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1 Conventions

In the following handout, Isom(X) denotes the group of isometries of a metric space (X, d).

For n ∈ N, En denotes the euclidean space of dimension n. For a group G, eG denotes the identity

in G.

For Γ ⊂ Isom(X), Trans(Γ) will denote the set of all translations in Γ, that is: Trans(Γ) := {g ∈
Γ : ∃c ∈ X such that g(x) = x+ c ∀x ∈ X}.
For A ∈ Matn×n(R), we define the operator norm ‖A‖op = sup{|Ax| : x ∈ Sn−1}. ‖·‖op determines

a metric dop(A,B) = ‖A−B‖op on O(n).

2 Foundations

Before starting with the initial topic as expected, I find it practical to mention / review a few basic

notions of fundamental regions and discrete groups. These following foundations will be necessary

in the succeeding section in order to understand crystallographic groups.

The proofs of some of the following theorems will use lemmas and theorems from [1], to which I

will simply refer instead of mentionning their content explicitly.

Definition 1. A topological group is a group G equipped with a topology such that ι : G −→
G, ι(g) = g−1 and m : G×G −→ G, m(g, h) = gh are continuous.

A discrete group is a topological group G where {g} is open for all g in G.

Lemma 1. Let Γ be a topological group. Γ is discrete if and only if {eΓ} is open in Γ.

Proof. ”=⇒”:

{eΓ} is open in Γ by definition.

”⇐=”:

Let g ∈ Γ and define τg : Γ −→ Γ, τg(h) = gh is a homeomorphism, so τg({eΓ}) = {g} is open.

This holds for all g ∈ Γ.

Theorem 1. A subgroup Γ of Rn is a discrete group if and only if Γ is generated by a set of linearly

independent vectors.

In the talk, we will just outline the idea of the proof.
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Proof. ”⇐=”:

First, we assume that Γ = {0}. It holds that Γ is discrete, for Γ is open in itself by definition of a

topology.

Now let Γ be nontrivial and let it be generated by linearly independent vectors {v1, ..., vm}, m ≤ n
as a group. Γ = {x ∈ Rn : ∃εi ∈ Z, such that x =

∑m
i=1 εivi} = ⊕m

i=1Zvi. We may even choose

vi = ei for all i by applying an injective linear transformation.

Lemma 1 implies the discreteness of Γ, because for B(0, 1) = {x ∈ Rn : ‖x‖ < 1}, Γ∩B(0, 1) = {0}
holds.

”=⇒”:

Let Γ be discrete. We use induction on n.

n = 1:

Choose r > 0, such that there exists 0 6= g ∈ B(0, r) ∩ Γ. It follows, that for C(0, r) = {x ∈
Rn : ‖x‖ ≤ r} (”closed ball”) C(0, r)∩Γ is a closed subset of C(0, r), since every discrete subgroup

Γ of a topological group equipped with a metric topology (here: Rn) is closed (this can be proved

by contradiction - see [1], 5.3. Lemma 3).

Therefore, C(0, r) ∩ Γ is a compact discrete space and as such, it is finite. Let 0 < u ∈ Γ nearest

to 0, v ∈ Γ. Let k ∈ Z, such that v ∈ [ku, (k + 1)u) = [ku, ku+ u) and so v − ku ∈ [0, u). Since Γ

is a Z-module, v − ku ∈ Γ. Thus v − ku ∈ Γ ∩ [0, u) = {0} (because u was chosen to be nearest to

0 in Γ). It therefore holds that v = ku. Since v is arbitrary, Γ is generated by u.

n > 1:

There is 0 < u ∈ Γ with absolute value nearest to 0, such that Γ ∩Ru = Zu. Let {u1, ..., un−1, u =

un} be a basis of Rn. We define a continuous linear map ϕ : Rn −→ Rn−1, ϕ(ui) = ei, i = 1, ..., n−1

and u ∈ ker(ϕ).

Let x ∈ Rn, x =
∑n

i=1 xiui. ϕ(x) =
∑n−1

i=1 xiei. Since for all λ ∈ R, ϕ(λu) = 0, it holds that

ϕ−1(ϕ(x)) = x + Ru. We find ψ : Rn−1 −→ Rn, ψ(ei) = ui, i = 1, ..., n − 1 to be a continuous

right inverse of ϕ. According to Theorem 5.1.5 [1], ϕ : Rn�Ru −→ Rn−1, x + Ru 7−→ ϕ(x) is an

isomorphism of topological groups.

