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1 Definition and Properties

Definition 1.1. A connected Riemannian manifold M is called symmetric, if for every p ∈M
there exists an isometry σp : M →M such that σp is involutive, i.e. σ2p = id, and p is an isolated

fixed point of σp, i.e. there is a neighbourhood U of p in which p is the only fixed point of σp.

As we will see soon, symmetric spaces are always homogeneous spaces. Now let us have a look

at some examples.

Example 1.2. One example of a non-compact symmetric space is the euclidean space Rn where

for any point p the isometry σp is just the reflection in p.

An example for a compact symmetric space is given by the n-dimensional sphere Sn with

σp(q) = q′, where q and q′ are equidistant points from p, lying on the geodesic through p and q.

Note that if p∗ is the point antipodal to p, then σp(p
∗) = p∗. This shows that globally, p is not

the only fixed point of σp.

Reminder. For a Riemannian manifold M , the exponential map Exp: D ⊂ TM →M is given

by

Exp(v) = cv(1),

where cv is the unique geodesic with cv(0) = p and ċv(0) = v, for v ∈ TpM . For p ∈M , there is

a star-shaped neighbourhood U ⊂ TpM of the zero-vector 0p and a neighbourhood V ⊂M of p,

such that Expp : U → V is a diffeomorphism.

If ϕ ∈ Isom(M, g), then ϕ maps geodesics to geodesics and hence for v ∈ TpM

ϕ(Exp(v)) = ϕ(cv(1)) = Exp(dϕp(v)),

since ϕ ◦ cv is the unique geodesic with ϕ ◦ cv(0) = ϕ(p) and ˙(ϕ ◦ cv)(0) = dϕp(v). As a result,

ϕ ◦ Exp = Exp ◦ dϕ.

Lemma 1.3. Let M be a Riemannian manifold, p ∈M and σp an involutive isometry with p as

isolated fixed point. Then dσp|p(Xp) = −Xp and σp(Exp(Xp)) = Exp(−Xp) for all Xp ∈ TpM .
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Proof. In the following, we write dσp instead of dσp|p, always referring to the homomorphism

dσp|p : TpM → TpM . Since σ2p = idM , it follows that dσp has the property dσ2p = idTpM , and

hence the eigenvalues of dσp have to be ±1. Assume that +1 is an eigenvalue. Then there is

Xp ∈ TpM,Xp 6= 0, satisfying dσp(Xp) = Xp. Since σp is an isometry, we have

σp(Exp(tXp)) = Exp(dσp(tXp)) = Exp(tXp).

As a result, the geodesic through p with initial direction Xp (given by Exp(tXp)) is fixed pointwise

by σp, so p is not an isolated fixed point of σp - a contradiction.

Now the only eigenvalue of dσp is −1, i.e. for all Xp ∈ TpM , dσp(Xp) = −Xp, and σp(Exp(Xp)) =

Exp(dσp(Xp)) = Exp(−Xp). In summary, σp takes each geodesic through p onto itself with

directions reversed.

To prove the following corollary, we need a more general statement on Riemannian manifolds.

Lemma 1.4. Let M be a complete connected Riemannian manifold, F1, F2 : M →M isometries

satisfying F1(p) = F2(p) and dF1 = dF2 on TpM for some p ∈M . Then F1 = F2.

Proof. See [Boo86, p.350]

Corollary 1.5. Let M be a complete connected Riemannian manifold, p ∈M . Then there is at

most one involutive isometry σp with p as isolated fixed point.

Proof. Let σp, σ
′
p be two involutive isometries with p as isolated fixed point. Then by Lemma

1.3 dσp = dσ′p on TpM and hence σp = σ′p by Lemma 1.4.

Theorem 1.6. A symmetric Riemannian manifold M is necessarily complete. Further, for

q1, q2 ∈M , there is r ∈M such that σr(q1) = q2.

Proof. We have to show that every geodesic segment can be extended to infitite length. So let

c(s) be a geodesic ray defined on the open intervall (0, b) and let s0 := 3
4b. The isometry σc(s0)

in c(s0) takes any geodesic through c(s0) to itself with initial direction reversed; in particular,

it takes c to the geodesic through c(s0) with tangent vector −
(
dc
ds

)
s0

at c(s0). This geodesic

coincides with c on 1
2b < s < b and extends it to length < 3

2b. This proves the first statement. If

we take r to be the midpoint of the geodesic from q1 to q2, it follows that σr(q1) = q2, since σr

carries the geodesic onto itself, preserving distances between points on it.

