitrary, then locally we can write

Ζ𝑓 (𝑤𝑖, 𝑥𝑖) = 𝑥𝑗𝑋𝑗𝑓 (𝑤𝑖, 𝑥𝑖) ,

where each vector field 𝑋𝑗 defferentiates 𝑓 only in the 𝑤𝑖-directions. Since this depends smoothly on (𝑤𝑖, 𝑥𝑖), it
follows from Prop 8.14 in [1] that Ζ is smooth. The flow of Θ of Ζ is given by

Θ𝑡 (𝑔, 𝑋) = (𝜃(𝑋) (𝑡, 𝑔) , 𝑋) .

Then, using the fundamental theorem of flows, Θ is smooth. Since 𝑒𝑥𝑝 (𝑋) = 𝜋𝐺 (Θ1 (𝑒, 𝑋)), where 𝜋𝐺 is the projec-
tion, it follows that 𝑒𝑥𝑝 is smooth.

(b),(c) Follow directly from Proposition 20.5, because 𝑡 ↦ 𝑒𝑥𝑝 (𝑡𝑋) is a group homomorphism from ℝ to 𝐺.

(d) Follows from (b) for nonnegative 𝑛 and from (c) for negative 𝑛.

(e) Let 𝑋 ∈ 𝔤 be arbitrary, and let 𝜎 ∶ ℝ → 𝔤 be the curve 𝜎 (𝑡) = 𝑡𝑋. Then 𝜎‵ (0) = 𝑋, and Proposition 20.5 implies

(𝑑 𝑒𝑥𝑝)0 (𝑋) = (𝑑 𝑒𝑥𝑝)0 (𝜎′ (0)) = (𝑒𝑥𝑝 ∘ 𝜎) ′ (0) =
𝑑
𝑑𝑡 |

𝑡=0
𝑒𝑥𝑝 (𝑡𝑋) = 𝑋.

(f) Follows from (e) using the inverse function theorem.

(g) We have to show: 𝑒𝑥𝑝 (Φ∗𝑋) = Φ (𝑒𝑥𝑝 (𝑋)) for every 𝑋 ∈ 𝔤. We will show that ∀𝑡 ∈ ℝ it holds: 𝑒𝑥𝑝 (𝑡Φ∗𝑋) =
Φ (𝑒𝑥𝑝 (𝑡𝑋)). The left-hand side is, by Proposition 20.5, the one-parameter subgroup generated by Φ∗𝑋. Thus, if we
put 𝜎 (𝑡) = Φ (𝑒𝑥𝑝 (𝑡𝑋)), it suffices to show that 𝜎 is a Lie group homomorphism satisfying 𝜎′ (0) = (Φ∗𝑋)𝑒

. It is a
Lie group homomorphism because it is a composition of homomorphisms. And the initial velocity is given by:

𝜎′ (0) =
𝑑
𝑑𝑡 |

𝑡=0
Φ (𝑒𝑥𝑝 (𝑡𝑋)) = 𝑑Φ0 (

𝑑
𝑑𝑡 |

𝑡=0
𝑒𝑥𝑝 (𝑡𝑋)) = 𝑑Φ0 (𝑋𝑒) = (Φ∗𝑋)𝑒

.
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(h) Use the fact that for any 𝑔 ∈ 𝐺 the map 𝐿𝑔 takes integral curves of 𝑋 to integral curves of 𝑋. Thus the map
𝑡 ↦ 𝐿𝑔 (𝑒𝑥𝑝 (𝑡𝑋)) is the integral curve starting at 𝑔, which means it is equal to 𝜃(𝑔)

(𝑋) (𝑡). It follows that

𝑅𝑒𝑥𝑝(𝑡𝑋) (𝑔) = 𝑔 𝑒𝑥𝑝 (𝑡𝑋) = 𝐿𝑔 (𝑒𝑥𝑝 (𝑡𝑋)) = 𝜃(𝑔)
(𝑋) (𝑡) = (𝜃(𝑋))𝑡

(𝑔) .

