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1. Normal spheres 

In the sequal, we understand the tangent space to 𝑇𝑃𝑀 at 𝑣 ∈ 𝑇𝑝𝑀 as 𝑇𝑃𝑀 itself. 

Lemma 1 (Gauss). Let 𝑝 ∈ 𝑀, 𝑣 ∈ 𝑇𝑝𝑀 s. t. 𝑒𝑥𝑝𝑝𝑣 is defined. Let 𝑤 ∈ 𝑇𝑣𝑇𝑝𝑀. Then 

〈(𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣), (𝑑𝑒𝑥𝑝𝑝)𝑣(𝑤)〉 =  〈𝑣, 𝑤〉. 

 

Proof. Recall that  

(𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣): 𝑇𝑝𝑀 → 𝑇𝑣𝑒𝑥𝑝𝑝𝑀, whereas, 𝑇𝑣𝐵𝜀(0) ⊂ 𝑇𝑣𝑇𝑝𝑀 ≅ 𝑇𝑃𝑀. 

We shall prove this lemma in three steps. 

(i) 〈(𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣), (𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣)〉 =  〈𝑣, 𝑣〉. 

(ii) 〈(𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣), (𝑑𝑒𝑥𝑝𝑝)𝑣(𝑤𝑁)〉 = 0, where w = 𝑤𝑇 + 𝑤𝑁 . 

(iii) 
𝜕

𝜕𝑡
〈

𝜕𝑓

𝜕𝑡
,
𝜕𝑓

𝜕𝑠
〉=0. 

 

(i) (𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣) = 𝑣. 

Let u be a curve in TpM, u : ℝ ⊃ I → 𝑇𝑝M , such that 𝑢(0) ∶= 𝑣 ∈ 𝑇𝑣𝑇𝑝𝑀 ≅ 𝑇𝑃𝑀. 

Choose 𝑢(𝑡) = 𝑡𝑣 among its equivalent classes, namely 𝑣̃(𝑡) = 𝑣(𝑡 +
𝛼), 𝑤ℎ𝑒𝑟𝑒 𝛼 ∈ ℝ. With this construction, 

〈(𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣), (𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣)〉 = 〈
𝑑

𝑑𝑡
(𝑒𝑥𝑝𝑝(𝑣))|

𝑡=0
,

𝑑

𝑑𝑡
(𝑒𝑥𝑝𝑝(𝑣))|

𝑡=0

〉

= 〈
𝑑

𝑑𝑡
(𝛾(𝑡, 𝑝, 𝑣))|

𝑡=0
,

𝑑

𝑑𝑡
(𝛾(𝑡, 𝑝, 𝑣))|

𝑡=0

〉 = 〈𝑣, 𝑣〉. 

We now separate 𝑤 into its tangential, and normal component to 𝑣. 



 

(ii) 〈(𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣), (𝑑𝑒𝑥𝑝𝑝)𝑣(𝑤𝑁)〉 = 0 

We define the curve 𝑢 as 𝑢: [−𝜀, 𝜀] × [0, 1] → 𝑇𝑝𝑀, (𝑠, 𝑡) ↦ 𝑡𝑣 + 𝑡𝑠𝑤𝑁. 

It follows, 𝑢(0,1) = 𝑣,
𝜕𝑢

𝜕𝑡
(𝑠, 𝑡) = 𝑣 + 𝑠𝑤𝑁,

𝜕𝑢

𝜕𝑠
(0, 𝑡) = 𝑡𝑤𝑁 . 

Furthermore, we consider the parametrized surface 

𝑓: [−𝜀, 𝜀] × [0, 1] → 𝑀, (𝑠, 𝑡) ↦ 𝑒𝑥𝑝𝑝(𝑡𝑣 + 𝑡𝑠𝑤𝑁). 

