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Introduction

In this paper, we are going to introduce the Farey tessellation. Since it is closely related

to the once-punctured torus, we will start with the construction of a hyperbolic once-

punctured torus. Then, we will get to know tessellations. Intuitively, a tessellation is some

special cover, that is similar to the tiling of a kitchen floor. The Tessellation theorem gives

a connection between the once-punctured torus and a special tessellation of the hyperbolic

plane H2. Subsequently, we get to know the Farey circle packing, a collection of circles in

H2. From this circle packing, we construct the so-called Farey Tessellation and show that

it is indeed a tessellation of H2. Finally, we investigate how we can vary certain parameters

in the construction of this tessellation, such that the result again is a tessellation.

1. The once-punctured torus

The euclidean torus is obtained by gluing the sides of a square, usually the unit square.

If we now consider the one-punctured torus, we just remove one point. Without loss

of generality, this point is the point corresponding to the four vertices glued together.

However, this surface, equipped with the euclidean metric, is not complete, since we can

find a Cauchy-sequence that does not converge.

Fortunately, this is not the only way to construct the once-punctured torus. In this section,

we will glue the sides of a hyperbolic square to obtain a surface equipped with a hyperbolic

metric that is (homeomorphic to) the once-punctured torus. We will later show that it is

complete.
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Figure 1: The sides of the ideal rectangle X with vertices −1, 0, 1 and ∞ can be glued to
obtain a once-punctured torus.

Definition 1.1. A vertex of a hyperbolic polygon is an ideal vertex, if it is at infinity of

H2, i.e. if it lies in R∪ {∞}. A hyperbolic polygon is an ideal polygon, if all its vertices

are ideal.

We consider the ideal polygon X in H2 with vertices at −1, 0, 1 and ∞. We label the

edges with E1, . . . , E4 and orient them as indicated in Figure 1. We now want to glue

opposite edges of X using hyperbolic isometries. There are various ways to do so, we

decide to choose the following gluing isometries:

ϕ1 : E1 → E2, ϕ(z) =
z + 1

z + 2
; ϕ3 : E3 → E4, ϕ(z) =

z − 1

−z + 2
. (1.1)

Then ϕ1 sends −1 to 0 and ∞ to 1, ϕ3 sends 1 to 0 and ∞ to −1. We further set

ϕ2 := ϕ−1
1 and ϕ4 := ϕ−1

3 .

We denote by dX the hyperbolic metric on the polygon X:

dX(p, q) := inf{lhyp(c) | c curve from p to q in X}.

Since X is convex, this is just the restriction of the hyperbolic metric dhyp. Now the

quotient metric space (X̄, d̄X) obtained from the metric space (X, dX) by performing the

edge gluings is a hyperbolic surface, and it is homeomorphic to the once-punctured torus.

Remark. The metric d̄X on the quotient space is defined as follows: Let P̄ , Q̄ ∈ X̄. A

discrete walk from P̄ to Q̄ is a sequence of points ω = P1, Q1, P2, Q2, . . . , Pn, Qn in X such

that Qi and Pi are glued together and P1 corresponds to P̄ , Qn corresponds to Q̄. The
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length of the discrete walk ω is defined as

lX̄(ω) =
n∑
i=1

dX(Pi, Qi).

Then one can prove that

d̄X(P̄ , Q̄) := inf{lX̄(ω) | ω discrete walk from P̄ to Q̄}

defines a semi-metric on X̄. In all cases we consider, it is a metric.

2. Tessellations

In this section, we will first introduce the notion of a tessellation of the hyperbolic plane.

The so-called Tessellation theorem gives a connection between tessellations and surfaces

obtained by gluing polygon edges. Poincaré’s polygon theorem will give us the means to

decide whether such a surface is complete. To explore the meaning of these theorems in

practice, we will apply them to the once-punctured torus considered in Section 1.

Definition 2.1. A tessellation of the hyperbolic plane is a family of tiles (Xi)i∈I , with

some index set I, such that

(i) for all i ∈ I, Xi is a connected polygon in the hyperbolic plane H2;

(ii) any two Xi, Xj are isometric;

(iii) the union of all Xi covers the whole of H2;

(iv) the intersection of Xi and Xj for i 6= j consists only of edges and vertices of Xi

which are also vertices or edges of Xj, i.e. the interiors of Xi, Xj are disjoint;

(v) (Local Finiteness) for all points P ∈ H2 there is ε > 0 such that the hyperbolic ball

Bdhyp(P, ε) meets only finitely many tiles Xi.

Analogously, one can define tessellations of the euclidean space R2 or the sphere S3.

Let now X be a polygon in H2 with edges E1, . . . , E2p grouped in pairs {E2k−1, E2k}
together with gluing isometries ϕ2k−1 : E2k−1 → E2k and ϕ2k := ϕ−1

2k−1. We can extend

each ϕi to an isometry of H2 such that ϕi(X) is on the side of ϕi(Ei) that is opposite of X.