The isometries of a Riemannian manifold form a group Isom(M), that is a subgroup of the

group of all diffeomorphisms on M . It is a Lie group due to a result from Myers and Steenrod

(see [Hel78, Ch.IV.3]), and according to Th. 1.6, its action is transitive, if M is a symmetric

space. Hence, any symmetric space is also homogeneous.

2



Mareike Pfeil Symmetric spaces 05.07.2016

2 Lie Groups as Symmetric Spaces

Reminder. A Riemannian metric φ on a Lie group G is called bi-invariant, if it is invariant

under both left- and right-translation, i.e. L∗gφgp = φp = R∗gφpg for all g, p ∈ G.

Theorem 2.1. Let G be a compact connected Lie Group with a bi-invariant metric. Then G is

a symmetric space with respect to this metric.

Proof. First, we remark that the assumption that G is compact and connected is necessary

to guarantee the existence of a bi-invariant metric on G. Let ψ : G → G be the inversion, i.e.

ψ(x) = x−1 for all x ∈ G. Clearly, ψ is involutive. We claim that it is an isometry of G with

the identity element e of G as isolated fixed point. To prove this, recall that for any Xe ∈ TeG,

there is a unique one-parameter subgroup, i.e. a group homomorphism g : (R,+)→ G, t 7→ g(t)

satisfying ġ(0) = Xe. Applying ψ, this gives us

ψ(g(t)) = (g(t))−1 = g(t−1) = g(−t),

and for the differential we obtain (using the chain rule)

dψe(Xe) = dψe(ġ(0)) = dψe(dg0) = d (ψ ◦ g)0 =
∂

∂t
(ψ(g(t))) = −ġ(0) = −Xe.

Hence dψe = −I, so it preserves any inner product on TeG.

Let now g ∈ G be arbitrary, and Lg, Rg denote the left and right translations by g. Then for all

x ∈ G
ψ(x) = x−1 = (g−1x)−1g−1 =

(
Rg−1 ◦ ψ ◦ Lg−1

)
(x),

which gives us for the differential dψg : Tg(G)→ Tg−1G

dψg = d(Rg−1)e ◦ dψe ◦ d(Lg−1)g.

Since we consider a bi-invariant metric on G, Lg−1 and Rg−1 induce isometries between the tangent

spaces. As dψe is an isometry on TeG, also dψg is an isometry for any g in G as composition of

isometries. So indeed, the inversion ψ is an isometry of the Lie group G. To see that is has the

identity element e as an isolated fixed point, we consider a neighbourhood N of e, that is the

diffeomorphic image under Expp of some star-shaped neighbourhood of 0p ∈ TpM . Using the

fact that ψ is an isometry and that dψe(Xe) = −Xe, we obtain ψ(Exp(Xe)) = Exp(dψe(Xe)) =

Exp(−Xe). In the neighbourhood N , we can identify Exp(Xe) uniquely with Xe ∈ TeG, so in

local coordinates, ψ is just a reflection in the origin and therefore has e as an isolated fixed point.

Let now g ∈ G be arbitrary and define σg : G→ G by σg = Lg ◦Rg ◦ ψ, so σg(x) = gx−1g for all

x ∈ G. As a composition of isometries, σg itself is an isometry. Further, it is involutive and has

g as isolated fixed point. This completes the proof that G is a symmetric space.

Now that we familiarized ourselves with the notion of a symmetric space, let us consider
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a concrete example. For that, we need a result guaranteeing the existence of a bi-invariant

Riemannian metric on a Lie group G:

Lemma 2.2. Let ψe be an inner product on TeG. Then ψe determines a bi-invariant Rieman-

nian metric on G if and only if d(Ad(g))ψe = ψe for all g ∈ G, where Ad(g) : TeG → TeG

is the homomorphism induced by the conjugation map h 7→ ghg−1 (cf. Talk 4 on the Lie

Correspondence).

For the proof, see [Boo86, p.246].

