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1 Definition and Properties

Definition 1.1. A connected Riemannian manifold M is called symmetric, if for every p € M
there exists an isometry o, M — M such that o}, is involutive, i.e. ag =1d, and p is an isolated

fized point of op, i.e. there is a neighbourhood U of p in which p is the only fized point of o.

As we will see soon, symmetric spaces are always homogeneous spaces. Now let us have a look

at some examples.

Ezxample 1.2. One example of a non-compact symmetric space is the euclidean space R"™ where
for any point p the isometry o, is just the reflection in p.

An example for a compact symmetric space is given by the n-dimensional sphere S" with
op(q) = ¢, where g and ¢’ are equidistant points from p, lying on the geodesic through p and g.
Note that if p* is the point antipodal to p, then o, (p*) = p*. This shows that globally, p is not
the only fixed point of o,

Reminder. For a Riemannian manifold M, the exponential map Exp: D C TM — M is given
by

Exp(v) = ¢,(1),
where ¢, is the unique geodesic with ¢,(0) = p and ¢,(0) = v, for v € T, M. For p € M, there is
a star-shaped neighbourhood U C T,,M of the zero-vector 0, and a neighbourhood V' C M of p,

such that Exp,: U — V is a diffeomorphism.
If ¢ € Isom(M, g), then ¢ maps geodesics to geodesics and hence for v € T, M

p(Exp(v)) = ¢(cy(1)) = Exp(dipp(v)),
since ¢ o ¢, is the unique geodesic with ¢ o ¢, (0) = ¢(p) and (p o ¢,)(0) = dpp(v). As a result,
p o Exp = Exp o dy.

Lemma 1.3. Let M be a Riemannian manifold, p € M and o, an involutive isometry with p as
isolated fized point. Then dop|,(X,) = —X, and op(Exp(X))) = Exp(—X,) for all X, € T,M.
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Proof. In the following, we write do, instead of doy,|,, always referring to the homomorphism
doplp: Tp,M — T,M. Since 0'2% = 1dyy, it follows that do, has the property dag = idr,n, and
hence the eigenvalues of doj, have to be £1. Assume that +1 is an eigenvalue. Then there is

X, € T,M, X, # 0, satisfying do,(X,) = X,. Since o, is an isometry, we have
op(Exp(tX,)) = Exp(do,(tX,)) = Exp(tX,).

As a result, the geodesic through p with initial direction X, (given by Exp(tX,)) is fixed pointwise
by o, so p is not an isolated fixed point of o, - a contradiction.

Now the only eigenvalue of doy, is —1, i.e. for all X, € T, M, dop(X,) = —X,,, and 0, (Exp(X,)) =
Exp(dop(Xp)) = Exp(—X,). In summary, o, takes each geodesic through p onto itself with

directions reversed. O
To prove the following corollary, we need a more general statement on Riemannian manifolds.

Lemma 1.4. Let M be a complete connected Riemannian manifold, Fi, Fo: M — M isometries
satisfying F1(p) = F3(p) and dFy = dFy on T,M for some p € M. Then Fy = F5.

Proof. See [Boo86, p.350] O

Corollary 1.5. Let M be a complete connected Riemannian manifold, p € M. Then there is at

most one involutive isometry o, with p as isolated fized point.

Proof. Let op, 01’, be two involutive isometries with p as isolated fixed point. Then by Lemma

1.3 doy, = doy, on T, M and hence o, = 0, by Lemma 1.4. O

Theorem 1.6. A symmetric Riemannian manifold M is necessarily complete. Further, for
q1,q2 € M, there is r € M such that o,(q1) = qa.