In other words, ϕ maps a point in the interior of X to a point outside of X. For instance,

X could be the ideal rectangle considered in Section 1, with gluing isometries as in (1.1).

Definition 2.2. The tiling group associated to X and gluing isometries ϕi is the group

generated by the ϕi, i.e.

Γ := {ϕ ∈ Isom(H2) | ϕ = ϕil ◦ · · · ◦ ϕi1 with ij ∈ {1, . . . , 2p} ∀j ≤ l}.
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Note that the identity is contained in Γ, as it is the composition of zero gluing maps.

Let dX be the metric on X as before, and let (X̄, d̄X) be the quotient metric space

obtained from X by performing the edge gluings.

Theorem 2.3 (Tessellation theorem). Let X be a hyperbolic connected polygon with

gluing data as above. Suppose that for each vertex of X the angles of X at all vertices that

are glued to a point P ∈ X̄ sum up to 2π
n

for some n > 0 depending on the point P . In

particular, (X̄, d̄X) then is a hyperbolic surface with cone singularities. Suppose further

that (X̄, d̄X) is complete. Then the family of polygons {ϕ(X)}ϕ∈Γ forms a tessellation of

the hyperbolic plane.

Clearly, all ϕ(X) for ϕ ∈ Γ are connected hyperbolic polygons and since all elements

of Γ are hyperbolic isometries, any two of them are isometric. To prove that their union

indeed covers the whole hyperbolic plane, their interiors are mutually disjoint and that

they fulfill the Local Finiteness property requires some more thought. The idea behind

the proof is to start with one tile, namely X, and progressively set one tile after the other

- just as one would do tiling a kitchen floor. Potential problems that have to be ruled out

are that the tiles do not cover all of H2 or that at some point, they overlap.

Definition 2.4. A tile ϕ(X) is called adjacent to X at a point P , if there exists a

sequence ϕi1 , . . . , ϕil of gluing maps such that

ϕij−1
◦ · · · ◦ ϕi1(P ) ∈ Eij ∀ j ≤ l and ϕ = ϕ−1

i1
◦ · · · ◦ ϕ−1

il
.

More generally, two tiles ϕ(X) and ψ(X) are adjacent at P ∈ ϕ(X)∩ψ(X), if ψ−1◦ϕ(X)

is adjacent to X at ψ−1(P ).

Intuitively, the tiles adjacent to X at a point P are just the tiles that are ’neighbours’ of

X and contain P . Let for instance X be the ideal rectangle from Section 1 and let P ∈ E1

be no vertex. Then the only tiles adjacent to X at P are X itself (with gluing isometry

ϕ = id) and ϕ2(X) = ϕ−1
1 (X). Note that here, l = 1 and ϕi1 = ϕ1. The first condition in

the definition of adjacency is satisfied since ϕ1(P ) ∈ E2. For P ∈ int(X), X is the only

tile adjacent to X at P .

Lemma 2.5. There are only finitely many tiles that are adjacent to X at a point P ∈ X.

Proof. See [Bon00, p.137ff].

Corollary 2.6. Under the hypothesis of the Tessellation theorem 2.3, for every P ∈ X,

there is ε > 0 such that the tiles ϕ(X) adjacent to X at P decompose the disk Bd(P, ε) ⊂ H2

into finitely many hyperbolic disc sectors with disjoint interiors.
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Figure 2: To show that a point P is covered by some tile, we progressively set tiles along
the geodesic g connecting P to a base point P0.

Lemma 2.7. Every P ∈ H2 is covered by some ϕ(X) with ϕ ∈ Γ.

Proof. We pick a base point P0 ∈ int(X). Let P ∈ H2 be an arbitrary point and let g be

the unique hyperbolic geodesic joining P0 to P (Figure 2). Denote by P1 the point where

g leaves X. At P1, g enters one of the finitely many tiles that are adjacent to X at P1.

We denote it by ψ1(X). Repeating this process yields a sequence (Pn)n∈N of points on g

and of tiles (ψn(X))n∈N such that g leaves ψn−1(X) and enters ψn(X) at Pn. Note that

ψn is not always uniquely determined, i.e. when g follows an edge seperating two tiles

adjacent to ψn−1(X) at Pn. When g enters a tile ψn(X) and never leaves it, this process

terminates. This happens exactly when P ∈ ψn(X). The proof that this indeed is the

case after finitely many steps makes use of the fact that the interior angles glued together

sum up to 2π
n

, such that (X̄, d̄X) is a hyperbolic surface, and in particular (and this is the

crucial part) uses the compactness of (X̄, d̄X). For details, see [Bon00, p.141ff].

Definition 2.8. ϕ(X) is called canonical tile for P with respect to the base point P0, if

ϕ(X) is adjacent to ψn(X) at P and ψn(X) is the last tile needed to cover g.

In particular, if P is an interior point of ψn(X), then ψn(X) is the only canonical tile

for P .