Example 2.3. Let G = SO(n,R). Our aim is to show that G indeed is a symmetric space. We

start with constructing a bi-invariant Riemannian metric on G and want to use the lemma stated

above. Therefore, we have to find an inner product on TeG that is invariant under Ad(B) for

all B ∈ G. We know that TeG can be identified with the group of all skew-symmetric matrices

{A ∈ GL(n,R)| A = −AT )} in the sense that Xe =
∑

i,j aij
∂

∂xij
with A = (aij) skew-symmetric,

is tangent to the identity element e = I of SO(n,R) considered as submanifold of GL(n,R). The

unique one-parameter subgroup corresponding to the left-invariant vectorfield with value Xe in e

is of the form Z(t) = etA (it is easy to see that Z is a group homomorphism and that Ż(0) = A).

For B ∈ G = SO(n,R), Ad(B) : TeG → TeG is induced by the map Z 7→ BZB−1. Since Xe

corresponds to the one-parameter subgroup etA, Ad(B)(Xe) corresponds to BetAB−1 = etBAB
−1

,

where the last equality can easily be verified by the definition of etA. Hence, Ad(B)(Xe) has

component matrix BAB−1.

We now define an inner product on TeG. For Xe =
∑

i,j aij
∂

∂xij
and Ye =

∑
i,j cij

∂
∂xij

, we set

〈Xe, Ye〉 := tr(ATC) =
∑
i,j

aijcij

which is clearly bilinear, symmetric and positive definit since 〈Xe, Xe〉 =
∑

i,j a
2
ij ≥ 0. Now for

B ∈ SO(n,R), we have

〈Ad(B)(Xe), Ad(B)(Ye)〉 = tr((BAB−1)T (BCB−1)) = tr(BATCB−
1
) = tr(ATC) = 〈Xe, Ye〉.

So the inner product 〈·, ·〉 is invariant under Ad(B). By Lemma 2.2, it determines a bi-invariant

Riemannian metric on G, which by Theorem 2.1 makes G a symmetric space.

Our next goal is to show that the geodesics through the identity element e with initial direction

Xe ∈ TeG are exactly the one-parameter subgroups determined by Xe. Let M be a symmetric

Riemannian manifold and p(t), −∞ < t <∞ a geodesic on M . As we have seen, for any t, σp(t)

maps p onto itself and reverses its sense. Hence for c ∈ R fixed

τc := σp(c) ◦ σp( c
2
)

is an isometry that maps p onto itself and preserves its sense, so τc(p(t)) = p(t + const). As

τc(p(0)) = σp(c)(p(c)) = p(c), we obtain τc(p(t)) = p(t+ c) for all t. This gives us the first part of
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the follwing theorem:

Theorem 2.4. Let M,p and τc be as above. Then τc(p(t)) = p(t+ c) and for Xp(0) ∈ Tp(0)M ,

the vectorfield

Xp(t) := dτtXp(0)

is the associated parallel vectorfield along p(t), i. e. dτt : Tp(0)M → Tp(t)M is the parallel

translation along the geodesic p.

Proof. The first statement was already shown above. For the second, define Xp(t) as in the

statement and let X̃p(t) denote the unique parallel vectorfield along p with X̃p(0) = Xp(0). We

claim that the vectorfields X and X̃ coincide. For any t0 ∈ R, dσp(t0)X̃p(t) is parallel along p,

since σp(t0) is an isometry. By Lemma 1.3, dσp(t0)X̃p(t0) = −X̃p(t0). Hence both −X̃p(t0) and

dσp(t0)X̃p(t0) are parallel vectorfields along p and agree at the point p(t0). By uniqueness, this

vectorfields are equal. This gives us

dτc(X̃p(t)) = d(σp(c) ◦ σp( c
2
))(X̃p(t))

= dσp(c)| σp( c2 )(p(t))
(
dσp( c

2
)X̃p(t)

)
= dσp(c)| σp( c2 )(p(t))

(
−X̃σp(

c
2
)(p(t))

)
= X̃τc(p(t)) = X̃p(t+c).

In particular, for t = 0 and c = t, this leads to

Xp(t) = dτtXp(0) = dτtX̃p(0) = X̃p(t),

so the two vectorfields coincide everywhere, i.e. dτt is the parallel translation along p.

Remark. If p1 = p(c1) and p2 = c(p2) are two points on the geodesic, than just as above,

σp2 ◦σp1(p(t)) = p(t+ 2(c2− c1)) and d(σp2 ◦σp2) maps any parallel vectorfield along p to another

parallel vectorfield.

Now we are ready to prove the result mentioned above on geodesics and one-parameter

subgroups.

