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Notation: X(M) space of smooth vector fields on M
D(M) space of smooth functions on M
∂i = ∂

∂xi natural basis vector fields
Xi components of the vector field X =

∑
i X

i ∂i

Motivation and Outline
The aim of this talk is to introduce the concept of parallel transport for Riemannian
manifolds. In general, the result of a parallel transport will not only depend upon the
initial and final point, but also upon the path between them. Therefore, what we are
looking for is a way to locally identify vectors at different tangent spaces along a curve
(a so-called connection). Conceptionally, this is related to having a way to derive vector
fields along curves or, (as we will see) equivalently, with respect to vectors: We could then
define a vector field to be locally constant if and only if its derivative is constantly zero.

However, for a general manifoldM there is a-priori no canonical way to identify vectors
at different tangent spaces and at the same time there is no way to derive vector fields along
curves. In the case of submanifolds of Rn we could just propose to derive each component
individually. The problem is, that the resulting vector might not lie in the appropriate
tangent space, whereas for general manifolds we do not know what non-tangent vectors
shall be. We would solve the problem by projecting the resulting vector onto the tangent
space, but there are infinitely many ways to project a vector onto a subspace of a vector
space. However, in the case of the euclidean Rn there is one distinguished projection:
the orthogonal projection. At the very end of this talk, we will prove that introducing
a Riemannian structure indeed gives rise to a distinguished linear connection, once two
natural conditions are imposed:

• One of which deals with the symmetry of the yet-to-define Christoffel symbols. It
can be justified by the desire that the locally shortest lines always be straight.
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• The other one has to do with the compatibility of the connection with the metric: We
expect a pair of vectors to keep its scalar product constant when parallel-transported
along a curve.

In order to find a definition for a linear connection, we will borrow some properties from
a similar concept – the Lie derivative. We will then examine why the Lie derivative is not
what we are looking for and strengthen one condition. Remember

∀X,Y ∈ X(M) : LXY (p) ≡ [X,Y ](p) =
∑
i,j

(
Xj∂jY

i − Y j∂jX
i
)∣∣∣

p
∂i(p) .

It subjects to the following properties:
• R-linearity in X,

• R-linearity in Y ,

• Leibniz rule: LX(fY ) = X(f)Y + f LXY .
Note the occurrence of the term ∂jX

i: The Lie derivative applies the differential to com-
pare the values of Y :

LXY (p) = lim
t→0

dΦ−t|Φt(p) · Y (Φt(p))− Y (p)
t

,

where {Φt}t is the one-parameter local group of diffeomorphisms generated by X. The
differential turns the vectors Y (Φt(p)) as the representing curves are turned. But we want
to carry over the vectors Y (Φt(p)) ‘unturned’ by parallel-transport. Therefore, the value of
the derivative ∇XY (p) should only depend upon X(p). We express this by strengthening
the first condition to D(M)-linearity (X(M) is at the same time an R-vector space and a
D(M)-module).

Affine connections
Definition 1. An affine connection ∇ on a smooth manifold M is a mapping affine connec-

tion
∇ : X(M)× X(M) −→ X(M)

(X,Y ) 7−→ ∇XY

subject to the properties:

∇fX+gY Z = fLXZ + g∇Y Z (D(M)-linearity in the first argument)
∇X(αY + βZ) = αLXY + β∇XZ (R-linearity in the second argument)

∇X(fY ) = f∇XY +X(f)Y (Leibniz rule) ,

where X,Y, Z ∈ X(M), f, g ∈ D(M).

2



Remark 2. To an affine connection there are associated smooth functions Γk
ij := (∇∂i

∂j)k ∈
D(M), the so called Christoffel symbols. By the linearity properties, they determine the Christoffel

symbolsconnection ∇ completely:

(∇XY )k = X(Y k) +
∑
i,j

Γk
ijX

iY j =
∑

i

(
∂jY

k +
∑

j

Γk
ijY

j
)
Xi .

The Christoffel symbols are not the components of a tensor field! It can be shown1 that
under a coordinate change they obey the transformation law

Γ′k′
i′j′ =

∑
i,j,k

∂x′k
′

∂xk

∂xi

∂x′i′
∂xj

∂x′j′ Γk
ij︸ ︷︷ ︸

transf. law for tensors

+
∑

l

∂x′k
′

∂xl

∂2xl

∂x′i′∂x′j′ .

In the sequel, let M denote a smooth manifold with a given affine connection ∇.
Looking for a way to derive vector fields V along a curve c : t 7−→ c(t), one would like

to define DV
dt := ∇ċV . However, globally not every vector field along c is the restriction of

a vector field on M . Nevertheless, if linearity is required, this defines D
dt uniquely, as by a

choice of coordinates every vector field along c can be written as a linear combination of
vector fields on M :

Proposition 3. There is a unique way of associating to a vector field V along a differ- covariant
derivativeentiable curve c : I −→M another vector field DV

dt along c such that

D

dt
(αV + βW ) = α

DV

dt
+ β

DW

dt
(R-linearity)

D

dt
(fV ) = ḟV + f

DV

dt
(Leibniz rule)

if V (t) ≡ Y (c(t)): DV

dt
= ∇ċY .