Lemma 2.9. For every P ∈ H2, there is ε > 0 such that for all P ′ ∈ Bdhyp(P, ε) the

canonical tiles for P ′ are exactly the canonical tiles for P containing P ′.

Sketch of proof. With the notation as before, let P be contained in the tile ψn(X) and let

T be the collection of all the tiles ψi(X) for i = 0, . . . , n and all tiles adjacent to them.

Then for any point Q ∈ g, there is an ε > 0 such that the ball Bdhyp(Q, ε) is contained in

the union
⋃
Y ∈T Y . If we move P to a point P ′ that is close to P (for instance at distance

< ε), then g moves to a geodesic g′ (close to g) joining P0 to P ′ (Figure 2). The tiling

process of g′ only involves tiles of T , so in particular, the final tile ψ′n(X) is adjacent to

ψn(X). If P ∈ int(X), then (choosing ε sufficiently small) also P ′ ∈ int(X) and the claim
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follows. If P lies on an edge of ψn(X), but is not a vertex, there are exactly two tiles

adjacent to ψn(X) at P . Since P ′ is close to P , it lies in one (or both) of these tiles,

and the claim follows. If now P is a vertex of ψn(X), P ′ is not a vertex of ψ′n(X) (for ε

sufficiently small), but is contained in one or two tiles adjacent to ψn(X) at P , regarding

to whether it is interior point of ψ′n(X) or lies on an edge. In any case, the canonical tiles

for P ′ are exactly the tiles adjacent to ψn(X) at P containing P ′.

Lemma 2.10. Let ϕ ∈ Γ and P,Q ∈ int(ϕ(X)). If ϕ(X) is canonical for P it is also

canonical for Q. Further, ϕ(X) is the only canonical tile for P and Q.

Proof. See [Bon00, p.144].

Lemma 2.11. Every tile ϕ(X) is canonical for some P in its interior.

Proof. Assume first that the tile ϕ(X) is canonical for some P in its interior, and let ϕi be

a gluing map. We claim that ϕ ◦ ϕi(X) is canonical for some P ′ in its interior. The tiles

ϕ(X) and ϕ ◦ ϕi(X) meet at an edge ϕ ◦ ϕi(Ei). Let Q be a point on this edge that is not

a vertex. Let P ′ ∈ int(ϕ(X)) be sufficiently close to Q. By Lemma 2.10, ϕ(X) is the only

canonical tile for P ′′, and by Lemma 2.9, ϕ(X) is also canonical for Q. Any canonical tile

for Q now has to be adjacent to ϕ(X). Since Q is not a vertex, the only canonical tiles for

Q are ϕ(X) and ϕ ◦ ϕi(X). Let P ′ be a point in ϕ ◦ ϕi(X). If P ′ is sufficiently close to Q,

again Lemma 2.9 gives that the canonical tile for P ′ has to be ϕ(X) or ϕ ◦ ϕi(X). Since

P ′ /∈ ϕ(X), ϕ ◦ ϕi(X) is canonical for P ′, as we claimed. Since the tile X is canonical for

the point P0, it now follows inductively that any tile ϕ(X) is canonical for some point P

in its interior.

Thanks to all the auxiliary lemmata we have just proven, we are now ready to prove

our main theorem, the Tessellation theorem.

Proof of Theorem 2.3. We already know that the family {ϕ(X)}ϕ∈Γ satisfies (i) and (ii)

from Definition 2.1. By Lemma 2.7 the union of these tiles covers all of H2, so (iii) is

satisfied as well. Note that for applying Lemma 2.7, we make use of the assumptions that

the interior angles sum up to 2π
n

and that the resulting surface is compact. Now suppose

that P ∈ int(ϕ(X)) ∩ int(ϕ′(X)). Then by Lemma 2.10, ϕ(X) = ϕ′(X) since there is a

unique canonical tile for P . In particular, the interiors of ϕ(X) and ϕ′(X) are disjoint,

hence (iv) is satisfied. To prove local finiteness, one consideres one point P ∈ H2. P has

only finitely many canonical tiles, so there exists some ball Bdhyp(P, ε) contained in the

union of these tiles. No other tile ϕ(X) can meet this ball, since otherwise, its interior

would meet the interior of one of the canonical tiles for P . By (iv), this cannot occur. In
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total, the family {ϕ(X)}ϕ∈Γ satisfies (i)-(v) from Definition 2.1, so it forms a tessellation

of H2.

From Theorem 2.3 we know that, whenever a quotient space (X̄, d̄X) as above obtained

from gluing a polygon is complete (and satisfies the angle-sum condition), it gives rise to a

tessellation of H2. Hence, it would be useful to have some easy criterion to check whether

or not such a quotient space is complete. If the polygon X is bounded, then the quotient

space X̄ is compact and hence complete. That is why in the following, we only consider

unbounded polygons with one or several ideal vertices. A criterion to check whether a

quotient space obtained in this way is complete is given by Poincaré’s polygon theorem.