Theorem 2.5. Let M = G be a compact connected Lie group with bi-invariant metric and

Xe ∈ TeG. Then the unique geodesic p(t) with p(0) = e and ṗ(0) = Xe is precisely the one-

parameter subgroup determined by Xe. All other geodesics are left (or right) cosets of these

one-parameter subgroups.

Proof. Let p be as above. We have to show that p is a group homomorphism from (R,+) to

G. As we have just seen, the isometry σp(s) ◦ σp(0) maps p onto itself with p(t) 7→ p(t + 2s).

Remember that σp(x) = px−1p (see Th. 2.1) and p(0) = e. It follows that

p(t+ 2s) = σp(s) ◦ σp(0)(p(t)) = σp(s)(p(0)p(t)−1p(0)) = p(s)p(t)p(s)

5
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and inductively, using various t, we find p(s)n = p(ns). In particular, for a, b, c, c ∈ Z with bd 6= 0

we have

p
(a
b

+
c

d

)
= p

(
ad+ bc

bd

)
= p

(
1

bd

)ad+bc
= p

(
1

bd

)ad
p

(
1

bd

)bc
= p

(a
b

)
p
( c
d

)
.

By continutity, p(t + s) = p(t)p(s) for all s, t ∈ R, and hence any geodesic with p(0) = e is

a one-parameter subgroup. Since there exists a unique geodesic and a unique one-parameter

subgroup with ṗ(0) = Xe, we have proven the first claim. The second claim follows, sincet

left and right translations are isometries with respect to the bi-invariant metric and therefor

preserve geodesics. A geodesic through g ∈ G is uniquely determined by its tangent vector at g,

including parametrization. We can find a translation mapping this geodesic to one through e,

corresponding to a one-parameter subgroup. Hence the original geodesic is the image of this

under a translation and therefor a left (or right) coset of the one-parameter subgroup.

Corollary 2.6. Let G be a compact connected Lie group. Then any g ∈ G lies on a one-parameter

subgroup.

Proof. According to Th.2.1, G is a Riemannian manifold with respect to the bi-invariant metric,

and by Th.1.6 it is complete. Hence we can join any g ∈ G to e by a geodesic segment, that is a

one-parameter subgroup by Th.2.5.

Let us briefly get back to SO(n,R) considered in Example 2.3.

Example 2.7. In G = SO(n,R) the geodesics relative to the bi-invariant metric constructed in

Example 2.3, are exactly the one-parameter subgroups, so the curves p(t) = etA with A being

any skew-symmetric matrix, and their cosets.

3 From homogeneous to symmetric spaces

In the first part of the talk, we found out that any symmetric space is a homogeneous space for

its group of isometries. We now want to examine under what circumstances we can be sure that

a given homogenous space is symmetric.

Theorem 3.1. Let G be a Lie group acting transitively on a manifold M . If the stabilizer H of

a point p ∈M is a connected compact Lie subgroup of G, then M admits a Riemannian metric

such that the transformation determined by each element of G is an isometry.

Proof. Let p ∈M fix and H be as above. We denote the action of G on M by θ : G×M →M ,

and by θg : M → M the diffeomorphism given by θg(q) = θ(g, q) for q ∈ M . For g ∈ H, θg

induces a linear mapping dθg : TpM → TpM . Since θg1 ◦ θg2 = θg1g2 , we have dθg1 ◦ dθg2 = dθg1g2

and hence the map ψ : g 7→ dθg from H into the group of linear transformations Aut(TpM) of

TpM is a homomorphism. Since θ is C∞, so is ψ (this can be seen using a basis of TpM). Hence,

ψ is a smooth group homomorphism from H to Aut(TpM), i.e. a representation of H on TpM .

6



Mareike Pfeil Symmetric spaces 05.07.2016

By Theorem VI 3.9 [Boo86], this guarantees the existence of an inner product on TpM , denoted

by φp, that is H-invariant. Note that for applying this theorem, we need that H is connected

and compact.

Since G acts transitive by assumption, for any q ∈M there is g ∈ G with θg(q) = p. Define

φq(Xq, Yq) := θ∗gφp(Xq, Yq) = φp(dθgXq, dθgYq) ∀Xq, Yq ∈ TqM.