Under this construction; 

(𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣) = (𝑑𝑒𝑥𝑝𝑝)𝑢(0,1) (
𝜕𝑢

𝜕𝑡
(0,1)) =

𝜕

𝜕𝑡
𝑒𝑥𝑝𝑝 ∘ 𝑢(𝑠, 𝑡)|

𝑡=1,𝑠=0

=
𝜕𝑓

𝜕𝑡
(0,1), 

 

(𝑑𝑒𝑥𝑝𝑝)𝑣(𝑤𝑁) = (𝑑𝑒𝑥𝑝𝑝)𝑢(0,1) (
𝜕𝑢

𝜕𝑠
(0,1)) =

𝜕

𝜕𝑠
𝑒𝑥𝑝𝑝 ∘ 𝑢(𝑠, 𝑡)|

𝑡=1,𝑠=0

=
𝜕𝑓

𝜕𝑠
(0,1), 

Hence,  

〈(𝑑𝑒𝑥𝑝𝑝)𝑣(𝑣), (𝑑𝑒𝑥𝑝𝑝)𝑣(𝑤𝑁)〉 = 〈
𝜕𝑓

𝜕𝑡
,
𝜕𝑓

𝜕𝑠
〉 (0,1). 

(iii) 
𝜕

𝜕𝑡
〈

𝜕𝑓

𝜕𝑡
,

𝜕𝑓

𝜕𝑠
〉|

(0,𝑡)
= 0 

 

We are verifying that the above scalar product is actually independent on the 

variable t, so that we can conclude that 〈
𝜕𝑓

𝜕𝑡
,

𝜕𝑓

𝜕𝑠
〉 (0,1) = 0  through the 

property lim
𝑡→0

𝜕𝑓

𝜕𝑠
(0, 𝑡) = lim

𝑡→0
(𝑑𝑒𝑥𝑝𝑝)𝑡𝑣(𝑡𝑤𝑁) = 0. 

Since the map t ↦ f(s, t)  is geodesic for all s and t, 
𝜕

𝜕𝑡
〈

𝜕𝑓

𝜕𝑡
,

𝜕𝑓

𝜕𝑠
〉 =

〈
𝐷

𝜕𝑡

𝜕𝑓

𝜕𝑡
,

𝜕𝑓

𝜕𝑠
〉 + 〈

𝜕𝑓

𝜕𝑡
,

𝐷

𝜕𝑡

𝜕𝑓

𝜕𝑠
〉 = 〈

𝜕𝑓

𝜕𝑡
,

𝐷

𝜕𝑠

𝜕𝑓

𝜕𝑡
〉 =

1

2

𝜕

𝜕𝑠
〈

𝜕𝑓

𝜕𝑡
,

𝜕𝑓

𝜕𝑡
〉. 

 

And since the map t ⟼ f(s, t)  is geodesic, the function t ↦ 〈
𝜕𝑓

𝜕𝑡
,

𝜕𝑓

𝜕𝑡
〉  is 

constant. Thus 
𝜕

𝜕𝑠
〈

𝜕𝑓

𝜕𝑡
,

𝜕𝑓

𝜕𝑡
〉|

𝑠=0
=

𝜕

𝜕𝑠
〈𝑣 + 𝑠𝑤𝑁 , 𝑣 + 𝑠𝑤𝑁〉|

𝑠=0
= 2〈𝑣, 𝑤𝑁〉 = 0. 

 (i),(ii), and (iii) yield us to complete the proof of the lemma with the bilinearity of the 

scalar product. 



 ∎ 

 

 

 It is said that U = 𝑒𝑥𝑝𝑝𝑉 is a normal neighborhood of p, if 𝑒𝑥𝑝𝑝 is a diffeomorphism on a 

neighborhood V of the origin in 𝑇𝑝𝑀. 𝐵𝜀(𝑝) = 𝑒𝑥𝑝𝑝𝐵𝜀(0), a normal ball (or a geodesic ball) 

if the closure of epsilon ball is in such 𝑉. Moreover, the Gauss lemma gives us that the normal 

sphere 𝑆𝜀(𝑝) = 𝜕𝐵𝜀(𝑝) is a hypersurface in the manifold 𝑀 , which is orthogonal to the 

geodesics starting from p. Further, the geodesics in 𝐵𝜀(𝑝) with starting point p are called 

radial geodesics. 

