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1 Introduction
Orbifolds can be viewed as a slight generalisation of manifolds. Where manifolds often
arise as the quotient of a spaceX by a groupG acting freely (so where for any compact
subset K of X , {g ∈ G|gK ∩ K} is trivial), orbifolds tend to arise as the quotient
by a group acting properly discontinuously (where {g ∈ G|gK ∩ K} is instead only
required to be finite).

This will allow us, for example, to talk about the quotient of R2 by a triangle group.
This is a group of isometries generated by reflections in the sides of a triangle which
tiles the plane. It is fairly easy to show that if ∆n1,n2,n3

is such a triangle with
angles π

m1
, π
m2
, π
m3

where the mi are integers, then the mi are one of the triplets
(3, 3, 3), (2, 3, 6) or (2, 4, 4). In some sense these quotients are covered by R2, and
later we will make sense of this notion.
The triple m1,m2,m3 was constrained by the relation 1

m1
+ 1

m2
+ 1

m3
= 1. When

we look at triples satisfying 1
m1

+ 1
m2

+ 1
m3

> 1, it is possible to find correspond-
ing tilings of S2 by congruent triangles. Similary, tilings of H2 can be found when

Figure 1: A tiling of R2 by ∆3,3,3
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1
m1

+ 1
m2

+ 1
m3

< 1. In both of these cases, it is once again possible to quotient the
appropriate space by a group generated by reflections in the sides of the triangles.

Looking at simpler isometries of the plane, we can get a firmer notion of what orb-
ifolds look like. Consider a group G generated by a rotation about the origin by an
angle of 2π/n for integer n. G certainly acts properly discontinuously, and the space
obtained by quotienting by G looks much like a cone. We can induce a metric on this
space by lifting paths back up to R2 and defining the distance between two points as
the infimum of lengths of paths between them. Note that while paths passing through
the origin may not have unique lifts, this length is still well defined. The space R2/G
is homeomorphic to R2, but this unusual geometric behaviour about the origin should
not be forgotten, and it is often important to distinguish between orbifolds and their
underlying spaces.

Another simple space to understand is the quotient of R2 by a reflection. Here we
observe a line of points that behave unusually, and that topologically this space is a
surface with boundary. As we shall see, this orbifold doesn’t have a boundary.

We can consider a more general finite subgroup of O(2): D2m, the dihedral group
generated by reflections in lines an angle 2π/n apart. Quotienting by this group gives
a space with properties similar to the last example, but here there are two lines of ’un-
usual’ points.

These three examples will turn out to be very important, as they classify most of the
non-manifold like behaviour of 2-dimensional orbifolds. With the examples in mind,
we now give a rigourous definition of orbifolds.
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Definition 1.1 An orbifold O is a Hausdorff space XO (called the underlying space),
together with a covering by open sets Ui closed under finite intersections. For each Ui
there must exist an open set Ũi in Rn acted upon equivariantly by some finite group Γi
such that there exists a homeomorphism ϕ : Ũi/Γi → Ui, called a chart.

For each Ui ⊆ Uj , we require an injective homomorphism fij : Γi → Γj and an
embedding ϕ̃ij : Ũi → Ũj , invariant under action by Γi, such that the following dia-
gram commutes

By imposing conditions on the gluing maps we can define differentiable, smooth and
other categories of orbifolds.

In the introduction, we observed points with unusual behaviour on orbifolds, and it will
be very useful to give a formal definition of these.

Definition 1.2 Let O be an orbifold with underlying space XO. For any point x in O,
take a coordinate system ψ : U → Ũ/Γ. Let Γx be the stabiliser of x in Γ (sometimes
called the local group of x). It is easy to see the Γx is well-defined up to isomorphism.
Let ΣO = {x ∈ XO|Γx 6= {1}}, called the singular locus of O.

An orbifold with empty singular locus is called a manifold.

Note that the singular locus is closed, since every intersection of it with the coordinate
maps is closed.

An orbifold is said to be connected when its underlying surface is, and compact when
its underlying surface is.

With these definitions in place, we briefly revisit the previous examples. The cone
like behaviour of quotienting by a rotation group can be quite simplt put on a compact
orbifold by taking an atlas for the sphere as a manifold and replacing one of the charts
with a map from the quotient of an open disc by a rotation group. The resulting space
is called the teardrop orbifold, as seen in figure 2. This has singular locus of a single
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Figure 2: The teardrop orbifold

Figure 3: The quotient of S2 by a finite cyclic rotation group

point, with local group isomorphic to Zn for some n. Such a point is called a cone
point of order n.