Proof. We have to show that every geodesic segment can be extended to infitite length. So let
c(s) be a geodesic ray defined on the open intervall (0,b) and let so := %b. The isometry o)
in ¢(so) takes any geodesic through c(sg) to itself with initial direction reversed; in particular,
it takes ¢ to the geodesic through ¢(sg) with tangent vector — (%)50 at ¢(sp). This geodesic
coincides with ¢ on %b < s < b and extends it to length < %b. This proves the first statement. If
we take  to be the midpoint of the geodesic from ¢; to ¢q, it follows that o,.(q1) = g2, since o,

carries the geodesic onto itself, preserving distances between points on it. O

The isometries of a Riemannian manifold form a group Isom(M), that is a subgroup of the
group of all diffeomorphisms on M. It is a Lie group due to a result from Myers and Steenrod
(see [Hel78, Ch.IV.3]), and according to Th. 1.6, its action is transitive, if M is a symmetric

space. Hence, any symmetric space is also homogeneous.
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2 Lie Groups as Symmetric Spaces

Reminder. A Riemannian metric ¢ on a Lie group G is called bi-invariant, if it is invariant

under both left- and right-translation, i.e. Ly¢g, = ¢, = Ripp, for all g,p € G.

Theorem 2.1. Let G be a compact connected Lie Group with a bi-invariant metric. Then G is

a symmetric space with respect to this metric.

Proof. First, we remark that the assumption that G is compact and connected is necessary
to guarantee the existence of a bi-invariant metric on G. Let ¢: G — G be the inversion, i.e.
Y(x) = 7! for all z € G. Clearly, v is involutive. We claim that it is an isometry of G with
the identity element e of G as isolated fixed point. To prove this, recall that for any X, € T.G,
there is a unique one-parameter subgroup, i.e. a group homomorphism g: (R, +) — G, t — g(t)

satisfying ¢(0) = X.. Applying v, this gives us

Y(g(t)) = (9(1)) ™" = g(t™") = g(~1),
and for the differential we obtain (using the chain rule)

0

dipe(Xe) = dipe(9(0)) = dipe(dgo) = d (¥ 0 g)g = 5. (¥(g(?))) = —9(0) = —Xe.

Hence di, = —1, so it preserves any inner product on T,.G.
Let now g € G be arbitrary, and Ly, R, denote the left and right translations by g. Then for all

r €l
() =2t =(g"'2) g = (R-10v0 L) (),

which gives us for the differential dipy: Ty (G) — T, G
dipg = d(Ry—1)e o dipe 0 d(Ly—1),.

Since we consider a bi-invariant metric on G, L1 and Ry-1 induce isometries between the tangent
spaces. As di, is an isometry on T, G, also di, is an isometry for any g in G as composition of
isometries. So indeed, the inversion i is an isometry of the Lie group G. To see that is has the
identity element e as an isolated fixed point, we consider a neighbourhood N of e, that is the
diffeomorphic image under Exp,, of some star-shaped neighbourhood of 0, € T,M. Using the
fact that ¢ is an isometry and that di.(X.) = —X,, we obtain ) (Exp(X.)) = Exp(di.(X,)) =
Exp(—X,). In the neighbourhood N, we can identify Exp(X.) uniquely with X, € T.G, so in
local coordinates, v is just a reflection in the origin and therefore has e as an isolated fixed point.
Let now g € G be arbitrary and define o4: G — G by 04 = Ly 0 Ry 01, so o4(x) = gz~ lg for all
x € G. As a composition of isometries, o, itself is an isometry. Further, it is involutive and has

g as isolated fixed point. This completes the proof that G is a symmetric space. O

Now that we familiarized ourselves with the notion of a symmetric space, let us consider
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a concrete example. For that, we need a result guaranteeing the existence of a bi-invariant

Riemannian metric on a Lie group G:

Lemma 2.2. Let v, be an inner product on T.G. Then 1. determines a bi-invariant Rieman-
nian metric on G if and only if d(Ad(g))ve = e for all g € G, where Ad(g): T.G — T.G
is the homomorphism induced by the conjugation map h — ghg~™' (cf. Talk 4 on the Lie

Correspondence,).

For the proof, see [Boo86, p.246].