 

2. The minimizing property of geodesics. 

In this section we will observe that geodesics locally minimize the arc length. Namely, 

 

Proposition 2. Let 𝑝 ∈ 𝑀, 𝑈 = 𝑒𝑥𝑝𝑝𝑉, 𝐵 = 𝐵𝜀(𝑝). Let 𝛾: [0,1] → 𝐵 be a geodesic segment 

with 𝛾(0) = 𝑝, 𝑎𝑛𝑑  𝑐: [0,1] → 𝑀  be any piecewise differentiable curve with 𝑐(0) =
𝛾(0), 𝑐(1) = 𝛾(1). Then it holds for 𝛾 𝑎𝑛𝑑 𝑐, ℓ(𝛾) ≤ ℓ(𝑐). The equality holds if and only if 

𝑐([0,1]) = 𝛾([0,1]). 

 

Proof. w.l.o.g. suppose that c([0,1]) ⊂ B. Otherwise cut c into parts along the boundary of B 

and be parametrized by [0,1]. To apply the Gauss lemma we shall find a parametrized surface 

𝑓, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝛾(𝑡), 𝑡) =  𝑒𝑥𝑝𝑝(𝛾(𝑡) ∙ 𝑣(𝑡)), 𝑤ℎ𝑒𝑟𝑒 𝑡 → 𝑣(𝑡) 𝑎 𝑐𝑢𝑟𝑣𝑒 𝑖𝑛 𝑇𝑝𝑀, |𝑣(𝑡)| = 1,

𝑎𝑛𝑑 𝛾: (0,1] → ℝ is a positive piecewise differentiable function. Simple calculus gives us, 

except for some singularities, 

𝑑𝑐

𝑑𝑡
=

𝜕𝑓

𝜕𝛾

𝑑𝛾

𝑑𝑡
+

𝜕𝑓

𝜕𝑡
. 

Applying the Gauss lemma yields, 〈
𝜕𝑓

𝜕𝛾
,

𝜕𝑓

𝜕𝑡
〉 = 0. For |

𝜕𝑓

𝜕𝛾
| = 1, 

|
𝑑𝑐

𝑑𝑡
|

2

= |
𝑑𝛾

𝑑𝑡
|

2

+ |
𝜕𝑓

𝜕𝑡
|

2

≥ |
𝑑𝛾

𝑑𝑡
|

2

, 

as, 

∫ |
𝑑𝑐

𝑑𝑡
| 𝑑𝑡 ≥

1

𝜀

∫ |
𝑑𝛾

𝑑𝑡
| 𝑑𝑡 ≥

1

𝜀

∫
𝑑𝛾

𝑑𝑡
𝑑𝑡 ≥

1

𝜀

 𝛾(1) − 𝛾(𝜀). 

Taking ε → 0 shows what it was claimed. If the equality holds for some 𝑐, then |
𝜕𝑓

𝜕𝛾
| = 0,  

which let 𝑣(𝑡) be constant, meaning that the curve is rescaled form of 𝛾. 

 ∎ 

 We have now reached that there is a piecewise differentiable curve which locally minimizes 



the arc length. We shall further prove that this curve is a geodesic by showing the existence of 

normal neighborhoods. 

 

 

Theorem 3.  For any p in M, there exist a neighborhood W of p, which is a normal 

neighborhood of each of its points. In other words,∀𝑝 ∈ 𝑀, ∃𝑊 ⊂ 𝑀, 𝛿 > 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀𝑞 ∈

𝑊, 𝑒𝑥𝑝𝑞 𝑖𝑠 𝑎 𝑑𝑖𝑓𝑓𝑒𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑜𝑛 𝐵𝛿(0) ⊂ 𝑇𝑞𝑀 𝑎𝑛𝑑 𝑒𝑥𝑝𝑞(𝐵𝛿(0)) ⊃ 𝑊. 

 

Proof. We shall prove this theorem in following manner. 

(i) Construct a local diffeomorphism 

(ii) Applying the inverse function theorem. For proof of this theorem, see the script of 

Analysis 2, Prof. Knüpfer, SS2014. 

