
Geodesics

Seminar on Riemannian Geometry
Lukas Hahn

July 9, 2015

1 Geodesics

1.1 Motivation

The general idea behind the concept of geodesics is the generalisation of straight lines in
Euclidian space to Riemannian manifolds. A geodesic will be a constantly paramatrized,
smooth curve on the manifold, that is locally the shortest curve connecting two points with
each other (the latter will be proven in the next talk). They are of great importance in
the further study of Riemannian Geometry, as well as in theoretical physics, in particular in
General Relativity, where they are the trajectories of test objects moving in an non-trivial
spacetime geometry, which replaces the notion of gravitational field in this context.

1.2 Definition and Basics

Throughout, let (M, g) be a Riemannian manifold of dimension n and ∇ the Riemannian
connection.

Definition 1. A parametrized, smooth curve γ : I →M is called geodesic at t0 ∈ I, if

D

dt
(
dγ

dt
) = 0, (1)

at t0 ∈ I. If γ is geodesic at all points t ∈ I, it is said to be geodesic.
If [a, b] ⊂ I, then the restriction γ

∣∣
[a,b]

is called geodesic segment between γ(a) and γ(b).

As outlined in the beginning, the geodesic is parametrized “with constant velocity”:

Lemma 1. Let γ : I → M be a geodesic. Then the lenght of the tangent vecor
∣∣dγ
dt

∣∣ =√
〈dγ
dt
, dγ
dt
〉g is constant.

Proof.
d

dt
〈dγ
dt
,
dγ

dt
〉g = 2〈D

dt

dγ

dt︸ ︷︷ ︸
=0

,
dγ

dt
〉g = 0 (2)
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Therefore,
∣∣dγ
dt

∣∣ = c for some constant c (assumed to be non-zero). Ultimately, we want
to proof, that geodesics minimize the following quantity

Definition 2. The value

s(t) =

∫ t

t0

∣∣∣∣dγ(t)

dt

∣∣∣∣ dt = c(t− t0) (3)

is called arc length of γ. It is proportional to the parameter of the geodesic.
By setting the value of c = 1, γ is said to be normalized.

To study geodesics, it turns out to be helpful to analyse their properties in local coordi-
nates (U,x) and setting γ(t) = (x1(t), ..., xn(t)). By application of the definition above one
gets

D

dt
(
dγ

dt
) =

∑
k

(
d2xk
dt2

+
∑
i,j

Γkij
dxi
dt

dxj
dt

)
∂

∂xk
= 0, (4)

which is only satisfied, if

d2xk
dt2

+
∑
i,j

Γkij
dxi
dt

dxj
dt

= 0, (5)

for all k. This ordinary, non-linear, second order Differential Equation (sometimes called
“Geodesic Equation”) provides use the powerful tool of the whole theory of differential equa-
tions to study further properties of geodesics, in particular their existence and uniqueness.
To do that, it is convenient to transform the second order equation to a system of two first
order equations by going into the tangent bundle TM . Additionally, one can compute the
geodesics at least in local coordinates, by computing the Christoffel symbols and solving
these equations, however this is often connected to long calculations (for the torus see e.g.
http://www.rdrop.com/ half/math/torus/torus.geodesics.pdf). But first we can consider the
most simple example:

• Let (M, g) be three dimensional Euklidian space together with the standard metric
(R3, geuklic.)

In local coordinates we have

gij =

1 0 0
0 1 0
0 0 1

 (6)

and by using the expression in local coordinates for the Christoffel Symbols

Γkij =
1

2

∑
k

(
∂

∂xi
gjk +

∂

∂xj
gki −

∂

∂xk
gij

)
gmk (7)

we see, that all Christoffel symbols vanish. Therefore the geodesic equation yields
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d2xk
dt2

= 0 ∀k (8)

with the solution (considering again γ)

γ(t) = vt+ p. (9)

This can be generalized to Rn of course, so the geodesics defined in the above way
really have the properties that we want, because in Euklidian space the straight lines
are the curves that minimize arc length and are parametrized with constant velocity.
The same argument would hold for Minkowskian space and gMink..