For the canonical projection π : Rn −→ Rn�Ru, we claim that π(Γ) is discrete. Let (vi) be a

sequence in Γ satisfying π(vi) −→ 0 =⇒ ϕ((π(vi)) −→ 0 =⇒ ϕ(vi) −→ 0 =⇒ ψ(ϕ(vi)) −→ 0 in

Rn. It follows that vor ri ∈ R, vi − riui −→ 0 in Rn. Since vi −→ 0 ( mod Ru), we can choose

k ∈ Z with |k| = 1 and ku+ vi −→ 0 ( mod Ru).

As a consequence, there are ri ∈ R, so that vi − riu −→ 0 and vi + u(k − ri) −→ 0 in Rn. We may

therefore assume, that |ri| ≤ 1
2 .

Using this upper bound, we get |vi − riu| < |u|
2 for large enough i (Sidenote: Define without

loss of generality r̂i := ri + εi for i large enough, with εi infinitesimally small; we shall have

vi = r̂iu =⇒ |vi − riu| = |(r̂i − ri)u| < |u|
2 ), which implies |vi| < |u|.

Because of our choice of u and the fact that vi ∈ Γ, we conclude that vi = 0 for sufficiently

large i. Therefore, for every convergent sequence (vi) in π(Γ), there is an N ∈ N, such that

vn = const ∀n ≥ N . With Lemma 2 in 5.3. [1], we know that π(Γ) is discrete. According to

the induction hypothesis, there are w1, ..., wm ∈ Γ, such that π(wi) are linearly independent and

generators of π(Γ). Using these vectors, we get a linearly independent set {u,w1, ..., wm} in Rn

generating Γ.

Lemma 2. Let Γ ⊂ Isom(En) be a subgroup. For a point a in En, a matrix A in O(n) and r > 0,

let Γr be the subgroup of Γ generated by all φ = a + A with ‖A − In‖op < r. kn(r) shall denote

the maximum number of matrices in O(n) with mutual distances dop(A,B) at least r. Then Γr is
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a normal subgroup with [Γ : Γr] ≤ kn(r).

Proof. Let A,B ∈ O(n), a, b ∈ En.

For ‖A− In‖op, we define Γr 3 φ = a+A. We will furthermore need a second map: Γ 3 ψ = b+B.

We then have: ψφψ−1 = c+BAB−1, c ∈ En.

Remark: For D ∈Matn×n(R) and Q ∈ O(n), it holds that ‖DQ‖op = ‖D‖op.

According to that remark, we get ‖BAB−1− In‖op = ‖BAB−1−BB−1‖op = ‖(BA−B)B−1‖op =

‖BA−B‖op = ‖B(A− I)‖op = ‖A− I‖op < r.

Thus ψφψ−1 ∈ Γr and Γr is a normal subgroup.

Let ψi = bi +Bi, i = 1, ...,m ≤ kn(r) be a maximal sequence in Γ with mutual distances between

the matrices Bi at least r. Choose an arbitrary element Γ 3 ϕ = b+B.

After having chosen the sequence ψi to be maximal, there is a j ∈ {1, ..,m}, such that

‖B −Bj‖op < r =⇒ ‖BB−1
j − In‖op < r

. For d ∈ En, we have ϕψ−1
j = d+BB−1

j ∈ Γr. Now let σ ∈ Γr, such that

ϕψ−1
j = σ ⇐⇒ ϕ = σψj

. Hence ϕ is in the coset Γrψj .

Since ϕ was chosen arbitrarily, it holds that

Γ = Γrψ1 ∪ ... ∪ Γrψm

and [Γ : Γr] ≤ m ≤ kn(r).

Remark: The following Theorem will be used in our final proof.

Theorem 2. Let Γ ⊂ Isom(En) be a discrete subgoup. Then Γ has an abelian normal subgroup N

with Trans(Γ) ⊂ N and there is an integer k(n) ∈ N with [Γ : N ] ≤ k(n) <∞.

Proof. We apply Lemma 2 with N = Γ 1
2
. We then have k(n) = kn(1

2). N is abelian by lemmas 4

and 5 (5.4 [1]). These lemmas also explain the choice of Γ 1
2
.

Let τ ∈ Trans(Γ). τ can be written as τ = g + In, g ∈ En. Clearly, In is orthogonal with

‖In − In‖op = 0 < 1
2 , which is why τ is an element of Γ 1

2
= N .

