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THE LIE CORRESPONDENCE

1 Motivation

Reminder 1 For a Lie group G the Lie algebra containing all (smooth) left-invariant vec-
tor fields on G is called the Lie algebra of G.

Notation: Lie(G).
We identify Lie(G) with TeG since they are isomorphic (see the report of the second talk).

Lemma 2 Two isomorphic Lie groups have isomorphic Lie algebras.

Proof: See the report of the second talk, p.5.

Remark 3 The converse of Lemma 2 is wrong.

Example 4 Consider the two Lie groups Tn and Rn.

(i) It holds that Lie(Rn)
∼
= Rn:

For any a ∈ Rn the left translation is given by La(x) = a + x. Thus the diffe-
rential of any left-invariant vector field has constant maps as coefficients. The Lie
bracket of two vectorfields with constant coefficients is always zero, therefore we
get Lie(Rn)

∼
= Rn.

(ii) The n-Torus Tn is a Lie group with Lie(Tn)
∼
= Rn:

It holds that Tn ∼= S1 × . . . × S1, where S1 denotes the circle group of dimension
1. From the second talk we know that the dimension of Lie(S1) has to be equal to
the dimension of S1. Therefore Lie(S1)

∼
= R. As we will see later on it holds that

Lie(Tn)
∼
= Lie(S1 × . . .× S1) ∼= Rn.

From (i) and (ii) we get that the Lie groups of the n-Torus and Rn are isomorphic even
though Tn and Rn are not isomorphic.

Definition 5 Two Lie groups G and H are called locally isomorphic if there exist neigh-
borhoods of the respective identitiy element U ⊂ G and V ⊂ H and a diffeomorphism
F : U → V such that F (gg′) = F (g)F (g′) for all g, g′ ∈ U with gg′ ∈ U .

Remark 6 Two Lie groups are locally isomorphic if and only if they have isomorphic Lie
algebras (’Fundamental Theorem of Sophus Lie’).

Example 7 Indeed Tn and Rn are locally isomorphic as Lie groups.

2 The Lie Correspondence

Definition 8 Let X and Y be topological spaces.

(i) X is called simply connected if it is path-connected and any loop in X is homotopic
to a constant path.

(ii) X is called path-connected if for any two points in X there exists a path that joins
them.

(iii) Let f, g : X → Y be continuous maps. f and g are called homotopic if there exists a
continuous map H : X× [0, 1]→ Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for
all x ∈ X .
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Remark 9 The n-Torus Tn is not simply connected.

Theorem 10 There is a one-to-one correspondence between isomorphism classes of sim-
ply connected Lie groups and isomorphism classes of finite dimensional Lie algebras
given by the map Lie(·).

Theorem 11 Suppose G is a Lie group, g its Lie algebra and h ⊆ g a Lie subalgebra.
Then there exists a unique connected Lie subgroup H ⊂ G such that Lie(H) = h.

Proof: Consider expg : g → G. Let H be the smallest Lie subgroup of G containing
im(expg |h). Our Aim is to show: Lie(H) = h.
Let h′ be the Lie group of H . Therefore it holds that h ⊂ h′. It remains to show h′ ⊂ h.

It is possible to write g as a decomposition into the vector subspace h and its comple-
ment h⊥:

g = h⊕ h⊥.

Since the vector space g has a basis you can find the subset which generates the subspace
h and take the remaining elements of the basis of g to generate h⊥. Thus you can always
find such a decomposition.
Also we know that there exist open neighborhoods U ⊂ g with 0g ∈ U and V ⊂ G with
0G ∈ V sucht that expg |U : U → V is a diffeomorphism. Since U ⊂ g = h ⊕ h⊥ you can
also write U = W ⊕W ′ with 0h ∈W ⊂ h and 0h⊥ ∈W ′ ⊂ h⊥.