Ezample 2.3. Let G = SO(n,R). Our aim is to show that G indeed is a symmetric space. We
start with constructing a bi-invariant Riemannian metric on G and want to use the lemma stated
above. Therefore, we have to find an inner product on T.G that is invariant under Ad(B) for
all B € G. We know that T.G can be identified with the group of all skew-symmetric matrices
{A € GL(n,R)| A= —A")} in the sense that X, = doij aija:%j with A = (a;j) skew-symmetric,
is tangent to the identity element e = I of SO(n,R) considered as submanifold of GL(n,R). The
unique one-parameter subgroup corresponding to the left-invariant vectorfield with value X, in e
is of the form Z(t) = €' (it is easy to see that Z is a group homomorphism and that Z(0) = A).
For B € G = SO(n,R), Ad(B): T.G — T.G is induced by the map Z + BZB~!. Since X,
corresponds to the one-parameter subgroup ¢4, Ad(B)(X,) corresponds to Be!AB~1 = ¢!BAB -
where the last equality can easily be verified by the definition of e*4. Hence, Ad(B)(X.) has

)

component matrix BAB™!.

: _ 0 _ o)
We now define an inner product on 7T.G. For X, = Z” Wij ga; and Y, = Z” Cij gy > WO set
<Xe71/e> = t’l"(ATC) = Zaijqj
,J

which is clearly bilinear, symmetric and positive definit since (X, Xe) =, j a?j > 0. Now for
B € SO(n,R), we have

(Ad(B)(X.), Ad(B)(Y.)) = tr((BAB™YT'(BCB™)) = tr(BATCB™") = tr(ATC) = (X.,Y.).

So the inner product (-, -) is invariant under Ad(B). By Lemma 2.2, it determines a bi-invariant

Riemannian metric on GG, which by Theorem 2.1 makes G a symmetric space.

Our next goal is to show that the geodesics through the identity element e with initial direction
X, € T.G are exactly the one-parameter subgroups determined by X,.. Let M be a symmetric
Riemannian manifold and p(t), —oo < t < 0o a geodesic on M. As we have seen, for any ¢, Tp(t)

maps p onto itself and reverses its sense. Hence for ¢ € R fixed
Te *= Op(c) © Tp(35)

is an isometry that maps p onto itself and preserves its sense, so 7.(p(t)) = p(t + const). As

7e(p(0)) = op(e)(p(c)) = p(c), we obtain 7.(p(t)) = p(t + ) for all ¢. This gives us the first part of
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the follwing theorem:

Theorem 2.4. Let M,p and 7. be as above. Then 7.(p(t)) = p(t + c) and for X,y € Tpo)M,
the vectorfield
Kp() = driXp(0)

is the associated parallel vectorfield along p(t), i. e. dr: TpoyM — Ty M is the parallel

translation along the geodesic p.

Proof. The first statement was already shown above. For the second, define X as in the
statement and let f(p(t) denote the unique parallel vectorfield along p with Xp(o) = Xp0)- We
claim that the vectorfields X and X coincide. For any t, € R, dap(tO)Xp(t) is parallel along p,

since op(y,) is an isometry. By Lemma 1.3, dap(to)Xp(to) = -X,

dop (1) Xp(t,) are parallel vectorfields along p and agree at the point p(tp). By uniqueness, this

(to)- Hence both —Xp(to) and
vectorfields are equal. This gives us

dre(Xp) = () 0 op(5) (X))
= dop(e)| op(§)() (d0p<g>Xp(t>)

= dop(e)| op(§)(0) (—Xap<§>(p<t>)>

= Xrow) = Xp(to)

In particular, for ¢ = 0 and ¢ = t, this leads to

X

p(t) = 1 Xp0) = AT Xp0) = Xp),

so the two vectorfields coincide everywhere, i.e. dry is the parallel translation along p. ]

Remark. If p1 = p(c1) and py = ¢(p2) are two points on the geodesic, than just as above,
Tpy ©0p, (P(t)) = p(t+2(c2 — ¢1)) and d(op, 0 0},) maps any parallel vectorfield along p to another

parallel vectorfield.