If

γ : I → U ⊂M (10)

t 7→ γ(t) (11)

is a geodesic, then the curve

γ : I → TU (12)

t 7→ (x1(t), ...xn(t),
dx1(t)

dt
, ...,

dxn(t)

dt
), (13)

satisfies the system of ordinary, first order, non-linear differential equations

dxk
dt

= yk (14)

dyk
dt

= −
∑
ij

Γkijyiyj (15)

for all k, where (x1, ..., xn, y1, ...yn) are local coordinates on TU (remember, that if
dim(M) = n⇒ dim(TM) = 2n). With this in mind, we get the important Lemma

Lemma 2. There exists a unique vectorfield G : TM → T (TM) on TM , such that the
integral curves of G are given by geodesics γ on TM .

Proof. Define the vector field on TU for U ⊂M a chart, as (remember ( ∂
∂x1
, ..., ∂

∂xn
, ∂
∂y1
, ... ∂

∂yn
)

is locally a basis for TU)

G =
∑
k

(
yk

∂

∂xk
− Γkijyiyj

∂

∂yk

)
. (16)

For each component, it is satisfying the system of first order equations (14) and (15),
therefore the integral curves are geodesics in TU (12), so G exists. Since it exists, it is unique
because of the uniqueness of solutions of differential equations of the type (14) and (15).
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Definition 3. The vector field G is called geodesic field on TM and its flow geodesic
flow on TM.

The next step is, upon use of a theorem from the theory of ordinary differential equations,
to proof the uniqueness of the geodesics on M . Remember the theorem from the first talk

Theorem 1. If X is a C∞ vector field on the open set V ⊂M and p ∈ V then there exists a
open set V0 ⊂ V , p ∈ V0, a number δ > 0, and a C∞ mapping (the flow) ϕ : (−δ, δ)×V0 → V ,
such that the curve t 7→ ϕ(t, q), t ∈ (−δ, δ), is the unique integral curve of X which at t = 0
passes through q, for all q ∈ V0.

By use of this Theorem and setting X = G, as well as define the composition γ = π ◦ ϕ
of the flow and the canonical projection of the bundle, we end up with the uniqueness of
geodesics globally on M at least in some intervall Iv = (−δ, δ) and for |v| < ε with numbers
δ > 0 and ε > 0 (for details see: do Carmo). Additionally we have the Lemma

Lemma 3 (Homogeneity of Geodesics). Let

γ : (−δ, δ)→M (17)

t 7→ γ(t, q, v) (18)

be a geodesic. Then

γ : (−δ
a
,
δ

a
)→M (19)

t 7→ γ(t, q, av) a ∈ R> (20)

is a geodesic and γ(t, q, av) = γ(at, q, v).

Proof. Define h : (− δ
a
, δ
a
)→M as a curve with t 7→ γ(at, q, v). It is

h′(t) = aγ′(at, q, v), h(0) = q, h′(0) = av. (21)

By applying the connection

D

dt
(
dh

dt
) = ∇h′(t)h

′(t) = a2∇γ′(at,q,v)γ
′(at, q, v) = 0 (22)

Therefore, h is a geodesic which passes through q with velocity av at t = 0. It follows
from the uniqueness, that h(t) = γ(at, q, v) = γ(t, q, av).

The final result can be stated as follows

Theorem 2 (Existence and Uniqueness of Geodesics). Let (M, g) be a Riemannian Manifold
with Riemannian connection ∇.
For all p ∈ M and v ∈ TpM there exists an open intervall Iv with 0 ∈ Iv and a geodesic
γv : Iv →M , such that γv(0) = p and dγv

dt
(0) = v.

If γ1 : I1 → M and γ2 : I2 → M with γ1(t0) = γ2(t0) and dγ1

dt
(t0) = dγ2

dt
(t0) for some

t0 ∈ I1 ∩ I2, then γ1(t) = γ2(t) for all t ∈ I1 ∩ I2.
For each v ∈ TM there is a maximal intervall Iv and maximal geodesic γv : Iv → M with
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dγv
dt

(0) = v.
If a ∈ R− {0}, γv : Iv →M and γav : Iav →M , then

γav(t) = γv(at) Iav =
1

a
Iv (23)

Definition 4. If γ : R→M is a geodesic defined on whole R, i.e. Iv = R, (M, g) is said to
be geodesically complete.