Let Z ∈ h′. It follows that exp tZ ∈ H for all t ∈ R. From the last talk we know that
for small enough t it holds that

exp tZ = exp t(X + Y ) = exp tX exp tY,

where X ∈W ⊂ h and Y ∈W ′ ⊂ h⊥.
Since H is a group and im(expg |h) ⊂ H by definition it also holds that exp tX ∈ H . This
implies that exp tY ∈ H for all sufficiently small t ∈ R. With Lemma 12 we get that Y
has to be identical to the zero map and thus Z = X + Y = X ∈ h since expg |U is a
diffeomorphism.
We conclude that h = h′ = Lie(H).

Lemma 12 With the notation from the proof of Theorem 11 it holds that

{Y ∈W ′ : expY ∈ H}

is at most countable.

Proof: For the proof of Lemma 12 see ’Lie groups, Lie algebras, And Representations An Ele-
mentry Introduction’ by Brian C. Hall (Springer, 2004), Lemma 5.21.

Proof of Theorem 10: Let G be a simply connected Lie group and g := Lie(G) its Lie alge-
bra. We have to show that Lie : G 7→ g is both injective and surjective up to isomorphism.

Injectivity:
Let G and H be simply connected Lie groups with isomorphic Lie algebras g := Lie(G)
and h := Lie(H). Thus there exists a Lie algebra isomorphism ϕ : g→ h.

It holds that Lie(G×H)
∼
= Lie(G)× Lie(H):
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We already know that G×H is a Lie group. Its Lie algebra k := Lie(G×H) is defined by
a Lie bracket [·, ·]k such that for all vectorfields X, X̄ ∈ g and Y, Ȳ ∈ h it holds that

[(X,Y ), (X̄, Ȳ )]k = ([X, X̄]g, [Y, Ȳ ]h).

It it obvious that this bracket defines a Lie algebra on G×H and even the Lie algebra on
G×H since the left translation of a product of Lie groups is also defined componentwise.

Let l ⊂ g× h be the graph of ϕ:

l := {(X,ϕ(X)) : X ∈ g}.

It holds that l is a vector subspace of g × h because ϕ is linear as a Lie group homomor-
phism and even a Lie subalgebra:

[(X,ϕ(X)), (X̄, ϕ(X̄))]k = ([X, X̄]g, [ϕ(X), ϕ(X̄)]h) = ([X, X̄]g, ϕ([X, X̄]g)) ∈ l

With Theorem 11 it holds that there exists a unique connected Lie subgroup L ⊂ G ×H
such that Lie(L) = l.

It is clear that the following projetions are Lie group homomorphisms:

π1 : G×H → G, π2 : G×H → H.

It follows that the restrictions of π1 and π2 to L are also homomorphisms. In the following
we want to show that π1|L is bijective. Then we could define a Lie group homomorphism
in the following way:

Φ = π2|L ◦ (π1|L)−1 : G→ H.

Put Π = π1|L : L → G and consider its induced Lie algebra homomorphism Π∗. It is
given by the projection:

Π∗ : l→ g, (X,ϕ(X)) 7→ X.

Thus Π∗ is a Lie algebra isomorphism which gives us that Π itself is also a Lie algebra
isomorphism.

With the previous definition we get a Lie group homomophism Φ : G → H with π2|L =
Φ ◦ π1|L.

Define Π2 : g × h → h as the induced Lie group homomorphism of the projection on
the second argument which is the projection onto the second argument on an algebra
level. It holds that:

Π2|l = Φ∗,e ◦Π : l→ h.

For any X ∈ g this gives us that

ϕ(X) = Π2|l(X,ϕ(X)) = Φ∗,e ◦Π(X,ϕ(X)) = Φ∗,e(X).

Since ϕ is an isomorphism we get analogously a Lie algebra homomorphism Ψ : H → G
with ϕ−1 = Ψ∗,e. By the construction of the induced homomorphisms Φ∗,e and Ψ∗,e it is
clear that they are unique with this property. For both the identity map and the compo-
sition Ψ ◦ Φ it holds that the induced homomorphism is equal to the identiy map on g.
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With the uniqueness of Ψ and Φ it follows that Ψ ◦Φ = idG and analogously Φ ◦Ψ = idH
which makes Ψ a Lie group isomorphism with the inverse map Ψ.