We may similarly add multiple cone points to S2. In particular, the orbifold with
underlying surface S2 and two cone points of different order is called a spindle orb-
ifold. When the orders are the same the orbifold can be seen as a direct quotient of S2

by a group generated by a rotation of order n, as seen in figure ??.

We classify other types of singularity similarly. Since dihedral groups and their
subgroups are the only finite subgroups of O(3), the only types of singularity on 2-
orbifolds are those arising from discrete rotation groups, a single reflection, or at points
where the lines of two reflections meet. These singularities are called cone points, re-
flector lines and corner reflectors respectively.

Orbifolds with reflector lines are easy to construct. Any manifold with boundary can
be viewed instead as an orbifold by replacing appropriate charts. Perhaps the simplest
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(a) (b) (c)

Figure 4: The three types of singularity on 2-orbifolds

such construction is for D2, which can also be viewed as the quotient of S2 by a re-
flection in a great circle.

A good example of corner reflectors are the triangle groups we have already seen.
The corners of a triangle are corner reflectors, while the sides are reflector lines. If a
point x in the singular locus XO of an orbifold has local group isomorphic to D2n for
some n, it is called a corner reflector of order n.

We can construct new orbifolds by identifying the boundaries (of the underlying sur-
faces of) two copies of a triangle orbifold. It’s not hard to see that a corner reflector of
order n in the original triangle group will become a cone point of order n in the new
orbifold.

2 Coverings
As with manifolds, it will be important to consider possible coverings of orbifolds.
The classical notion of covering is, however, too restrictive for working with orbifolds.
For example, we would like the orbifold S2/Z2, where Z2 acts on S2 by reflection
in a great circle, to be covered by S2. With the classical notion of covering this is
not the case, since no open neighbourhood of a point on the reflector line in S2/Z2 is
homeomorphic to an open set in S2.

Definition 2.1 LetO be an orbifold. An orbifold cover ofO is an orbifoldO together
with a projection p : XÕ → XO on the underlying spaces such that every x in XO
has a neighbourhood U isometric to Ũ/Γ such that each component Vi of p−1(U) is
homeomorphic to Ũ/Γi, where Γi ≤ Γ.

In most of our discussions of orbifold coverings, we will assume any covering is con-
nected.

When Γ acts properly discontinuously on an orbifold O, O covers O/Γ. This agrees
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with our earlier notion of the covering of a triangle group by R2 Any 2-orbifold O
whose singular locus is composed entirely of reflector lines is covered by mO, the
manifold given by gluing a second copy of O along the reflector lines in the obvious
way. More generally, any orbifold with relfector lines has a proper covering.

Recall the teardrop given by S2 with a single cone point. As we shall see later, the
teardrop has no proper coverings and thus cannot be covered by a manifold.

Definition 2.2 An orbifold which can be covered by a manifold is called good, and is
otherwise called bad.

Definition 2.3 A universal covering of an orbifold O is an orbifold covering p : Õ →
O such that gven any other orbifold covering Õ′, there exists an orbifold covering
q : Õ → O with p′ ◦ q = p.

It is possible to copy the classical approaches to universal covers and fundamental
groups. To do this, we would need to refine the notions of paths and homotopies, or
else we can only obtain the fundamental group of the underlying structure.

Definition 2.4 An orbifold path is a continuous map α : I → O such that there are
only finitely many singular points on α, and for each t such that α(t) is singular there
is a triple (ϕ, V, l). Here, ϕ : Ũ/Γ → U is a chart, V is a neighbourhood of t in I
such that ∀u ∈ V −{t}, α(u) is non-singular and lies in U , and l is a lift of α|V to Ũ .

Definition 2.5 Let α be a path in an orbifold O, U be an open subset and ϕ : Ũ/Γ→
U a chart. For [a, b] a subinterval of I with image contained in U , let β be a lift of
α|[a,b] to Ũ . Replacing α|[a,b] by the projection of any path in Ũ which is homotopic
to β (relative to the endpoints) is called an elementary homotopy of α. An orbifold
homotopy of paths is a collection of elementary homotopies on an orbifold path α.

With these defined, it is possible to carefully define the fundamental group as the group
of orbifold homotopy classes of orbifold paths, and the universal cover through the
space of orbifold homotopy classes of orbifold paths with a fixed starting point. See
[3] for a more thorough discussion of this approach. In dimension 2 there is a simpler
method, outlined below.