Now we are ready to prove the result mentioned above on geodesics and one-parameter

subgroups.

Theorem 2.5. Let M = G be a compact connected Lie group with bi-invariant metric and
Xe € T.G. Then the unique geodesic p(t) with p(0) = e and p(0) = X, is precisely the one-
parameter subgroup determined by X.. All other geodesics are left (or right) cosets of these

one-parameter subgroups.

Proof. Let p be as above. We have to show that p is a group homomorphism from (R, +) to
G. As we have just seen, the isometry o, o 0,y maps p onto itself with p(t) — p(t + 2s).
Remember that o,(z) = pr~'p (see Th. 2.1) and p(0) = e. It follows that

P(t+25) = 0y5) © 0(0) (P(1)) = T (P(O)p(£) ~'p(0)) = p(s)p(D)p(s)
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and inductively, using various t, we find p(s)™ = p(ns). In particular, for a, b, ¢, c € Z with bd # 0

we have

p(3+ ) = () <o (5) = () P () =r (D0 (S)

By continutity, p(t + s) = p(t)p(s) for all s,t € R, and hence any geodesic with p(0) = e is
a one-parameter subgroup. Since there exists a unique geodesic and a unique one-parameter
subgroup with p(0) = X., we have proven the first claim. The second claim follows, sincet
left and right translations are isometries with respect to the bi-invariant metric and therefor
preserve geodesics. A geodesic through ¢ € G is uniquely determined by its tangent vector at g,
including parametrization. We can find a translation mapping this geodesic to one through e,
corresponding to a one-parameter subgroup. Hence the original geodesic is the image of this

under a translation and therefor a left (or right) coset of the one-parameter subgroup. O

Corollary 2.6. Let G be a compact connected Lie group. Then any g € G lies on a one-parameter

subgroup.

Proof. According to Th.2.1, G is a Riemannian manifold with respect to the bi-invariant metric,
and by Th.1.6 it is complete. Hence we can join any g € G to e by a geodesic segment, that is a

one-parameter subgroup by Th.2.5. O

Let us briefly get back to SO(n,R) considered in Example 2.3.

Ezample 2.7. In G = SO(n,R) the geodesics relative to the bi-invariant metric constructed in
Example 2.3, are exactly the one-parameter subgroups, so the curves p(t) = et4 with A being

any skew-symmetric matrix, and their cosets.

3 From homogeneous to symmetric spaces

In the first part of the talk, we found out that any symmetric space is a homogeneous space for
its group of isometries. We now want to examine under what circumstances we can be sure that

a given homogenous space is symmetric.

Theorem 3.1. Let G be a Lie group acting transitively on a manifold M. If the stabilizer H of
a point p € M is a connected compact Lie subgroup of G, then M admits a Riemannian metric

such that the transformation determined by each element of G is an isometry.

Proof. Let p € M fix and H be as above. We denote the action of G on M by 6: G x M — M,
and by 6,: M — M the diffeomorphism given by 64(q) = 6(g,q) for ¢ € M. For g € H, b,
induces a linear mapping dfl,: T, M — T,M. Since 04, 0 04, = 04, 4,, we have dbfy, o dfy, = dbg, 4,
and hence the map v: g — df, from H into the group of linear transformations Aut(T,M) of
T,M is a homomorphism. Since 6 is C*, so is ¢ (this can be seen using a basis of T),M'). Hence,

1 is a smooth group homomorphism from H to Aut(T,M), i.e. a representation of H on T,M.
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By Theorem VI 3.9 [Boo86], this guarantees the existence of an inner product on T, M, denoted
by ¢, that is H-invariant. Note that for applying this theorem, we need that H is connected
and compact.

Since G acts transitive by assumption, for any ¢ € M there is g € G with 04(q) = p. Define
¢q(anYq) = azﬁbp(Xq’Yq) = ¢p(d‘99XQ7dngq) VXqu € TqM-

We claim that this gives us a Riemannian metric ¢ on M with respect to which each 6, is
an isometry of M. First, ¢4 is well-defined: Let g1,92 € G with 6,,(q) = p = 04,(¢). Then
g;lgl € H and hence 99;191 Op = Pp, SO

O, 00 = 03,01, 6y = 03,0710}, 6 = 0}, 6.