Proposition. (no. 20.9) Let 𝐺 be a Lie group, and let 𝐻 ⊂ 𝐺 be a Lie supgroup. With 𝐿𝑖𝑒 (𝐻) conidered as a subalgebra
of 𝐿𝑖𝑒 (𝐺) in the usual way, the exponential map of 𝐻 is the restriction to 𝐿𝑖𝑒 (𝐻) of the exponential map of 𝐺, and

𝐿𝑖𝑒 (𝐻) = {𝑋 ∈ 𝐿𝑖𝑒 (𝐺) ∶ 𝑒𝑥𝑝 (𝑡𝑋) ∈ 𝐻 ∀𝑡 ∈ ℝ}

Proof. The fact that the exponential map of 𝐻 is the restriction of that of 𝐺 is an immediate consequence of Proposi-
tion 20.3. To prove the second assertion, by the way we have identified 𝐿𝑖𝑒 (𝐻) as a subalgebra of 𝐿𝑖𝑒 (𝐺), we need to
establish the following equivalence for every 𝑋 ∈ 𝐿𝑖𝑒 (𝐺):

𝑒𝑥𝑝 (𝑡𝑋) ∈ 𝐻 ∀𝑡 ∈ ℝ ⇔ 𝑋𝑒 ∈ 𝑇𝑒𝐻.

Assume first that 𝑒𝑥𝑝 (𝑡𝑋) ∈ 𝐻 ∀𝑡. Since 𝐻 is weakly embedded in 𝐺 by Theorem 19.25, it follows that the curve
𝑡 ↦ 𝑒𝑥𝑝 (𝑡𝑋) is smooth as a mup into 𝐻 , and thus 𝑋𝑒 = 𝛾′ (0) ∈ 𝑇𝑒𝐻 . Conversely, if 𝑋𝑒 ∈ 𝑇𝑒𝐻 , then Proposition 20.3
implies that 𝑒𝑥𝑝 (𝑡𝑋) ∈ 𝐻 for all 𝑡.

4 The Closed Subgroup Theorem
Proposition. (no. 20.10) Let 𝐺 be a Lie group and let 𝔤 be its Lie algebra. For any 𝑋, 𝑌 ∈ 𝔤, there is a smooth function
𝑍 ∶ (𝜖, 𝜖) → 𝔤 for some 𝜖 > 0 such that the following identity holds ∀𝑡 ∈ (𝜖, 𝜖):

(𝑒𝑥𝑝 (𝑡𝑋)) (𝑒𝑥𝑝 (𝑡𝑌 )) = 𝑒𝑥𝑝 (𝑡 (𝑋 + 𝑌 ) + 𝑡2𝑍 (𝑡)) .

Proof. Since the exponential map is a diffeomorphism os some neighborhood of the origin in 𝔤, there is some 𝜖 > 0 such
that the map 𝜙 ∶ (−𝜖, 𝜖) → 𝔤 defined by

𝜙 (𝑡) = 𝑒𝑥𝑝−1 (𝑒𝑥𝑝 (𝑡𝑋) 𝑒𝑥𝑝 (𝑡𝑌 ))

is smooth. It obviously satisfies 𝜙 (0) = 0 and

𝑒𝑥𝑝 (𝑡𝑋) 𝑒𝑥𝑝 (𝑡𝑌 ) = 𝑒𝑥𝑝 (𝜙 (𝑡)) .

Observe that we can write 𝜙 as the composition

ℝ
𝑒𝑋×𝑒𝑌−−−−−→ 𝐺 × 𝐺 𝑚−−→ 𝐺

𝑒𝑥𝑝−1
−−−−→ 𝔤,

where 𝑒𝑋 (𝑡) = 𝑒𝑥𝑝 (𝑡𝑋) and 𝑒𝑌 (𝑡) = 𝑒𝑥𝑝 (𝑡𝑌 ). The result of Problem 7-2 shows that 𝑑𝑚(𝑒,𝑒) (𝑋, 𝑌 ) = 𝑋+𝑌 for 𝑋, 𝑌 ∈ 𝑇𝑒𝐺,
which implies

𝜙′ (0) = ((𝑑 𝑒𝑥𝑝)0)
−1

(𝑒′
𝑋 (0) + 𝑒′

𝑌 (0)) = 𝑋 + 𝑌 .