We claim that this gives us a Riemannian metric φ on M with respect to which each θg is

an isometry of M . First, φq is well-defined: Let g1, g2 ∈ G with θg1(q) = p = θg2(q). Then

g−12 g1 ∈ H and hence θg−1
2 g1

φp = φp, so

θ∗g2φp = θ∗g2θ
∗
g−1
2 g1

φp = θ∗g2θ
∗
g−1
2
θ∗g1φp = θ∗g1φp.

Second, for any q ∈M , φq is positive definit, since φp is positive definite and θg is a diffeomorphism.

Further, one checks that φ is G-invariant on M . Let g ∈ G, q1, q2 ∈ M with θg(q1) = q2 and

g1, g2 ∈ G with θgi(qi) = p for i = 1, 2. It holds that g2gg
−1
1 fixes p, so this in an element h

in H. Since φp is H-invariant, φp(dθh(Xp), dθh(Yp)) = φp(Xp, Yp) for all Xp, Yp in TpM , and in

particular φp(dθg2gXq1 , dθg2gYq1) = φp(dθg1(Xq1), dθg1(Yq1)) for Xq1 , Yq1 ∈ Tq1M . As a result, we

find

θ∗gφq2(Xq1 , Yq1) = θ∗gθ
∗
g2φp(Xq1 , Yq1) = θ∗g2gφp(Xq1 , Yq1) = φp(dθg2gXq1 , dθg2gYq1)

= φp(dθg1(Xq1), dθg1(Yq1) = θ∗g1φq2(Xq1 , Yq1) = φq1(Xq1 , Yq1),

so φ is G-invariant on M . Lastly, we need to show that for vector fields X,Y on M the map

M → R, q 7→ φq(Xq, Yq) = φp(dθgXq, dθgYq) with g ∈ G s.t. θ(g, q) = g

is smooth. For that, we have to show that the assignment q 7→ dθgXq is smooth, which is not

clear at first sight, since there are many different choices for g. To fix this, we consider the

natural identification of M with the quotient space:

F : G
/
H →M, gH 7→ θ(g, p),

which is a diffeomorphism and commutes with left-translation on G
/
H (see Talk on Homogeneous

Spaces, Theorem 5). For gH ∈ G
/
H , there is a C∞-section S : V → G defined on a neighbourhood

V of gH such that π ◦ S = idV , where π denotes the projection of G onto G
/
H . Since F is

a diffeomorphism, S̃ := S ◦ F−1 : M → G is a C∞-section into M . The following diagramm

illustrates the situation.

G

π
��

G
/
H

S

OO

F //M

S̃=S◦F−1

aa

7
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Note that the sections S and S̃ are not defined on the whole of G
/
H and M respectively, but

only on some neighbourhoods. For q ∈ M , let q1 ∈ G
/
H be the preimage of q under F , i.e.

F (q1) = q. Then the map S̃ satisfies

θ(S̃(q), p) = θ(S ◦ F−1(F (q1)), p) = θ(S(q1), p) = F (q1) = q,

by the definition of F . Now S̃ is smooth, so also dθS̃(q) depends smoothly on q. Hence by

well-definedness of φq, we can write φq(Xq, Yq) = φp(dθS̃(q)Xq, dθS̃(q)Yq), which depends smoothly

on q. This concludes the proof that φ is a Riemannian metric with respect to which each θg is

an isometry of M .

In the following, we always suppose that H is compact and connected and that the action of

G on M is faithful, i.e. if θ(g,m) = m for all m ∈M , then g = e.

Theorem 3.2. Let G,H, p and M be as above and let α : G→ G be an involutive automorphism

of G with fixed set H. Then

α̃ (θ(g, p)) := θ(α(g), p)

defines an involutive isometry of M onto M with p as isolated fixed point.

Proof. We start with showing that α̃ defines a mapping of M onto itselt. For q ∈M arbitrary,

there is g ∈ G with θ(g, p) = q by transitivity. If g′ is another element of G satisfying θ(g′, p) = q,

then the element h := g−1g′ lies in the stabilizer H of p, which by assumption is also the fixed

set of α. This gives us g′ = gh and α(g′) = α(g)α(h) = α(g)h, so we find

α̃(θ(g′, p)) = θ(α(g)h, p) = θ(α(g), θ(h, p)) = θ(α(g), p).

As a result, α̃ is well-defined. Further, since

α̃2(θ(g, p)) = α̃(θ(α(g), p)) = θ(α2(g), p) = θ(g, p)

for all g ∈ G, α̃2 = idM , so α̃ is involutive. It follows that α̃ is onto.