Second, for any ¢ € M, ¢, is positive definit, since ¢, is positive definite and 6, is a diffeomorphism.
Further, one checks that ¢ is G-invariant on M. Let g € G, ¢1,¢92 € M with 6,4(¢1) = ¢2 and
91,92 € G with 0,,(q;) = p for i = 1,2. Tt holds that gogg; * fixes p, so this in an element h
in H. Since ¢, is H-invariant, ¢, (df,(Xp), d0x(Yy)) = ¢p(Xp, Y)) for all X,,, Y, in T,M, and in
particular ¢p,(dfg,gXq,, d0g,9Yq,) = dp(dby, (Xq,), d0g, (Yy,)) for Xg,, Yy, € Ty, M. As a result, we
find

HZCZ’qz (XQ17Y;11) = QSQZQQSP(XQNYIH) = 9;29¢p(Xq17YQ1) = ¢p(d9929Xq17d9929Y;11)
= ¢p(d091 (th)ad991 (}/;11) = 0;1¢Q2 (XQ17Y!11) = ¢Q1 (XQUY;h)v

S0 ¢ is G-invariant on M. Lastly, we need to show that for vector fields X,Y on M the map
M =R, g ¢q(Xq,Yy) = 0p(dh,Xy,d0,Y,) with g€ G st.6(g9,9) =g

is smooth. For that, we have to show that the assignment ¢ +— df, X, is smooth, which is not
clear at first sight, since there are many different choices for g. To fix this, we consider the

natural identification of M with the quotient space:
F: Glg — M, gHw 0(g,p),

which is a diffeomorphism and commutes with left-translation on G/ H (see Talk on Homogeneous
Spaces, Theorem 5). For gH € G/ H , there is a C*°-section S: V — G defined on a neighbourhood
V of gH such that w o S = idy, where m denotes the projection of G onto G/H. Since F' is
a diffeomorphism, S := So F~1: M — G is a C™-section into M. The following diagramm

illustrates the situation.

G
SHK S=SoF—1
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Note that the sections S and S are not defined on the whole of G/ ' and M respectively, but
only on some neighbourhoods. For g € M, let q; € G/H be the preimage of ¢ under F, i.e.
F(q1) = q¢. Then the map S satisfies

0(S(q),p) = 0(S o F~1(F(q1)),p) = 0(S(q1),p) = Fq1) = q,

by the definition of F. Now S is smooth, so also d@g( 2 depends smoothly on ¢q. Hence by
well-definedness of ¢, we can write ¢q(Xg, Y,) = gbp(dOg( q)Xq, d@g( q)Yq), which depends smoothly
on ¢. This concludes the proof that ¢ is a Riemannian metric with respect to which each 6, is

an isometry of M. O

In the following, we always suppose that H is compact and connected and that the action of
G on M is faithful, i.e. if 6(g,m) = m for all m € M, then g = e.

Theorem 3.2. Let G, H,p and M be as above and let a: G — G be an involutive automorphism
of G with fized set H. Then

a(0(g,p)) := 0(alg),p)
defines an involutive isometry of M onto M with p as isolated fized point.

Proof. We start with showing that & defines a mapping of M onto itselt. For ¢ € M arbitrary,
there is ¢ € G with (g, p) = ¢ by transitivity. If ¢’ is another element of G satisfying 6(¢’,p) = q,
then the element h := g~'¢’ lies in the stabilizer H of p, which by assumption is also the fixed
set of . This gives us ¢’ = gh and a(g¢’) = a(g)a(h) = a(g)h, so we find

a(0(g',p)) = 0(alg)h,p) = 0(al(g),0(h,p)) = 0(a(g), p)-

As a result, & is well-defined. Further, since

a*(0(g,p)) = a(0(alg),p)) = 6(ca’(9),p) = 0(g,p)

for all g € G, &2 = idyy, so & is involutive. It follows that & is onto.