Surjectivity:
Consider a finite dimensional Lie algebra g. For some vectorfield V it holds that g is iso-
morphic to a subalgebra of Lie(GL(V )) (see the report of the second talk, p. 2). From
Theorem 11 we can get a connected Lie subgroup G of GL(V ) such that Lie(G)

∼
= g. By

Theorem 13 there exists a simply connected Lie group with Lie(G̃)
∼
= Lie(G).

Theorem 13 Let G be a connected Lie group. Then there exists a simply connected Lie
group G̃ and a smooth covering map G→ G̃ that is also a Lie group homomorphism.

Proof: For the proof see ’Introduction to Smooth Manifolds’ by John M. Lee (1st ed., Springer
2002), Theorem 2.13.

3 Normal Lie Subgroups

Definition 14 Let G be a group. A subgroup H ⊂ G is called normal if ghg−1 ∈ H for all
g ∈ G and h ∈ H .

Definition 15 Let G be a Lie group and g = Lie(G) its Lie algebra. For g ∈ G the Lie
group homomorphism

Cg : G→ G, h 7→ ghg−1

is called the conjugation map.
Thus we get for every g ∈ G the (induced) Lie algebra homomorphism

Adg := (Cg)∗,e : g→ g.

The following map is called the adjoint representation of G:

Ad : G→ GL(g), g 7→ Adg.

Reminder 16 The adjoint representation of a Lie algebra g is the map

ad : g→ Lie(GL(g)), X 7→ adX ,

where adX denotes the map adX : g→ g, Y 7→ [X,Y ]g.

Theorem 17 Let G be a Lie group and g its Lie algebra. The Lie algebra homomorphism
induced by the adjoint representation Ad of G is given by Ad∗,e = ad.

Proof: The map t 7→ exptX is a smooth curve with tangent vector X at t = 0. Thus we
can compute Ad∗,e by

Ad∗,e(X) =
d

dt

∣∣∣∣
t=0

Ad(exptX)

For any Y ∈ g we get

Ad∗,e(X)Y =

(
d

dt

∣∣∣∣
t=0

AdexptX

)
Y =

d

dt

∣∣∣∣
t=0

AdexptXY.
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Consider AdexptXY as a left-invariant vector field on G. It is determined by its value at
the identity element e ∈ G:

(AdexptXY )e = (CexptX)∗,eYe = (Rexp(−tX))∗,e(LexptX)∗,eYe

= (Rexp(−tX))∗,eYexptX = (θ−t)∗,eYθt(e),

where θt = Rexp tX denotes the flow of X . Therefore we get that

(Ad∗,e(X)Y ) =
d

dt

∣∣∣∣
t=0

(θ−t)∗,eYθt(e) = (LXY )e = [X,Y ]e,

where (LXY )e denotes the Lie derivate of Y with respect to X which is equal to the Lie
bracket at e and is used as a geometric interpretation for the Lie bracket. In the equality
above we first used the definition and then the equivalence to the Lie bracket. For the
proof of the second step see ’Introduction to Smooth Manifolds’ by John M. Lee (1st ed.,
Springer 2002), Theorem 18.2.

Lemma 18 Let G be a connected Lie group, H ⊂ G a connected Lie subgroup and g and
h their Lie algebras, respectively. Then H is normal in G if and only if for all X ∈ g and
Y ∈ h it holds:

(expX)(expY )(exp(−X)) ∈ H (1)

Proof: Note that for all X ∈ g and Y ∈ h expX, exp(−X) = (expX)−1 ∈ G and
expY ∈ H . Therefore (expX)(expY )(exp(−X)) ∈ H if H is normal.

Conversely, suppose that (1) holds. It is known there exist open neighborhoods U ⊂ g
of 0g and V ⊂ G of the identity element (in G) such that

expg |U : U → V

is a diffeomorphism. We also know it holds that

expg |h = exph .

It is possible to shrink U such that expg |U∩h is a diffeomorphism from U ∩ h to a heigh-
borhood V ′ ⊂ V with 0H ∈ V ′. Shrink U further until it holds that X ∈ U if and only if
−X ∈ U .

For all g ∈ V and h ∈ V ′ it follows that there exist X ∈ U and Y ∈ U ∩ h such that
expX = g and expY = h. Since (expX)(expY )(exp(−X)) ∈ H by assumption it holds
that ghg−1 ∈ H .