Therefore, Taylort́heorem yields

𝜙 (𝑡) = 𝑡 (𝑋 + 𝑌 ) + 𝑡2𝑍 (𝑡)

for some smooth function 𝑍 .

Corollary. (no. 20.11) Under the hypotheses of the proceeding proposition,

lim
𝑛→∞ [𝑒𝑥𝑝 (

𝑡
𝑛

𝑋) 𝑒𝑥𝑝 (
𝑡
𝑛

𝑌 )]
𝑛

= 𝑒𝑥𝑝 (𝑡 (𝑋 + 𝑌 )) .

Proof. The conclusion of the preceeding lemma gives that for any 𝑡 ∈ ℝ and any sufficently large 𝑛 ∈ ℤ,

(𝑒𝑥𝑝 (
𝑡
𝑛

𝑋)) (𝑒𝑥𝑝 (
𝑡
𝑛

𝑌 )) = 𝑒𝑥𝑝 (
𝑡
𝑛

(𝑋 + 𝑌 ) +
𝑡2

𝑛2 𝑍 (
𝑡
𝑛)) ,
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and then Proposition 20.8(d) yields

((𝑒𝑥𝑝 (
𝑡
𝑛

𝑋)) (𝑒𝑥𝑝 (
𝑡
𝑛

𝑌 )))
𝑛

= (𝑒𝑥𝑝 (
𝑡
𝑛

(𝑋 + 𝑌 ) +
𝑡2

𝑛2 𝑍 (
𝑡
𝑛)))

𝑛

= 𝑒𝑥𝑝 (𝑡 (𝑋 + 𝑌 ) +
𝑡2

𝑛2 𝑍 (
𝑡
𝑛)) .

Theorem. (Closed Subgroup Theorem, no. 20.12) Suppose 𝐺 is a Lie group and 𝐻 ⊂ 𝐺 is a subgroup that is also a
closed subset of 𝐺. Then 𝐻 is an embedded Lie subgroup.

Proof. By Proposition 7.11 it suffices to show that 𝐻 is an embedded submanifold of 𝐺. We begin by identifying a subspace
𝐿𝑖𝑒 (𝐺) that will turn out to be the Lie algebra of 𝐻 .

Let 𝔤 = 𝐿𝑖𝑒 (𝐺), and define a subset 𝔥 ⊂ 𝔤by

𝔥 = {𝑋 ∈ 𝔤 ∶ 𝑒𝑥𝑝 (𝑡𝑋) ∈ 𝐻, ∀𝑡 ∈ ℝ} .

We need to show that 𝔥 is a linear subspace of 𝔤. It is obvious from the definiton that 𝔥 is closend under scalar multiplication:

if 𝑋 ∈ 𝔥, and let 𝑡 ∈ ℝ be arbitrary. Then 𝑒𝑥𝑝 (
𝑡
𝑛
𝑋) and 𝑒𝑥𝑝 (

𝑡
𝑛
𝑌 ) are in 𝐻 and because 𝐻 is a closed subgroup of 𝐺,

(20.5) implies that 𝑒𝑥𝑝 (𝑡 (𝑋 + 𝑌 )) ∈ 𝐻 . Thus 𝑋 + 𝑌 ∈ 𝔥, so 𝔥 is a subspace.

Next we show that there is a neighborhood 𝑈 of the origin in 𝔤 on which the exponential map of 𝐺 is a diffeomorphism,
and which has the property that

𝑒𝑥𝑝 (𝑈 ∩ 𝔥) = (𝑒𝑥𝑝 (𝑈)) ∩ 𝐻.(1)

This will enable us to construct a slice chart for 𝐻 in a neighborhood of the identity, and we will then use left translation to
get a slice chart in a neighborhood of any point of 𝐻 .