Remark: The following Theorem will be used in our final proof.

Theorem 3. Let Γ ⊂ Isom(En) be an abelian discrete subgroup. Then there are subgroups H and

K of Γ and an m−Plane P of En, so that the following features hold:

1. Γ = H ⊕K;

2. |K| <∞ and every element of K acts trivially on P ;

3. H is a free abelian group of rank m and the only element of H acting trivially on P is eH = eΓ;

Remark: H acts on P as a discrete group of translations.
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Proof. The following proof uses induction on n.

n = 0:

En = 0, Γ = {eΓ} is the trivial case.

n > 0:

Let Γ 3 φ = a + A with dim(V := {v ∈ En : Av = v}) minimal. If V = En, Γ = Trans(Γ) holds

and we can finish the proof in this case by applying Theorem 1 on Γ = H (therefore, K = {eΓ})
and P = span({γ · 0 : γ ∈ Γ}).
Now on to dim(V ) < n. For [φ, ψ] = φψφ−1ψ−1, φ, ψ ∈ Γ defined as φ = a + A, ψ = b + B, we

get:

[φ, ψ] = (A− I)b+ (I −B)a+ I

Since Γ is abelian, we also get [φ, ψ] = I and so, we get

(A− I)b+ (I −B)a = 0 ⇐⇒ (A− I)b = (B − I)a (1)

For v ∈ V , we have ABv = BAv = Bv. Therefore, B(V ) ⊂ V and since B ∈ O(n), we have

that B(V ) = V . Consequently, (B − I)(V ) is a subspace of V .

If b ∈ V, (A− I)(b) = 0. For b ∈ V ⊥, (A− I)(b) ∈ V ⊥ would be the case.

Combining this information with the equation 1, we conclude that

(B − I)a ∈ V ∩ V ⊥ = {0}

so Ba = a and Ab = b, with b being in V , for it is fixed by A. Since ψ = b + B is an arbitrary

element in Γ with ψ(x) ∈ V for all x ∈ V , Γ leaves V invariant.

We may assume that for k < n, Ek = V . By restricting all elements of Γ to Ek, we obtain a

discrete group Res(Γ) ⊂ Isom(Ek) and a restriction homomorphism ρ : Γ −→ Res(Γ).

Since k < n, we can apply the indutction hypothesis: There are subgroups H ′,K ′ ⊂ Res(Γ) and

an m-plane P of Ek such that Res(Γ) = H ′⊕K ′, where K ′ is a finite group an H ′ is a free abelian

group of rank m. eH′ is the only element of H ′ acting trivially on P . H ′ acts generally as a discrete

group of translations.

K := ρ−1(K ′) defines a finite subgroup of Γ acting trivially on P .

The sequence

{eK} → K ↪→ Γ � H ′ → {eH′}

is exact and since H ′ is free abelian, it splits. Therefore, Γ = K ⊕ H holds for a subgroup H of

Γ, that is mapped isomorphically onto H ′ by ρ. This isomorphism equips H with all the necessary

features mentionned above.

Definition 2. Let X be a metric space and Γ ⊂ Isom(X) a subgroup.

1. R ⊂ X is a fundamental region for Γ if and only if:

(a) R is open in X

(b) gR ∩ hR = ∅ for g, h ∈ Γ, g 6= h

(c) X = ∪g∈ΓgR

2. Γ has a fundamental region, therefore Γ is a discrete subgroup

3. D ⊂ X is a fundamental domain for Γ if and only if D is a connected fundamental region for

Γ
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Definition 3. Let R be a fundamental region of Γ ⊂ Isom(X). R is called locally finite if and only

if the family {gR : g ∈ Γ} is locally finite, meaning that for every x ∈ X, there is a neighbourhood

U of x that intersects gR for finitely many g.

Definition 4. A polyhedron P in En is called a fundamental polyhedron, if its interior is a locally

finite fundamental domain of Γ.

Definition 5. Let Γ ⊂ Isom(X) act discontinuously on X and let g ∈ Γ.

For a ∈ X with trivial stabilizer Γa, we define Hg(a) := {x ∈ X : d(x, a) < d(x, ga)}. The Dirichlet

domain D(a) for Γ is either X if Γ = {eΓ}, or if Γ is not trivial, we have D(a) = ∩{Hg(a) : g 6= eΓ}
The so called Dirichlet polyhedron for Γ with center a is D(a) defined as above, if it is a convex

fundamental polyhedron.