By Lemma 19 it holds for all h ∈ H that h =
∏
i∈I hi for hi ∈ V ′, i ∈ I ⊂ N. Thus we

get that for alle g ∈ V and h ∈ H it holds that

ghg−1 = g

(∏
i∈I

hi

)
g−1 =

∏
i∈I

(ghig
−1) ∈ H.

Similarly any g ∈ G can be written as g =
∏
j∈J gj for some gj ∈ V, j ∈ J ⊂ N. It follows

that ghg−1 ∈ H for all g ∈ G and h ∈ H .
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Lemma 19 Let G be a connected Lie group. For any open neighborhood U ⊂ G of the
identity element you can write any element g ∈ G in the following way:

g =
∏
j∈J

gj

for some gj ∈ U and J ⊂ N. Since G is finite dimensional J is a finite set.

Proof: Let H be the smallest Lie subgroup of G such that U ⊂ H . Define the following
open subsets of H :
U1 := U ∪ U−1, where U−1 := {g ∈ G : ∃u ∈ U with gu = e}.
Uk := U1Uk−1 := {u1u2 : u1 ∈ U1, u2 ∈ Uk−1} for all k ≥ 2.
Obviously H is the union of all Uk. Since the inversion map and the multiplication in G
are diffeomorphisms Uk is open for all k ∈ N. Therefore H is an open subgroup of G.
But H is also closed as a Lie subgroup of G. (For this result see the report of the first
talk.) Thus G is the disjoint union of the two open sets H and G \ H . Since H contains
the identity and G is connected it holds that H = G and by the construction of H the
statement of the Lemma follows.

Definition 20 Let g be a Lie algebra. A linear subspace h ⊂ g is called an ideal in g if
[X,Y ] ∈ h for all X ∈ g and Y ∈ h.

Theorem 21 Let G be a connected Lie group and H ⊂ G a connected Lie subgroup. Then
H is a normal subgroup if and only if h := Lie(H) is an ideal in g := Lie(G).

Proof: Consider the Lie group homomorphism Cg(h) = ghg−1 for a g ∈ G. The following

diagram commutes for any X ∈ g: g
AdexpX //

exp

��

g

exp

��
G

CexpX

// G.

For Y ∈ g it follows that

CexpX(expY ) = exp(AdexpXY ). (2)

Similar to (2) it holds with Theorem 17 that

AdexpX = exp(Ad∗,e(X)) = exp(ad(X))

if you consider the following commutating diagram: g
ad //

exp

��

Lie(GL(g))

exp

��
G

Ad
// GL(g).

This gives us:

(expX)(expY )(exp(−X)) = CexpX(expY ) = exp(AdexpXY )

= (exp(adX))Y =
∞∑
k=0

1

k!
(adX)kY.

Suppose that h is an ideal and Y ∈ h. It holds that adXY = [X,Y ] ∈ h and therefore
(adX)kY ∈ h for all k ∈ N by induction. All in all it follows:
(expX)(expY )(exp(−X)) ∈ exp h ⊂ H . With Lemma 18 this gives us that H is normal.
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Now suppose H is normal. For all X ∈ g, Y ∈ h and t ∈ R it holds that

exp t(AdexpX(Y )) = exp(AdexpX(tY )) = CexpX(exp(tY ))

= (expX)(exp tY )(exp(−X)) ∈ H.

Therefore we know from the last talk that AdexpX(Y ) ∈ h for all X ∈ g and Y ∈ h.
Consider the smooth curve γ : R→ g with t 7→ Adexp tX(Y ) ∈ h.
Finally we want to show that [X,Y ] ∈ h for all X ∈ g and Y ∈ h to see that h is an ideal
in g:

[X,Y ] = adXY =

(
d

dt

∣∣∣∣
t=0

(exp t(adX))

)
Y

=
d

dt

∣∣∣∣
t=0

(exp(adtX))Y

=
d

dt

∣∣∣∣
t=0

Adexp tX(Y ) = γ′(0) ∈ h.
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