If 𝑈 ⊂ 𝔤 is any neighborhood of 0 on which 𝑒𝑥𝑝 is a diffeomorphism, then 𝑒𝑥𝑝 (𝑈 ∩ 𝔥) ⊂ (𝑒𝑥𝑝 (𝑈)) ∩ 𝐻 by defini-
ton of 𝔥. So to find a neighborhood satisfying (?), all we need to do is to show that 𝑈 can be chosen small enough that
(𝑒𝑥𝑝 (𝑈)) ∩ 𝐻 ⊂ 𝑒𝑥𝑝 (𝑈 ∩ 𝔥). Assume this is not possible.

Choose a linear subspace 𝔟 ⊂ 𝔤 that is complementary to 𝔥, so that 𝔤 = 𝔥⊕𝔟 as vector spaces. Then themap Φ ∶ 𝔥⊕𝔟 → 𝐺
given by Φ (𝑋, 𝑌 ) = 𝑒𝑥𝑝 (𝑋) 𝑒𝑥𝑝 (𝑌 ) is a diffeomorphism in some neighborhood of (0, 0). Choose neighborhoods 𝑈0 of 0 in
𝔤 and 𝑈̂0 of (0, 0) in 𝔥 ⊕ 𝔟 such that both 𝑒𝑥𝑝|𝑈0 and Φ|𝑈̂0

are diffeomorphisms on their images. Let {𝑈𝑖} be a countable
neighborhood basis for 𝔤 at 0 - for example a countable sequence of coordinate balls whose radii approach zero. If we set
𝑉𝑖 = 𝑒𝑥𝑝 (𝑈𝑖) and 𝑈̂𝑖 = Φ−1 (𝑉𝑖), then {𝑉𝑖} and {𝑈̂𝑖} are neighborhood bases of 𝐺 at 𝑒 and 𝔥 ⊕ 𝔟 at (0, 0), respectively.
By discarding finitely many terms at the beginning of the sequence, we may assume tthat 𝑈𝑖 ⊂ 𝑈0 and 𝑈̂𝑖 ⊂ 𝑈̂0 for all 𝑖.

Our assumption implies that for each 𝑖, there exists ℎ𝑖 ∈ (𝑒𝑥𝑝 (𝑈𝑖)) ∩ 𝐻 such that ℎ𝑖 ∉ 𝑒𝑥𝑝 (𝑈𝑖 ∩ 𝔥). This means
ℎ𝑖 = 𝑒𝑥𝑝 (𝑍𝑖) for some 𝑍𝑖 ∈ 𝑈𝑖. Because 𝑒𝑥𝑝 (𝑈𝑖) = Φ (𝐻̂𝑖), we can also write

ℎ𝑖 = 𝑒𝑥𝑝 (𝑋𝑖) 𝑒𝑥𝑝 (𝑌𝑖)

for some (𝑋𝑖, 𝑌𝑖) ∈ 𝑈̂𝑖. If 𝑌𝑖 were zero, then we would have 𝑒𝑥𝑝 (𝑍𝑖) = 𝑒𝑥𝑝 (𝑋𝑖) ∈ 𝑒𝑥𝑝 (𝔥). But because 𝑒𝑥𝑝 is injective on
𝑈0, this implies 𝑋𝑖 = 𝑍𝑖 ∈ 𝑈𝑖 ∩ 𝔥, which contradicts our assumption that ℎ𝑖 ∉ 𝑒𝑥𝑝 (𝑈𝑖 ∩ 𝔥). Since {𝑈̂𝑖} is a neighborhood

basis, 𝑌𝑖 → 0 for 𝑖 → ∞. Observe that 𝑒𝑥𝑝 (𝑋𝑖) ∈ 𝐻 by definition of 𝔥, so it follows that 𝑒𝑥𝑝 (𝑌𝑖) = (𝑒𝑥𝑝 (𝑋𝑖))
−1 ℎ𝑖 ∈ 𝐻

as well.