Now let us assume we already showed that α̃ is C∞, has p as isolated fixed point and that

dα̃ : TpM → TpM equals −I, i.e. dα̃(Xp) = −Xp for all Xp ∈ TpM . Then dα̃ preserves the inner

product φp on TpM :

φp(dα̃(Xp), dα̃(Yp)) = φp(−Xp,−Yp) = φp(Xp, Yp) ∀Xp, Yp ∈ TpM.

Further, for q ∈M , q 6= p, we choose g ∈ G with θ(g, p) = q (which is possible since the action is

transitive). Then

α̃(q) = α̃(θ(g, p)) = θ(α(g), p) = θα(g)
(
θg−1(q)

)
,

so α̃ = θα(g) ◦ θg−1 . Hence dα̃q = dθα(g) ◦ dθg−1 , which are both isometries of tangent spaces. It

follows that dα̃q is an isometry. So once we checked the properties assumed, we know that α̃

8
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is an isometry of M . The smoothness of α̃ can be proven using the natural identification of

M with G
/
H , quite similar to the method we used in the proof of the previous theorem. To

show that the p is an isolated fixed point, we make use of the fact that the exponential map is a

diffeomorphism on some neighbourhood of p. For the details, see [Boo86, p.359f].

Corollary 3.3. Under the assumptions of Theorem 3.2, M is a symmetric space with involutive

isometries σp = α̃ and σq = θg ◦ α̃ ◦ θg−1, where q = θ(g, p).

The proof of this Corollary is immediate, since θg is an isometry.

Now we can consider more complicated examples of symmetric manifolds.

Example 3.4. Let M ⊂ Mat(n × n,R) be the collection of all symmetric, positive definit real

matrices of determinant 1, and G = SL(n,R) the n× n-matrices of determinant 1. Then G acts

on M by θ(g, s) = gsgT . As base point p, we fix the n× n-identity matrix I ∈M . The stabilizer

H of I is given by

H = {g ∈ SL(n,R) | ggT = I} = SO(n,R),

i.e. the orthogonal n× n-matrices. Note that this is a compact connected subgroup of G. We

want to apply Theorem 3.2. An involutive automorphism of G is given by α(g) = (g−1)T . We

have

α(g) = g ⇐⇒ g−1(g−1)T = I ⇐⇒ g ∈ SO(n,R),

so SO(n,R) is also the fixed point set of α. Since the action of G on M is faithful, it remains to

show transitivity. This immediately follows from the fact that any positive definite symmetric

matrix q ∈ M may be written as q = gg−1 = gIg−1 for some g ∈ SL(n,R). By Theorem 3.2

(and its corollary), M is a symmetric space with respect to an SL(n,R)-invariant metric. By

what we know about homogeneous spaces, we can identify

M ∼= SL(n,R)
/
SO(n,R) .

Let us have a closer look at the isometries of M , in particular at the isometry at p = I,

which gives rise to all the other isometries. With notations as before, α̃ : M → M is given by

α̃(θ(g, p)) = (g−1)T pg−1. Now q ∈M can be written as gIgT with g ∈ SL(n,R), so

α̃(q) = α̃(θ(g, I)) = (g−1)T g−1 = (ggT )−1 = q−1,

so α̃ takes any element in M to its inverse. Hence, the only fixed point of α̃ indeed is the identity

I.

A special case of this example is the following.

Example 3.5. Let H = {(x, y) ∈ R2 | y > 0} be the upper half plane in R2. If we identify R2 with

C, then SL(2,R) acts on H by Moebiustransformations:

θ : SL(2,R)×H→ H, θ(M, z) =
az + b

cz + d
with M =

(
a b

c d

)
∈ SL(n,R).
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It is easy to verify that this action is well-defined, transitive and faithful. A Riemannian metric

on H is given by

g(x, y) =

(
1
y2

0

0 1
y2

)
.

One can show that this is invariant under the action of SL(2,R). Hence, SL(2,R) acts on M as

group of isometries. Further, the stabilizer of the point p = i is given by SO(2,R), so we have

H ∼= SL(2,R)
/
SO(2,R) .

A further example is the Grassman manifold G(k, n) consisting of k-planes through the origin

in Rn. Details of this can be found in [Boo86, p.362f].
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