To state it, we first need some notation.

Definition 2.12. A horocircle centered at ζ ∈ R ∪ {∞} is a curve C − {ζ}, where C

is an euclidean circle in H2 tangent to the real line at ζ. A horocircle centered at ∞ is

just a horizontal line. An isometry ϕ of H2 is called horocyclic at ζ if it respects some

horocircle centered at ζ. For ζ = ∞, ϕ then is a horizontal translation z 7→ z + b or a

reflection across at a vertical line z 7→ z̄ + b.

Remark. Since an isometry ϕ of H2 sends generalized (euclidean) circles to generalized

(euclidean) circles, ϕ sends a horocircle centered at ζ to some hororcircle centered at ϕ(ζ).

If ϕ is horocyclic at some ζ ∈ R ∪∞, then it respects every horocircle centered at ζ. This

can easily be seen in the case ζ =∞. For an arbitrary ζ the claim follows from this special

case by applying an isometry of H2 sending ζ to ∞.

Let ζ be an ideal vertex of X, endpoint of the edge Ei. The gluing isometry ϕi sends ζ to

another ideal vertex ϕi(ζ). We denote the element in the quotient space X̄ corresponding

to ζ by ζ̄ and write ζ̄ = {ζ1, . . . , ζk}, meaning that the ideal vertices ζi are glued to ζ̄.

Lemma 2.13. The indexing of the ideal vertices in ζ̄ = {ζ1, . . . , ζk} can be chosen such

that there exist gluing maps ϕij : Eij → Ei′j+1
with Ei′j+1

:= Eij±1
depending on ϕij for

j = 1, . . . , k satisfying

(i) ζj is endpoint of Eij , ζj+1 is an endpoint of Ei′j+1
and ϕij(ζj) = ζj+1;

(ii) the edges Eij and Ei′j adjacent to ζj are disjoint, i.e. ϕij 6= ϕ−1
ij−1

for all 1 < j < k−1;

(iii) exactly one of the following holds:

(a) there is a map ϕik : Eik → Ei′1 such that ϕik sends ζk to ζ1, ζk is an endpoint of

Eik and Eik is not the image Ei′k of ϕik−1
and such that ζ1 is an endpoint of Ei′1

and Ei′1 is not the domain Ei1 of ϕi1 or

(b) each of ζ1, ζk is adjacent to a unique edge of X, namely Ei1 and Eik respectively.
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Figure 3: These horocircles at the vertices of X fulfill the horocircle-condition. The figure
contains an additional edge, the diagonal from 0 to ∞ which we will consider
later on.

Sketch of proof. In the case that any vertex of ζi is adjacent to exactly two edges, the

proof is straight-forward. We start with an arbitrary ζ := ζ1 ∈ ζ̄ adjacent to some edge Ei1

and consider the gluing isometry ϕi1 : Ei1 → Ei′1 . We set ζ2 := ϕi1(ζ1) and go on like this.

As there are only finitely many edges glued to ζ̄ we eventually reach some k with ζk+1 = ζj

for some j ≤ k. If k is the smallest such index, assume that j > 1. It then follows that ζ1

is adjacent to only one edge, contradicting our assumption. Hence j = 1 and we are in

case (iii)(a). The other case, leading to (iii)(b) requires more thought. However, we are

only going to use the first case. For details, see [Bon00, p.170f].

Lemma 2.14. The following properties are equivalent:

(i) Horocircle condition: At each ideal vertex ζ of X, one can choose a horocircle Cζ

centered at ζ such that whenever ϕi : Ei → Ei±1 sends ζ to another ideal vertex ζ ′,

then ϕi(Cζ) = Cζ′.

(ii) Edge cycle condition: For every edge cycle around an ideal vertex ζ̄ = {ζ1, . . . , ζk}
with gluing maps ϕij : Eij → Eij+1

sending ζj to ζj+1 for j = 1, . . . , k, the correspond-

ing composition ϕik ◦ · · · ◦ ϕi1 is horocyclic at ζ1.

Proof. If the horocircle condition is valid, then for any edge cycle around ζ̄ as above, the

composition ϕ := ϕik ◦ · · · ◦ ϕi1 sends ζ1 to itself, in particular it sends Cζ to Cζ , so it is

horocyclic at ζ1.

If on the other hand, the edge cycle condition holds and the gluing data around an

ideal vertex ζ̄ is arranged as above, pick an arbitrary horocircle centered at ζ1. Then

Cζj := ϕij−1
◦ . . . ϕi1(Cζ1) for j ≤ k is a horocircle centered at ζj by construction. One easily

checks that these horocircles fulfill the horocircle condition. Performing this construction

for every ideal vertex proves the claim.
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Figure 4: The images of X under the group Γ form a tessellation of H2.

We are now ready to state the polygon theorem.