Let 𝜀 > 0,  𝑉 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑝 ∈ 𝑀, 𝛺 = {(𝑞, 𝑣) ∈ 𝑇𝑀; 𝑞 ∈ 𝑉, 𝑣 ∈ 𝑇𝑞𝑀, |𝑣| <

𝜀}.  Define 𝐹: 𝛺 → 𝑀 × 𝑀, (𝑞, 𝑣) ↦ (𝑞, 𝑒𝑥𝑝𝑞𝑣).  𝐹  is then a local diffeomorphism 

around (p,0). Indeed, (𝑑𝑒𝑥𝑝𝑝)0 = 𝐼, 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝐹(𝑝,0) 𝑖𝑠 (
𝐼 𝐼
0 𝐼

). Thus we have a 

local diffeomorphism. From the inverse function theorem, there exists a neighborhood 

𝛺′ ⊂ 𝛺 𝑜𝑓 (𝑝, 0), and a neighborhood 𝑊′𝑜𝑓 (𝑝, 𝑝), so that 𝐹: 𝛺′ → 𝑊′ is bijective and 

differentiable. By choosing 𝛺′ = {(𝑞, 𝑣) ∈ 𝑇𝑀; 𝑞 ∈ 𝑉′ ⊂ 𝑉, 𝑣 ∈ 𝑇𝑞𝑀, |𝑣| < 𝛿}  and 

𝑊 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑊 × 𝑊 ⊂ 𝑊′, we get the assertion. 

 ∎ 

Remark: It is said that 𝑊 is a totally normal neighborhood of 𝑝 ∈ 𝑀. As we have seen that 

there is a unique minimizing geodesic γ with ℓ(𝛾) < 𝛿,  for given two points of 𝑊. By 

having this theorem we can conclude that there is a unique 𝑣  𝑖𝑛 𝑇𝜎𝑀 , for (σ, τ) 𝑖𝑛 𝑊,
such that 𝛾′(0) = 𝑣. 

 

Corollary 4. A piecewise differentiable curve 𝛾: [𝑎, 𝑏] → 𝑀 with parameter proportional to 

arc length is a geodesic, if for any other piecewise differentiable curve 𝑐: [𝑎′, 𝑏′] → 𝑀, 𝑐(𝑎′) =
𝛾(𝑎) 𝑎𝑛𝑑 𝑐(𝑏′) = 𝛾(𝑏), holds ℓ(𝛾) ≤ ℓ(𝑐).  

Proof. We shall prove with the compactness argument. There exists a pathwise connected 

compactum 𝐾, with 𝐾° ≠ ∅. Let 𝑊 be a totally normal neighborhood of 𝛾(𝑡), 𝑡 ∈ 𝐾. Then 

the inclusion 𝛾(𝐾) ⊂ 𝑊 holds. Consider the restriction of 𝛾𝐾: 𝐾 → 𝑊. Since 𝛾𝐾(𝐾) is in a 

normal ball, it has equal length of a radial geodesic in 𝑊. From the minimizing property, 𝛾𝐾 

is a geodesic. Furthermore, since it holds for all t ∈ [a, b] that 
𝑑

𝑑𝑡
〈

𝑑𝛾

𝑑𝑡
,

𝑑𝛾

𝑑𝑡
〉 = 0, which implies 

𝐶 ≔ 〈
𝑑𝛾

𝑑𝑡
,

𝑑𝛾

𝑑𝑡
〉 = 𝑐𝑜𝑛𝑠𝑡. Thus, if 𝐶 is non-zero, 𝛾 must be a regular curve. (If 𝐶 is equal to 

zero, 𝛾 degenerates to a point in 𝑀.) 

∎ 

 



In following example, we are using this corollary above, to determine the geodesics in so called 

the Lobatschevski plane, whilst the geodesics is being mapped to geodesics by isometries of a 

Riemannian manifold. 

 

 

Example: Given that 𝐺  is the upper half-plane in two dimensional Euclid space with the 

Riemannian metric 𝑔11 = 𝑔22 =
1

𝑦2 , 𝑔12 = 𝑔21 = 0.  We are claiming that the segment 

𝛾: [𝑎, 𝑏] → 𝐺, 𝑎 > 0, 𝛾(𝑡) = (0, 𝑡) is the image of a geodesic under an isometry. [Indeed, for 

any 𝑐: [𝑎, 𝑏] → 𝐺, 𝑡 ↦ (𝑥(𝑡), 𝑦(𝑡)) 𝑤𝑖𝑡ℎ 𝑐(𝑎) = (0, 𝑎) 𝑎𝑛𝑑 𝑐(𝑏) = (0, 𝑏),  it holds that 