Proof. Uniqueness: Introduce coordinates around every point of c(I) and write (c(t))i =
xi(t), V =

∑
j V

j∂j with V j , ∂j regarded as depending on the curve parameter t. By the
above properties, write this as

DV

dt
=
∑

j

(
V̇ j∂j +

∑
i

ẋiV j ∇∂i
∂j

)
.

Use this local expression to show existence; by uniqueness, this does not depend upon the
choice of coordinates.

Definition 4. A vector field V along a differentiable curve c : I −→ M is called parallel
iff DV

dt ≡ 0.

Proposition 5. Let c : I −→ M be a differentiable curve, V0 ∈ Tc(t0)M . Then there
exists a unique parallel vector field V along c such that V (t0) = V0; V (t) is called the parallel trans-

portparallel transport of V (t0) along c.

Lemma 6 (global Picard–Lindelöf theorem). E Banach space, f : [a, b]×E → E contin-
uous and globally Lipschitzian in the second variable; Then for each y0 ∈ E there exists a
global solution to the Cauchy problem

ẏ(t) = f(t, y(t)), y(0) = y0 ,

and there are no further local solutions.
1Yvonne Choquet-Bruhat, Introduction to General Relativity, Black Holes and Cosmology, Oxford

University Press 2015, p. 19
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Proof of the proposition. By a compactness argument, it suffices to show existence and
uniqueness within the domain of a chart. Adapt the above notation and write V0 =∑

j(V0)j∂j(c(t0)).
To show uniqueness, suppose that there exists a V with the desired property. It follows

that
0 = DV

dt
=
∑

j

(
V̇ j∂j +

∑
i

V j ẋi∇∂i
∂j

)
=
∑

k

(
V̇ k +

∑
i,j

Γk
ij ẋ

iV j
)
∂k

=⇒ ∀k : 0 = V̇ k +
∑
i,j

Γk
ij ẋ

iV j .

By the global Picard–Lindelöf theorem, this system of differential equations possesses a
global unique solution which satisfies the initial conditions V k(t0) = (V0)k:

f(t,V) := −
∑
i,j,k

Γk
ij(c(t)) ẋi(t)Vk ek

is Lipschitzian in the second argument since t 7−→ Γk
ij(c(t)) ẋi(t) is bounded.

Riemannian Connections
In the sequel, M is assumed to be Riemannian.

Definition 7. ∇ is said to be compatible with 〈·, ·〉 iff 〈P, P ′〉 = const for any two parallel
vector fields P, P ′ along a smooth curve c.

Proposition 8. ∇ is compatible with 〈·, ·〉 iff for all vector fields V,W along c : I →M

d

dt
〈V,W 〉 ≡

〈DV
dt

,W
〉

+
〈
V,
DW

dt

〉
.

Corollary 9. ∇ is compatible with 〈·, ·〉 iff ∀X,Y, Z ∈ X(M) :

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 .

Proof of the proposition. ⇐=: obvious; =⇒: By t0 ∈ I choosing an orthonormal basis
{Pi(t0)}ni=1 of Tc(t0)M and extending it to an orthonormal basis {Pi(t)} of Tc(t)M for each
t, V =

∑
i V

iPi and DV/dt =
∑

i V̇
iPi (the same for W ) and thus

d

dt
〈V,W 〉 = d

dt

∑
i

V iW i =
∑

i

(
V̇ iW i + V iẆ i

)
=
〈DV
dt

,W
〉

+
〈
V,
DW

dt

〉
.

Definition 10. ∇ is said to be symmetric iff

∀X,Y ∈ X(M) : ∇XY −∇Y X ≡ [X,Y ] ⇐⇒ Γk
ij ≡ Γk

ji .

Theorem 11 (Levi-Cività). There exists a unique linear connection ∇ on M – the
Riemannian or Levi-Cività connection – s.t. ∇ is symmetric and compatible with 〈·, ·〉. Levi-Cività

connection
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Proof. Uniqueness:

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 ,

Y 〈Z,X〉 = 〈∇Y Z,X〉+ 〈Z,∇Y X〉 ,

−Z〈X,Y 〉 = −〈∇ZX,Y 〉 − 〈X,∇ZY 〉 ,

X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 = 〈[X,Z], Y 〉+ 〈[Y,Z], X〉

+〈[X,Y ], Z〉+ 2〈Z,∇Y X〉 .

It follows the Koszul formula:

〈Z,∇Y X〉 = 1
2
{
X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉

−〈[X,Z], Y 〉 − 〈[Y, Z], X〉 − 〈[X,Y ], Z〉
}

.

Existence: Use the Koszul formula as definition.

From the Koszul formula follows

〈∂k,∇∂i
∂j〉 = 1

2 {∂i〈∂j , ∂k〉+ ∂j〈∂k, ∂i〉 − ∂k〈∂i, ∂j〉 ± 〈0, . . . 〉 . . . }

and thus
Γk

ij = 1
2
∑

k

gkm {∂igjk + ∂jgki − ∂kgij} .
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