3 Crystallographic Groups

This section is supposed to serve with several equivalent definitions of crystallographic groups

working our way to the first theorem by Bieberbach presented in this seminar.

Definition 6. A crystallographic group of dimension n is a discrete group Γ ⊂ Isom(En) such that

En�Γ is compact.

Lemma 3. Let R be a locally finite fundamental region of X and let x in X be a boundary point

of R. Then the following properties hold:

1. | ∂R ∩ Γx |<∞

2. ∃r > 0, such that for N(R, r) = ∪{B(x, r) : x ∈ R}, we get N(R, r) ∩ Γx = ∂R ∩ Γx

Proof. R is locally finite, so for r > 0, B(x, r) meets g−1
i R for i ∈ {1, ...,m}. Assume that x ∈ g−1

i R

for all i (after shrinking r, for example).

Now let g ∈ Γ and suppose that gx ∈ ∂R. Then there is an i ∈ {1, ...,m}, such that g = gi and we

get that x ∈ g−1
i R. Since gx ∈ Γx, we would then get:

∂R ∩ Γx ⊂ {gix : i = 1, ...,m}

Conversely, let’s have a look at gix for some i ∈ {1, ...,m}. We get that gix ∈ ∂R for all i.

Therefore, we get

∂R ∩ Γx ⊃ {gix : i = 1, ...,m}

and equality holds.

Now, let y ∈ R and suppose that d(gx, y) < r. Then we get d(x, g−1y) < r =⇒ g−1y ∈ B(x, r) ⊂
N(R, r). Since y ∈ R, It follows, that there is an i ∈ {1, ...,m}, such that g = gi. Furthermore,

gx ∈ ∂R. We conclude, that

N(R, r) ∩ Γx ⊂ ∂R ∩ Γx

is a subset. Since ∂R ⊂ N(R, r), equality holds.

Theorem 4. Let Γ ⊂ Isom(X) be discontinuous (discrete) and X be locally compact, such that

X�Γ is compact. Furthermore, let R be a fundamental region for Γ. If R is locally finite, then R

is compact.

5



Remark: Equivalence also holds, but for this talk, this implication suffices.

Proof. Suppose that R is not compact. Then there is a sequence (xi) in R, that does not have a

convergent subsequence. Let π : X −→ X�Γ be the canonical projection. Since X�Γ is compact,

the sequence (π(xi)) has a convergent subsequence in X�Γ. We therefore may assume, that (π(xi))

converges. Hence there is an x ∈ R, such that π(xi) −→ π(x) for i −→∞.

π maps R homeomorphically onto π(R), so x ∈ ∂R must be the case, for R is a fundamental region

and as such, it is an open set. Then, Lemma 3 implies, that there is an r > 0, such that

N(R, r) ∩ Γx = ∂R ∩ Γx = {gix : i = 1, ...,m}

We may assume that C(gix, r) = {v ∈ X : d(gix, v) ≤ r} is compact for each i (possibly after

shrinking r). Since (π(xi)) is a convergent sequence in X�Γ, there is an N ∈ N, such that

dΓ(Γxi,Γx) < r for all i ≥ N , dΓ being a distance function on X�Γ.

We then get for our sequence in R and for each i ≥ N an hi ∈ Γ, such that

d(xi, hix) < r

with hix ∈ Γx∩N(R, r) = {gix : i = 1, ...,m}. As a consequence, we find a j ∈ {1, ...,m} for each

i ∈ {1, ...,m}, such that hix = gjx. Because of d(xi, gjx) < r, we find that xi ∈ ∪ml=1C(glx, r) for

all i ≥ N , which is a compact set.

In this case, we get a contradiction, for we have found a convergent subsequence of (xi).

Theorem 5. Let Γ ⊂ Isom(En) be a discrete group. Then the following are equivalent:

1. Γ is a crystallographic group

2. Every convex fundamental polyhedron of Γ is compact

3. Γ has a compact Dirichlet polyhedron

Proof. We will proof this theorem in the following order: 2 =⇒ 3, 3 =⇒ 1, 1 =⇒ 2.

2 =⇒ 3:

According to (2), we only need to show the existence of a Dirichlet polyhedron: This ist the case,

fot Γ acts discontinuously, for it is discrete.

3 =⇒ 1:

Let D be a compact Dirichlet polyhedron of Γ. According to definition 2 and using the projection

map π, π(D) = En�Γ holds. Since D is compact and π is continuos, it follows, that π(D) = En�Γ

is compact as well.