ℓ(𝑐) = ∫ |
𝑑𝑐

𝑑𝑡
| 𝑑𝑡 = ∫ √(

𝑑𝑥

𝑑𝑡
)2 + (

𝑑𝑥

𝑑𝑡
)2 𝑑𝑡

𝑦
≥ ∫ |

𝑑𝑦

𝑑𝑡
|

𝑑𝑡

𝑦
≥ ∫

𝑑𝑦

𝑑𝑡

𝑑𝑡

𝑦
≥

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
∫

𝑑𝑦

𝑦

𝑏

𝑎
= ℓ(𝛾). 

Hence 𝛾 is the minimizer of arc length, by the corollary it is a geodesic.]  

To this purpose, we take the m𝑜̈bius transformations Φ𝑎𝑏𝑐𝑑: ℂ ≅ ℝ2 → ℂ as our isometries, 

given by z ↦
𝑎𝑧+𝑏

𝑐𝑧+𝑑
, 𝑎𝑑 − 𝑏𝑐 = 1.  For details, see the script of Funktionentheorie, Prof. 

Kohnen. These transformations give us rays or half circles, which vary on the values of a,b,c 

and d. 

 

3. Convex neighborhoods 

We have observed that every point in a Riemannian manifold has a totally normal neighborhood. 

Still, there are cases that our geodesics are not completely lying in a certain totally normal 

neighborhood. In this section we will see that a totally normal neighborhood 𝑊 can be chosen 

on a Riemannian manifold, so that 𝑊 is becoming strongly convex. 

Definition 5. A subset 𝑆 ⊂ 𝑀 is strongly convex if for any two points 𝑞1, 𝑞2 ∈ 𝑆̅ there exists 

unique minimizing geodesic 𝛾 such that (𝛾([𝑞1, 𝑞2]))° ⊂  𝑆. 

 

Lemma 6. For any 𝑝 ∈ 𝑀,  there is an upper boundary 𝑐  for radius 𝑟 , such that any 

geodesic in 𝑀  that is tangent at q ∈ 𝑀  to 𝑆𝑟(𝑝) = 𝜕𝐵𝑟(𝑝)  stays out of the 𝐵𝑟(𝑝) =
𝑒𝑥𝑝𝑝𝐵𝑟(0). 

 

Proof. Let 𝑊 be a totally normal neighborhood of 𝑝 ∈ 𝑀. Since all geodesics in 𝑊 can be 

considered to have the velocity one through the natural parametrization, it is enough to prove 

with the unit tangent bundle 𝑇1𝑊 = {(𝑞, 𝑣); 𝑞 ∈ 𝑊, 𝑣 ∈ 𝑇𝑞𝑀, |𝑣| = 1}.  

Consider the differentiable mapping 𝛾: (−𝜀, 𝜀) × 𝑇1𝑊 → 𝑀 , where 𝑡 →  𝛾(𝑡, 𝑞, 𝑣)  be the 

geodesic with the initial condition at 𝑡 = 0, 𝛾  𝑝𝑎𝑠𝑠𝑒𝑠 𝑞 =  𝛾(0, 𝑞, 𝑣) , |𝑣| = 1.  Let 

𝑢(𝑡, 𝑞, 𝑣) = 𝑒𝑥𝑝𝑝
−1(𝛾(𝑡, 𝑞, 𝑣))  and define 𝐹: (−𝜀, 𝜀) × 𝑇1𝑊 → ℝ, 𝐹(𝑡, 𝑞, 𝑣) = |𝑢(𝑡, 𝑞, 𝑣)|2 . 