Remark 1. If f : (M, g)→ (N, g′) is a local isometry, i.e. a local diffeomorphism, such that
for two tangent vectors v, w ∈ TpM 〈v, w〉g = 〈df(v), df(w)〉g′, then

γ : I →M is a geodesic ⇐⇒ f ◦ γ : I → N is a geodesic. (24)

Example 1. M = D2 − {0} and N = S1 × [0, 1]

/
S1 × 1 = Cone

Figure 1: Geodesics on the cone; soure: Lecture notes on Differential Geometry (C.Baer)

There is another useful theorem, which provides the possibility of using isometries in
order to determine geodesics globally:

Theorem 3. Let (M, g) be a Riemannian manifold and f ∈ Isom(M, g) be an isometry.
Then is for p ∈ Fix(f) (the fixed point set) and v ∈ TpM with df(v)

∣∣
p

= v, the geodesic γ

with starting conditions γ(0) = p and d
dt
γ(0) = v completely contained in Fix(f).

Proof. Let γ̃(t) := f ◦ γ(t), which is also a geodesic, since f is in particular a local isometry.
The initial conditions are

γ̃(0) = f(γ(0)) = f(p) = p = γ(0) (25)

and
d

dt
γ̃(0) = df(

d

dt
γ(0))

∣∣
γ(0)

= df(v)
∣∣
p

= v =
d

dt
γ(0), (26)

so by uniqueness of geodesics we have

γ(t) = γ̃(t) ∀t ∈ I. (27)
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Example 2. Let M = S2 with the standard metric, p ∈ S2 and v ∈ TpS2 like in the picture
and E ⊂ R3 like in the picture. Let A be the map, which maps every p ∈ R3 to its mirror
image with respect to E. The restriction

f = A
∣∣
S2 (28)

is clearly an isometry of S2. Since Fix(f) = E ∩S2 all geodesics γ are fully contained in
the great circles of S2. After a suitable parametrization of the great circles and a look over
the initial conditions, one ends up with the following expression for the geodesics on S2

γ(t) = p · cos(|v|t) +
ϕp(v)

|v|
· sin(|v|t) (29)

Figure 2: Geodesics on the sphere S2; source: Lecture notes on Differential Geometry (C.
Baer)

1.3 The Exponential Map

Definition 5. Let p ∈M and U ⊂ TM with |v| < ε (so that we stay in the maximal intervall
on which the geodesic is defined; this can always be achieved by homogeneity).
The map exp : U →M defined by

exp(p, v) = γ(1, p, v) = γ(|v|, p, v
|v|

) (p, v) ∈ U , (30)

is called exponential map on U .

It can be viewed as π ◦ ϕt=1 and is therefore, as a composition of smooth maps, smooth.
Intuitively, it takes a tangent vector v ∈ TpM on a point p ∈ M and shifts it along the
geodesic, which is uniquely determined by this initial conditions. It moves the vector for a
unit “time” (the actual length is determined by the normalisation) or equivalently, by unit
“speed” and a certain time, given by homogeneity. It will turn out to have very interesting
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properties and will be of great importance later.

Most of the time, we will consider the restriction of exp to an open subset of the tangent
space TpM for some point p ∈M . Define:

expp : Bε(0) ⊂ TpM →M (31)

expp(v) 7→ exp(p, v), (32)

where Bε(0) is an open ball around 0 with radius ε. It is clear, that expp(0) = p.

Example 3. (M, g) = (Rn, geukl.). The exponential map is given by

expp(v) = p+ ϕp(v) (33)

and is defined on the complete tangent space. However, there are also examples for which
the latter is not true, e.g. (M, g) = (R− {0}, geukl.).

Proposition 1. For p ∈ M there is an ε > 0, s.t. expp : Bε(0) ⊂ TpM → M is a
diffeomorphism onto an open subset of M

expp
∣∣
Bε(0)

: Bε(0)→ expp(Bε(0)). (34)

Proof. Consider the differential of exp:

d(expp)(v)
∣∣
0

=
d

dt
(expp(0 + tv))

∣∣
t=0

=
d

dt
(γ(1, p, tv))

∣∣
t=0

=
d

dt
(γ(t, p, v))

∣∣
t=0

= v. (35)

Therefore, the map d(expp)
∣∣
0

: T0TpM→̃TpM is just the identity on TpM , d(expp)
∣∣
0

= idTpM .
The statement of the proposition follows from the inverse function theorem.