Choose an inner product on 𝔟 and let | ⋅ | denote the norm associated with this inner product. If we define 𝑐𝑖 = |𝑌𝑖|,
than we have 𝑐𝑖 → 0 as 𝑖 → ∞. The sequence (𝑐−1

𝑖 𝑌𝑖) lies on the unit sphere in 𝔟, so replacing it by a sequence we may
assume that 𝑐−1

𝑖 𝑌𝑖 → 𝑌 ∈ 𝔟, with |𝑌 | = 1 by continuty. In particular, 𝑌 ≠ 0. We will show that 𝑒𝑥𝑝 (𝑡𝑌 ) ∈ 𝐻, ∀𝑡 ∈ ℝ,
which implies that 𝑌 ∈ 𝔥. Since 𝔥 ∩ 𝔟 = {0}, this is a contradiction.

Let 𝑡 ∈ ℝ be arbitrary, and for each 𝑖, let 𝑛𝑖 be the greatest integer less than of equal to 𝑡
𝑐𝑖
. Then

|𝑛𝑖 −
𝑡
𝑐𝑖

| ≤ 1,

which implies

|𝑛𝑖𝑐𝑖 − 𝑡| ≤ 𝑐𝑖 → 0,
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so 𝑛𝑖𝑐𝑖 → 𝑡. Thus,

𝑛𝑖𝑌𝑖 = (𝑛𝑖𝑐𝑖) (𝑐−1
𝑖 𝑌𝑖) → 𝑡𝑌 ,

which implies 𝑒𝑥𝑝 (𝑛𝑖𝑌𝑖) → 𝑒𝑥𝑝 (𝑡𝑌 ) by continuity. But 𝑒𝑥𝑝 (𝑛𝑖𝑌𝑖) = (𝑒𝑥𝑝 (𝑌𝑖))
𝑛𝑖 ∈ 𝐻 , so the fact that 𝐻 is closed

implies 𝑒𝑥𝑝 (𝑡𝑌 ) ∈ 𝐻 . This completes the proof of the existence of 𝑈 satisfying (20.6).

Choose any linear isomorphism 𝐸 ∶ 𝔤 → ℝ𝑚 that sends 𝔥 to ℝ𝑘. The composite map 𝜙 ∘ 𝑒𝑥𝑝−1 ∶ 𝑒𝑥𝑝 (𝑈) → ℝ𝑚

is then a smooth chart for 𝐺, and 𝜙 ((𝑒𝑥𝑝 (𝑈)) ∩ 𝐻) = 𝐸 (𝑈 ∩ 𝔥) is the slice obtaned by setting the last 𝑚 − 𝑘 coordi-
nates equal to zero. Moreover, if ℎ ∈ 𝐻 is arbitrary, the left translation map 𝐿ℎ is a diffeomorphism from 𝑒𝑥𝑝 (𝑈) to a
neighborhood of ℎ. Since 𝐻 is a subgroup, 𝐿ℎ (𝐻) = 𝐻 , and so

𝐿ℎ ((𝑒𝑥𝑝 (𝑈)) ∩ 𝐻) = 𝐿ℎ (𝑒𝑥𝑝 (𝑈)) ∩ 𝐻,

and 𝜙 ∘ 𝐿−1
ℎ is a slice chart for 𝐻 in a neighborhood of ℎ. Thus 𝐻 is an embedded submanifold of 𝐺, hence a Lie subgroup.

Corollary. (no. 20.13) If 𝐺 is a Lie group and 𝐻 is any subgroup of 𝐺, the following are equivalent:

(a) 𝐻 is closed in 𝐺.

(b) 𝐻 is an embedded submanifold of 𝐺.

(c) 𝐻 is an embedded Lie subgroup of 𝐺.
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