Now let us assume we already showed that & is C°°, has p as isolated fixed point and that
dé: TyM — T,M equals —I, i.e. da(X,) = —X,, for all X}, € T,M. Then dé& preserves the inner
product ¢, on T,M:

¢p(dd(Xp)v dd(yp)) = ¢p(_va _Y;?) = ¢p(Xp’Yp) Vva Y, e T,M.

Further, for ¢ € M, q # p, we choose g € G with 6(g,p) = g (which is possible since the action is

transitive). Then
a(q) = a(0(g,p)) = 0(c(9),p) = ba(g) (64-1(q)) ,

S0 & = Oy (g) © 0y-1. Hence day = db(g) © dfy-1, which are both isometries of tangent spaces. It

follows that da, is an isometry. So once we checked the properties assumed, we know that &
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is an isometry of M. The smoothness of & can be proven using the natural identification of
M with G/ H , quite similar to the method we used in the proof of the previous theorem. To
show that the p is an isolated fixed point, we make use of the fact that the exponential map is a

diffeomorphism on some neighbourhood of p. For the details, see [Boo86, p.359f]. O

Corollary 3.3. Under the assumptions of Theorem 3.2, M is a symmetric space with involutive
isometries o, = & and o4 = g0 & 00,1, where ¢ = 0(g,p).

The proof of this Corollary is immediate, since 6, is an isometry.

Now we can consider more complicated examples of symmetric manifolds.
Example 3.4. Let M C Mat(n x n,R) be the collection of all symmetric, positive definit real
matrices of determinant 1, and G = SL(n,R) the n x n-matrices of determinant 1. Then G acts
on M by 6(g,s) = gsg’. As base point p, we fix the n x n-identity matrix I € M. The stabilizer
H of I is given by

H={g e SL(n,R) | g¢g =TI} =S0(n,R),

i.e. the orthogonal n x n-matrices. Note that this is a compact connected subgroup of G. We
want to apply Theorem 3.2. An involutive automorphism of G is given by a(g) = (¢71)7. We
have

alg) =g <= g (¢ =1 < g€ SO(n,R),

so SO(n,R) is also the fixed point set of . Since the action of G on M is faithful, it remains to
show transitivity. This immediately follows from the fact that any positive definite symmetric
matrix ¢ € M may be written as ¢ = gg~' = glg~! for some g € SL(n,R). By Theorem 3.2
(and its corollary), M is a symmetric space with respect to an SL(n,R)-invariant metric. By

what we know about homogeneous spaces, we can identify

M = SL(nR) [50(n, R) -

Let us have a closer look at the isometries of M, in particular at the isometry at p = I,
which gives rise to all the other isometries. With notations as before, &: M — M is given by
a(0(g,p)) = (g7 'pg~t. Now ¢ € M can be written as gIg’” with g € SL(n,R), so

a(q) =a(0(g, 1) = (g ")g " =(gg") " =q",

so & takes any element in M to its inverse. Hence, the only fixed point of & indeed is the identity
1.
A special case of this example is the following.

Ezample 3.5. Let H = {(z,y) € R? | y > 0} be the upper half plane in R2. If we identify R? with
C, then SL(2,R) acts on H by Moebiustransformations:

0: SL(2,R) x H — H, 6(M,z) = ZI;

with M = (a
C

Z) € SL(n,R).
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It is easy to verify that this action is well-defined, transitive and faithful. A Riemannian metric

1
Lo
9(x,y) = <y02 1) :
y2

One can show that this is invariant under the action of SL(2,R). Hence, SL(2,R) acts on M as
group of isometries. Further, the stabilizer of the point p = i is given by SO(2,R), so we have

H= SLE2R)/s00,R) -

on H is given by

A further example is the Grassman manifold G(k,n) consisting of k-planes through the origin
in R™. Details of this can be found in [Boo86, p.362f].
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