Theorem 2.15 (Poincaré’s polygon theorem). Let (X̄, d̄X) be the quotient space obtained

by gluing the edges of a polygon (X, dX) in H2 using gluing maps ϕi : Ei → Ei±1. Then

(X̄, d̄X) is complete if and only if one of the equivalent conditions of Lemma 2.14 is

satisfied.

For the proof, we refer to [Bon00, Chapter 6.8].

To conclude the section on tessellations, we apply our two main theorems on the once-

punctured torus. Let X be the hyperbolic polygon with vertices −1, 0, 1 and∞ considered

in Section 1 with gluing isometries as in (1.1). We show that the horocircle condition from

Lemma 2.14 is satisfied in this case.

Let C∞ be the horizontal line given by Im(z) = 1, and let Cζ be the horocircle centered

at ζ with radius 1
2

for ζ = −1, 0, 1 (Figure 3). Then ϕ1 sends ∞ to 1 and the point

−2 + i ∈ C∞ to 1 + i. Hence, ϕ1(C∞) = C1. A similar computation gives the same result

for the other gluing isometries. So X satisfies the horocircle condition and therefore, by

Poincaré’s polygon theorem, the once-punctured torus (X̄, d̄X) is complete. Since the inner

angle at all ideal vertices of X is 0, we can apply the Tessellation theorem and obtain: The

family {ϕ(X)}ϕ∈Γ, where Γ is generated by the gluing isometries ϕi, forms a tessellation

of the hyperbolic plane (Figure 4).

3. The Farey circle packing and tessellation

In this section, we get to know the Farey circle packing and the corresponding Farey

tessellation and discover that it is closely related to the once-punctured torus. In the

following, X will denote the ideal hyperbolic polygon considered in Section 1.
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Figure 5: The Farey circle packing.

Figure 6: Zooming in on the Farey Circle packing.

For any p
q
∈ Q considered, let p, q be coprime and q > 0. For any such p

q
draw in R2

the circle C p
q

of diameter 1
q2

that is tangent to the x-axis at (p
q
, 0) and lies in the upper

half-plane (Figure 5). We make the following observations:

(i) The circles C p
q

have disjoint interiors.

(ii) C p
q

and C p′
q′

are tangent if and only if pq′ − p′q = ±1. We say that p
q

and p′

q′
form a

Farey pair.

(iii) C p
q
, C p′

q′
and C p′′

q′′
with p

q
< p′′

q′′
< p′

q′
are pairwise tangent to each other if and only if

p′′

q′′
= p

q
⊕ p′

q′
, where p

q
⊕ p′

q′
:= p+p′

q+q′
is called the Farey sum of p

q
and p′

q′
.

The same holds if we consider ∞ = 1
0

= −1
0

and set C∞ := {(x, y) ∈ R2 | y = 1} with

interior points (x, y) with y > 1.

If p
q

and p′

q′
form a Farey pair, i.e. if C p

q
and C p′

q′
are tangent, we now connect (p

q
, 0) and

(p
′

q′
, 0) by a semi-circle. Erasing the circles C p

q
, we are left with a collection of hyperbolic

geodesics that looks similar to the tessellation belonging to the once-puntured torus. We

call this the Farey tessellation of H2 of the hyperbolic plane - even if we do not know

yet if it actually is a tessellation (Figure 7).

Let us get back to the ideal polygon X. We split X along the diagonal from 0 to∞ into

two triangles T+ and T−. By the isometry z 7→ −z̄, both triangles are isometric. Hence,
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Figure 7: Connection the end-points of circles that are tangent to each other, we obtain a
family of geodesics in H2, the so-called Farey-tessellation.

since the family ϕ(X)ϕ∈Γ forms a tessellation of H2, also

T := {ϕ(T+), ϕ(T−)}ϕ∈Γ

forms a tessellation of H2.

Theorem 3.1. T is equal to the Farey tessellation, i.e. its edges are hyperbolic geodesics

joining p
q

to p′

q′
whenever pq′ − p′q = ±1.

For the proof of this theorem, we make use of two lemmata. Remember that ϕ ∈ PSL2(Z)

is the group of linear fractional maps of the form

ϕ(z) =
az + b

cz + d
with a, b, c, d ∈ Z, ad− bc = 1.

Lemma 3.2. Let p
q
, p
′

q′
∈ Q ∪ {∞} form a Farey pair. Then for any ϕ ∈ PSL2(Z), the

points ϕ(p
q
) and ϕ(p

′

q′
) form a Farey pair as well.

Proof. Simple computation.

The pairs {0,∞}, {0, 1} and {1,∞} form Farey pairs, and similar the vertices of T−. It

follows that the endpoints of each edge of T form a Farey pair, since they are all images

of edges of T+ or T− under elements of Γ ⊆ PSL2(Z).

Lemma 3.3. Let g1, g2 be distinct geodesics in H2 whose endpoints form Farey pairs.

Then g1 and g2 are disjoint.