Remark 2. In order for the inverse function theorem to be applicable, we need d(expp) to
be invertible. Since this is not true in general, expp is in general not a diffeomorphism.

Example 4. Let M = S2 with the standard metric. The exponential map is given by

expp(v) = p · cos(|v|) +
ϕp(v)

|v|
· sin(|v|) (36)

and for all v ∈ TpM with |v| = π we have

expp(v) = p · cos(π) = −p (37)

where −p is the antipodal point of p on S2. Therefore, exp is not injective and in partic-
ular no diffeomorphism.
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Figure 3: Exponential map on the sphere S2; source: Lecture notes on Differential Geometry
(C. Baer)

1.4 Minimizing Properties of Geodesics (Part I)

In this part we introduce the standard definitions and some tools in order to study the min-
imizing properties of geodesics, mentioned in the beginning. This chapter will be continued
in the next talk.

Definition 6. Let [a, b] ⊂ R be a closed intervall. A continuous mapping c : [a, b] → M is
called piecewise differentiable curve, if it satisfies the condition:
There exists a partition

a = t0 < t1 < ... < tk−1 < tk = b (38)

of [a, b], s.t. the restrictions c
∣∣
[ti,ti+1]

are differentiable for i = 0, ..., k − 1. The points on

the curve c(ti) are called vertices of c and the angle between limt↗ti c
′(t) and limt↘ti c

′(t) is
called the vertex angle at c(ti).

This can be depicted as

Figure 4: Piecewise differentiable curve and vertex angle
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Remark 3. The definition of geodesics and parallel transport can be easily generalized to
piecewise differentiable curves, by just extending the vectorfields along the smooth segments
of c.

Definition 7. A segment of a geodesic γ : [a, b]→M is called minimizing, if s(γ) ≤ s(c)
for each piecewise differentiable curve, joining γ(a) and γ(b).

Definition 8. Let A be a connected, closed set in R2 and U ⊂ A ⊂ Ū with U open in R2,
s.t. the boundary ∂A is a piecewise differentiable curve with vertex angles different from π.
A parametrized surface in M is a differentiable mapping s : A ⊂ R2 →M .
A vectorfield along s is a map p ∈ A 7→ V (p) ∈ Ts(p)M , s.t. p 7→ V (p)◦f is differentiable,
if f is differentiable.

By investigation of this setup in local coordinates, we will get a property of the covariant
derivative along certain vector fields, that will be needed in the proof of the very important
Gauss Lemma:

Let (u, v) be local (cartesian) coordinates on R2. The mapping u 7→ s(u, v0) for fixed v0
is a curve in M and the differential ds( ∂

∂u
) := ∂s

∂u
is a vector field along the curve. This can

be done for all v0 ∈ R and therefore ∂s
∂u

is a vectorfield along s. Likewise, we can define the
vectorfield ∂s

∂v
along s.

For these vectorfields, we define the covariant derivate DV
∂u

(or DV
∂v

) like this:
DV
∂u

(u, v0) is the covariant derivative along the curve u 7→ s(u, v0) of the restriction of some
vector field along this curve. Again, this defines the covariant derivative for all (u, v) ∈ A.

The Lemma needed for the Gauss Lemma is the following:

Lemma 4 (Symmetry). Let M be a Riemannian manifold with a symmetric connection and
s : A→M a parametrized curve. Then

D

∂v

∂s

∂u
=

D

∂u

∂s

∂v
. (39)

Proof. Let ϕ : U ⊂ Rn → M be a chart on M . We can write the local coordinates of this
chart in terms of the parametrization of the surface as

ϕ−1 ◦ s(u, v) = (x1(u, v), ..., xn(u, v)). (40)

Application of the covariant derivative D
∂v

to ∂s
∂u

yields

D

∂v

∂s

∂u
=
D

∂v

(∑
i

∂xi

∂u

∂

∂xi

)
=
∑
i

∂2xi

∂v∂u

∂

∂xi
+
∑
i

∂xi

∂u
∇∑

j

(
∂xj

∂v

)
∂

∂xj

∂

∂xi

=
∑
i

∂2xi

∂v∂u

∂

∂xi
+
∑
i,j

∂xi

∂u

∂xj

∂v
∇ ∂

∂xj

∂

∂xi
. (41)

By using the symmetry of the connection this is equal to the similar evaluation of D
∂u

∂s
∂v

.
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