From the constructions follows   
𝜕𝐹

𝜕𝑡
= 2 〈

𝜕𝑢

𝜕𝑡
, 𝑢〉 ,

𝜕2𝐹

𝜕𝑡2
= 2 〈

𝜕2𝑢

𝜕𝑡2
, 𝑢〉 + 2 |

𝜕𝑢

𝜕𝑡
|

2

. Further, we choose 

our radius 𝑟 > 0, so that 𝐵𝑟(𝑝) = 𝑒𝑥𝑝𝑝𝐵𝑟(0) ⊂ 𝑊. Observe that if 𝛾 is tangent to 𝑆𝑟(𝑝) =



𝜕𝐵𝑟(𝑝), at 𝑞 =  𝛾(0, 𝑞, 𝑣), then 
𝜕𝐹

𝜕𝑡
|

(0,𝑞,𝑣)
= 〈

𝜕𝑢

𝜕𝑡
, 𝑢〉|

(0,𝑞,𝑣)

= 0, from the Gauss lemma. We are 

showing that 𝐹  has a strict minimum at (0, 𝑞, 𝑣), for some enough small radius 𝑟. For 

starters we observe for 𝑞 = 𝑝 , we have 𝑢(𝑡, 𝑝, 𝑣) = 𝑒𝑥𝑝𝑝
−1(𝛾(𝑡, 𝑝, 𝑣)) = 𝑡𝑣,  as well 

as   
𝜕2𝐹

𝜕𝑡2|
(0,𝑝,𝑣)

= 2 |
𝜕

𝜕𝑡
(𝑡𝑣)|

2

=2|𝑣|2 = 2 > 0. Thus there exist a neighborhood 𝛺′ ⊂ W of 𝑝 

such that 
𝜕2𝐹

𝜕𝑡2
|

(0,𝑞,𝑣)
> 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑞 ∈ 𝛺′, 𝑣 ∈ 𝑇𝑞𝑀, |𝑣| = 1. Now choose an upper boundary 

𝑐 s.t. 𝑒𝑥𝑝𝑝𝐵𝑐(0) ⊂ 𝛺′. Since a strict minimum gives us the minimizer for distance between 

𝑝 and to a point 𝑝𝛾 that is moving along the geodesic 𝛾, with minimizing property there is 

another geodesic in 𝐵𝑐(𝑝) = 𝑒𝑥𝑝𝑝𝐵𝑐(0), joining 𝑝 and 𝑝𝛾, which is tangent to 𝑆𝑟(𝑝) =

𝜕𝐵𝑟(𝑝) 𝑎𝑡 𝑞 = 𝛾(0, 𝑞, 𝑣), as claimed. 

∎ 

 

Proposition 7. (Convex neighborhoods). For any 𝑝 ∈ 𝑀, there is a number 𝛽 > 0 such that  

the normal ball 𝐵𝛽(𝑝) is strongly convex. 

 

Proof. Let 𝑐 be the upper boundary given in the above lemma for a 𝑝 ∈ 𝑀. Choose 
𝑐

2
> 𝛿 >

0 and 𝑊 𝑠. 𝑡.  ∀𝑞 ∈ 𝑊, 𝑒𝑥𝑝𝑞 𝑖𝑠 𝑎 𝑑𝑖𝑓𝑓𝑒𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑜𝑛 𝐵𝛿(0) ⊂ 𝑇𝑞𝑀 𝑎𝑛𝑑 𝑒𝑥𝑝𝑞(𝐵𝛿(0)) ⊃

𝑊. We shall prove that 𝐵𝛽(𝑝) is strongly convex for 𝛽 < 𝛿 ∶  𝐵𝛽(𝑝) ⊂ 𝑊. Given that two 

random points 𝑞1, 𝑞2 ∈ 𝐵𝛽(𝑝)̅̅ ̅̅ ̅̅ ̅̅ , let 𝛾  be the geodesic with ℓ(𝛾) < 2𝛿 < 𝑐,  joining 

𝑞1 𝑎𝑛𝑑 𝑞2 . Assume that (𝛾([𝑞1, 𝑞2]))° ⊄ 𝐵𝛽(𝑝) i.e. 𝐵𝛽(𝑝) is not strongly convex. Then 

there is a point 𝑥 in (𝛾([𝑞1, 𝑞2]))°, with the maximum distance 𝑟 from 𝑞. Hence for enough 

small ε > 0, 𝐵ε(𝑥) ∩ 𝐵𝑟(𝑝)̅̅ ̅̅ ̅̅ ̅ ≠ ∅, which is contradiction to the lemma 6. 

∎ 

 