Proof. Let the endpoints of g1 be p1
q1

and
p′1
q′1

with indexing chosen such that p′1q1−p1q
′
1 = 1.

Then

ϕ(z) :=
q1z − p1

−q′1z + p1
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Figure 8: The Farey tessellation together with the corresponding horocircles, which coincide
with the circles forming the Farey circle packing.

sends g1 to the geodesic with endpoints 0 and ∞. Let ϕ(g2) have endpoints p2
q2

and
p′2
q′2

.

Suppose that g1 and g2 meet. Then ϕ(g1) and ϕ(g2) meet as well, in particular ϕ(g2)

crosses the line from 0 to ∞, so p2 and p′2 have different signs, as q2, q
′
2 > 0 by assumption.

From Lemma 3.2 we know that p2
q2

and
p′2
q′2

satisfy the relation p2q
′
2 − p′2q2 = ±1, what is

not possible if p2, p
′
2 have different signs. Hence, g1 and g2 have to be disjoint.

Lemma 3.3 shows that any geodesic whose endpoints form a Farey pair must be an edge

of the Farey tessellation: Since the tiles of T are ideal triangles, their interiors cannot

contain any complete geodesic. If now g is a hyperbolic geodesic whose endpoints form a

Farey pair and g meets an edge g′ of T , then g = g′ by Lemma 3.3. As a result, the edges

of the tessellation T are exactly the complete geodesics whose endpoints form a Farey pair,

so T coincides with the Farey tessellation. This proves Theorem 3.1. The denomination

Farey tessellation is now justified, since it is indeed a tessellation of H2.

Remark. We now may ask if, given the tessellation of H2 corresponding to the once-

punctured torus, we can reconstruct the Farey circle packing. This indeed is possible:

Recall the horocircles C∞, C−1, C0 and C1 from the end of Section 2. Two of these

horocircles meet if and only if they are tangent and this is exactly when their centers are

the ends of an edge of the Farey tessellation. In the tessellation of the hyperbolic plane by

the tiles ϕ(X), ϕ ∈ Γ, the images of these horocircles Cζ for ζ = −1, 0, 1,∞ form a family

of horocircles, all centered at the images of −1, 0, 1 and ∞ under ϕ (Figure 8). These

are points p
q
∈ Q, and, just as their pre-images, two of these hororcircles meet only when

they are tangent, i.e. when their centers are the ends of an edge of the Farey tessellation.

Computing the image of C∞ under an isometry ϕ(z) = az+b
cz+d
∈ PSL2(Z) exactly, one finds

that they are horocircles centered of a
c

with diameter 1
c2

. Hence, this family of horocircles

coincides with the Farey circle packing.
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4. Shearing the Farey tessellation

In Section 1, we glued the ideal polygon X using gluing isometries ϕi as in (1.1). We are

now going to modify these gluing isometries slightly and check if this construction again

gives rise to a tessellation of H2. We start with a basic result from hyperbolic geometry.

Lemma 4.1. Given a triple ζ1, ζ2, ζ3 ∈ R∪ {∞} of distinct points and another such triple

ζ ′1, ζ
′
2, ζ
′
3 ∈ R∪ {∞}, there is a unique isometry of H2 sending each ζi to the corresponding

ζ ′i. Also, at each ζi there is a unique horocircle Ci centered at ζi such that any two Ci, Cj

are tangent to each other and meet at a point of the complete hyperbolic geodesic going

from ζi to ζj.

Proof. For the first part, without loss of generality, we can assume that ζ ′1 = 0, ζ ′2 = 1

and ζ ′3 =∞. The general case then is given by composition of isometries obtained in this

special case. If ∞ /∈ {ζ1, ζ2, ζ3}, an isometry ϕ satisfying ϕ(ζi) = ζ ′i is

ϕ(z) =
z − ζ1

z − ζ3

ζ2 − ζ3

ζ2 − ζ1

.

If one of the ζi is equal to ∞, for instance ζ1 =∞, ϕ can be defined by

ϕ(z) =
ζ2 − ζ3

z − ζ3

.

The cases that ζ2 or ζ3 are equal to ∞ are similar. For the second claim, it suffices to

check for the points 0, 1 and ∞, since by the first part, we can always get back to this

case using a unique hyperbolic isometry. Here, we first consider the horocircle C∞ - it is a

straight line given by the equation Im(z) = k for some k > 0. Since the horocircles C0

and C1 are supposed to be tangent to C∞, we conclude that both have radius k
2
. The only

k for which C0 and C1 are tangent then is k = 1, hence the Ci are uniquely determined.

The point where C∞ and C0 meet clearly lies on the geodesic from 0 to ∞, the same holds

for C∞ and C1. C0 and C1 meet at the point 1
2

+ 1
2
i, which is on the geodesic from 0 to 1

as well.

For any edge of an ideal triangle, we can now by Lemma 4.1 fix a base point, namely

the point where the unique horocircles centered at its endpoints meet.