1 =⇒ 2:

This is the case by Theorem 4.

For an n−dimensional grystallographic group Γ with a convex fundamental polyhedron P , we

know now that P is compact, so it has finitely many sides. P serves as a model for an n-dimensional

crystal and we can cover En with copies of P ; we get a so called tesselation: {gP : g ∈ Γ}.

In the following lemma, X will stand for the euclidean space En or for the hyperbolic space Hn.

Remark: The following Lemma will be used in our final proof.
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Lemma 4. For a discrete group Γ ⊂ Isom(X), let H ⊂ Γ be a subgroup of finite index, that is:

[Γ : H] <∞. Then X�Γ is compact if and only if X�H is compact.

Proof. ”=⇒”:

First, let X�Γ be compact. Let D be a Dirichlet domain for Γ. D therefore is a locally finite

fundamental domain. By Theorem 4, D is compact. Since H is of finite index, we can list the

cosets g1H, ..., gmH of H in Γ and define a compact subset K of X as follows:

K = g−1
1 D ∪ ... ∪ g−1

m D.

For x ∈ X, there is a g ∈ Γ such that gx ∈ D. Since Γ = ∪igiH, there is an i ∈ {1, ...,m}, such

that g = gih for h ∈ H.

Let η : X −→ X�H be the quotient map.

gx = gihx ∈ D ⇐⇒ hx ∈ g−1
i D

Since hx is in g−1
i D, Hx lies in η(K). After having chosen x arbitrarily, η(K) = X�H and so

X�H is compact.

”⇐=”:

Now, let X�H be compact. Define

φ : X�H −→ X�Γ

by φ(Hx) = Γx and let π : X −→ X�Γ be the quotient map. η shall be defined as above.

It holds that π = φη. Since π and η are continuous, φ is continuous as well. And by definition, φ

is surjective. Hence X�Γ is compact.

Definition 7. A lattice subgroup Γ ⊂ Isom(En) is a group generated by n linearly independent

translations.

Γ (as above) is a lattice subgroup if and only if Γ is discrete and free abelian of rank n.

We will now continue with the first theorem among Bieberbach’s Theorems. In this talk, we

will only look at one implication: A statement on all crystallographic groups. It is to be noted that

equivalence holds in the following theorem. The proof of the conversion will not be stated here,

but that part of the proof uses Theorem 1 from this handout.

Theorem 6. Let Γ ⊂ Isom(En) be a discrete group. If Γ is crystallographic, then Trans(Γ) is of

finite index with rank n.

Proof. According to Theorem 2, Γ has an abelian subgroup H with [Γ : H] <∞ and Trans(Γ) ⊂ H.

By Lemma 4, H is crystallographic as well. By Theorem 3, there is an m-plane P in En with H

acting on it by translation. Since H is a group of isometries, points at distance d from P stay at

distance d under the action of H. Therefore, for m < n, En�H is unbounded. Since En�H is

compact, this cannot be the case: m = n as a consequence.

Hence H is a lattice subgroup and H = Trans(Γ).

For an n-dimensional crystallographic group Γ, Trans(Γ) is a free abelian group of rank an with

finite index by Theorem 6. Trans(Γ) is the unique maximal subgroup of this sort, which follows

from Theorem 3.

Since all elements of Trans(Γ) can be written as τ = x + In for some x in En and In being the

identity matrix of rank n, Trans(Γ) is the kernel of the natural projection ρ : Γ −→ O(n) defined
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by ρ(a+A) = A.

We call the image of Im(ρ) = Π the point group of Γ. The exact sequence

{eΓ} → Trans(Γ) ↪→ Γ � Π→ {In}

shows that Trans(Γ) is a normal subgroup (for it is the kernel of a group homomorphism) and that

Π is a finite group.

Now, let Zn ∼= L(Γ) ⊂ Rn denote the lattice subgroup corresponding to Trans(Γ). For a + A = φ

in Γ and for a point b in L, we have

(a+A)(b+ I)(a+A)−1 = Ab+ I.

We now see that Π acts on L(Γ) by left matrix multiplication.

We then get an injective representation Π −→ Aut(L(Γ)) with A 7→ [x 7→ Ax].

For a finite subgroup Q ⊂ GL(n,Z), we get an exact sequence

{0} → Zn ↪→ Γ � Q→ {I}.

This forms the foundation of an approach to proving that there are only finitely many isomorphism

classes of n-dimensional crystallographic groups.
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