Recall the hyperbolic polygon X from Section 1 with gluing isometries ϕi as in (1.1).

We can modify the gluing isometries as follows:

ϕ1 : E1 → E2, ϕ(z) =
z + 1

z + a
; ϕ3 : E3 → E4, ϕ(z) =

z − 1

−z + b
. (4.1)
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Until now, we considered the special a = b = 2 and obtained a complete hyperbolic surface.

However, for any a, b ∈ Z, ϕ1 sends the edge E1 going from −1 to ∞ to the edge E2 going

from 0 to 1, similarly ϕ3 sends E3 to E4. We can therefor work with these more general

gluing isometries; in this case, we do not know yet if the resulting surface is complete. We

split X again as in Section 3 and obtain triangles T+ and T−. Using Lemma 4.1, we find

base points on each of the edges of X. The base points Pi on the edges Ei are given as

P1 = −1 + i, P2 =
1

2
+

1

2
i, P3 = 1 + i and P4 = −1

2
+

1

2
i.

One easily checks that for the case a = b = 2, the gluing isometries send base points to base

point. This is why the horocircles corresponding to the tessellation fit nicely side-by-side

(Figure 8). For arbitrary a, b, this property does not hold. To see this, fix a and b. Recall

that ϕ2(z) := ϕ−1
1 (z) = az−1

−z+1
. Then the basepoint of E1 = ϕ2(E2) corresponding to

horocircles of ϕ2(X) is ϕ2(P2) = −1 + i(a− 1). Note that ϕ2(P2) 6= P1 for a 6= 2. Since

E1 is a vertical line, by the formula for hyperbolic distance, we find

dhyp(ϕ2(P2), P1) = | log(a− 1)|.

Seen from the interior of X, ϕ2(P2) is at signed distance s1 := − log(a − 1) to the left

of P1 (compare Figure 9). Since ϕ1 is a hyperbolic isometry, also P2 = ϕ1(ϕ2(P2)) is at

distance |s1| from ϕ(P1). If we consider signed distances, we have to keep in mind that ϕ1

sends the interior of X to the side of E2 that is opposite to X. Hence, as isometries are

orientation-preserving, P2 is at signed distance s1 to the left of ϕ1(P1) seen from outside

of X. Seen from the interior, ϕ1(P1) is at signed distance s1 to the left of P2. Similarly,

the basepoint ϕ4(P4) on E3 determined by ϕ4(X) is at signed distance s3 := log(b− 1) to

the left of P3 and on E4, the base point ϕ3(P3) is at signed distance s3 to the left of P4,

both seen from the interior of X. We now consider any edge E of the partial tessellation

of H2 associated to X and gluing isometries ϕ1, ϕ3. Then E = ϕ(E1) or E = ϕ(E3) for

some element ϕ ∈ Γ, and E seperates the tile ϕ(X) from a tile ψ(X) for some ψ ∈ Γ. If

we transport our considerations from above to the tile ϕ(X), we see that, seen from the

interior of ϕ(X), the base point determined by ψ(X) is at signed distance s1 to the left of

the base point determined by ϕ(X) if E = ϕ(E1) and at signed distance s3 to the left of

the base point determined by ϕ(X) if E = ϕ(E3).

Figure 9 illustrates the case s1 = 0.25 and s3 = −1. We denote the partial tessellation

of H2 obtained in this way by Ts1,s3 . We do not know yet if Ts1,s3 is a tessellation, as it

does not necessarily need to cover the whole of H2. Every tile of Ts1,s3 corresponds to a tile

of the tessellation T = T0,0. To obtain Ts1,s3 from T , we progressively slide all tiles to the

14



Figure 9: If we shear the Farey tessellation according to shear parameters s1 = 0.25 and
s3 = −1, the result is a partial tessellation of H2.

left along te edges by signed distance s1 or s3, according to whether the edge considered is

an image of E1 or E3.

Definition 4.2. The partial tessellation Ts1,s3 is obtained by shearing T according to

the shear parameters s1 and s3.

We can generalize this construction once more by introducing an additional edge E5,

the diagonal from 0 to ∞. As before, we obtain two triangles T+ and T−. We replace T−

by its image under the isometry ϕ5 defined by z 7→ exp−s5 for some shear parameter s5.

Seen from the interior of T+, we slide T− to the left along E5 by distance s5. We obtain a

new ideal polygon X̃ := ϕ5(T−) ∪ T+ (Figure 10).

Starting with this sheared polygon, we construct a partial tessellation of H2 as before,

using the shear parameters s1 and s3. Remember that s1 = − log(a−1) and s3 = log(b−1),

hence a = e−s1 + 1 and b = es3 + 1. For gluing the sides of X̃, we use the isometries

ϕ̃1(z) := ϕ1 ◦ ϕ−1
5 (z) =

es5z + 1

es5z + e−s1 + 1
,

ϕ̃3(z) := ϕ5 ◦ ϕ3(z) = e−s5
z − 1

−z + es3 + 1
.

Lemma 4.3. The images of X̃ under the tiling group Γ̃ generated by ϕ̃1 and ϕ̃3 cover the

whole hyperbolic plane if and only if s1 + s3 + s5 = 0.

Proof. By Poincaré’s polygon theorem 2.15, the quotient space ( ¯̃X, d̄X̃) is complete if

and only if the horocircle condition from Lemma 2.14 holds. The only edge cycle around

an ideal vertex ζ̄ in ¯̃X consists of the vertex ∞̄ = {∞, 1, 0,−e−s5}. The composition
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ϕ̃4 ◦ ϕ̃2 ◦ ϕ̃3 ◦ ϕ̃1 sends ∞ to ∞:

ϕ̃4 ◦ ϕ̃2 ◦ ϕ̃3 ◦ ϕ̃1(∞) = ϕ̃4 ◦ ϕ̃2 ◦ ϕ̃3(1)

= ϕ̃4 ◦ ϕ̃2(0)

= ϕ̃4(−e−s5)

=∞,

so the gluing maps corresponding to this edge cycle are ϕ̃1 : E1 → E2, ϕ̃3 : E3 → E4, ϕ̃2 =

ϕ̃−1
1 : E2 → E1 and ϕ̃4 = ϕ̃−1

3 : E4 → E3. By Poincaré’s polygon theorem 2.15, the quotient

space ˜̄X, d̄X̃ is complete if and only if the composition ϕ̃4 ◦ ϕ̃2 ◦ ϕ̃3 ◦ ϕ̃1 is horocylic at ∞.

Computing the composition explicitly, we find

ϕ̃4 ◦ ϕ̃2 ◦ ϕ̃3 ◦ ϕ̃1(z) = e2(s1+s3+s5)z+ (1 + es3 + es3+s1 + es3+s1+s5 + e2s3+s1−s5 + e2s3+2s1+s5).

Remember that an isometry ϕ is horocyclic at∞ if is a translation z 7→ z+b or a reflection

z 7→ −z̄ + b. The second case cannot occur here, hence the composition map is horocyclic

at ∞ if and only if s1 + s3 + s5 = 0.

Let now s1 + s3 + s5 = 0. Then ( ˜̄X, d̄X̃) is complete by Poincaré’s polygon theorem, and

since X̃ is an ideal quadrangle, it follows by the Tessellation theorem 2.3 that the family

{ϕ(X̃)}ϕ∈Γ̃ forms a tessellation of H2. Conversely, let the images of X̃ under Γ̃ tessellate

H2. By Theorem A.1, the space ( ¯̃X, d̄X̃) is isometric to the quotient (H2
/

Γ̃ , d̄Γ̃) of H2

under the action of Γ̃. Since Γ̃ is a subgroup of PSL2(Z), and elements of PSL2(Z) act

discontinuously on the complete metric space (H2, dhyp), the quotient space (H2
/

Γ̃ , d̄Γ̃)

(and therefor also ( ¯̃X, d̄X̃)) is complete (Lemma A.2). Hence, by Poincaré’s polygon

theorem 2.15 and the considerations above, s1 + s3 + s5 = 0.

Figure 10: Replacing the triangle T− by ϕ5(T
−) with ϕ5(z) = e−s5 , we obtain a new

hyperbolic polygon X̃.
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Figure 11: Using shear parameters s1, s3, s5, we obtain another partial tessellation of H2.
Here, s1 = 0.25, s3 = −0.75 and s5 = 0.25, so by Lemma 4.3 it is not a
tessellation.

Let us recall what we just did. We started with the once-punctured torus from Section

1, that gives rise to a tessellation of H2. We modified the gluing isometries to obtain a

partial tessellation Ts1,s3 , but did not know yet if it covered the whole hyperbolic plane.

Introducing a third shear parameter s5, we just showed that the tessellation corresponding

to shear parameters s1, s3, s5 is complete if and only if the shear parameters sum up to 0.

Hence, we now know infinitely many tessellations of H2, that can all be obtained from our

starting point, the Farey tessellation, by shearing.

A. Appendix

Here, we state (without proof) two properties concerning quotient spaces used above.

They can be found in Chapter 7 of [Bon00].

Theorem A.1. Let the group Γ act by isometries and discontinuously on (H2, dhyp), and

let ∆ be a fundamental domain for the action of Γ, i.e. a connected polygon in H2 such

that all images of ∆ under elements of Γ are distinct and form a tessellation of H2.

Then the space (∆̄, d̄∆) obtained from ∆ by gluing edges is isometric to the quotient space

(H2
/

Γ , d̄hyp) of H2 by the action of Γ.

Lemma A.2. Let Γ be a group acting discontinuously on the complete metric space X.

Then the quotient space (X
/
Γ , d̄X) is complete.
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