Proposition 2.1 Every 2-orbifold O has a universal cover.

Proof As remarked earlier, every orbifold O with reflector lines is covered by mO, so
we need only show the result for orbifolds whose singular locus is a set of cone points.

Let O be a 2- orbifold whose singular locus ΣO consists only of cone points, and
N be the surface given by removing small discs around each cone point of O. For any
covering, Ñ = p−1(N) is a covering in the classical sense.

Take a circle Ci in the boundary of N , which bounds a cone with cone angle 2π/ni.
Since Õ was an orbifold covering, a component of the preimage of Ci must then be an
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mi-sheeted covering of Ci, where mi|ni. If αi is an element of π1(N) with represen-
tative the circle Ci, then π1(Ñ) must contain lifts of all conjugates of αni

i . If we let G
be the group given by adding the relations αni

i to π1(N), then by the above argument
π1(Ñ) contains the kernel K of the natural map π1(N)→ G.

Thus the coveringNK corresponding to the kernel is universal amongst coverings ofN
which extend to orbifold coverings of O. The orbifold covering OK given by adding
the appropriate cones back to NK must then be universal. �

Definition 2.6 The orbifold fundamental group of an orbifold O is the group of deck
transformations of its universal cover, written πorb1 (O).

The construction used in the proof of proposition 2.1 can be very useful in calculating
the fundamental group of an orbifold, using the orbifold equivalent of the Seifert-van
Kampen theorem. The group G constructed is in fact the fundamental group of an
orbifold with no reflector lines, and in particular this shows that this definition of fun-
damental group truly extends the one for manifolds - if the singular locus is empty then
G = π1(N).

For calculating fundamental groups of orbifolds that may have reflector lines, a similar
approach is used. Remove a small neighbourhood of each component of the singular
locus, and use the orbifold Seifert-van Kampen theorem to build up the orbifold fun-
damental group from π1(ΣO) and the fundamental groups of basic orbifolds.

We’ve already seen how to treat cone points: the fundamental group of a neighbour-
hood of a cone point is isomorphic to Zn where n is the order of the cone point.On a
compact orbifold without boundary, the only other possible connected component in
the singular locus is a circle lying in ∂ΣO. A closed neighbourhood of such a circle
has underlying surface homeomorphic to S1 × I and orbifold fundamental group iso-
morphic to Z×Z2. On non-compact manifolds, there is a third type of component with
underlying surface R× I and orbifold fundamental group isomorphic to Z2. The fun-
damental groups of each of these types of components can be demonstrated by careful
use of the definitions of orbifold paths and homotopies.

With this approach, it is not too hard to see that if O is an orbifold with underlying
surface a genus g torus and with cone points of orders n1, . . . , nl (noting that there
can only ever be finitely many cone points, since ΣO is compact), then πorb1 (O) has
presentation{

a1, b1, . . . , ag, bg, x1, . . . , xl : xni
i = 1,

g∏
i=1

[ai, bi]x1, . . . , xl

}
.

Another simple example is the orbifold O with underlying surface X a torus with
some open disc removed with the boundary ∂X a reflector circle. Then by the Seifert-
van Kampen theorem with the orbifold split into two parts as in figure 5,

πorb1 (O) ∼= π1(X) ∗Z (Z ∗ Z2) ∼= π1(X) ∗ Z2.
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Figure 5: Decomposition of a torus with a reflector circle

More significantly to our classification of 2-orbifolds, we can now calculate the orb-
ifold fundamental group of a teardrop or spindle orbifold. The fundamental group of
the teardrop is easily seen to be trivial when we observe that any loop not passing
through the cone point is null homotopic. An argument using Seifert-van Kampen is
not much more complex. For the spindle, we use the Seifert-van Kampen theorem to
obtain the representation {x : xn1 = xn2 = 1} and observe that since n1 and n2 are
coprime, the group is trivial. This gives us a proof that these two orbifolds are bad,
and indeed that any orbifolds covered by them must also be bad (namely those with
underlying surface D2 and one corner reflector, or two corner reflectors with distinct
orders). In fact, we can show that these are the only bad 2-orbifolds.

Proposition 2.2 A bad 2-orbifold is of one of the following types:
Underlying surface Cone points Corner reflectors

S2 (n), n 6= 1 -
S2 (n1, n2), n1 6= n2 -
D2 - (n), n 6= 1
D2 - (n1, n2), n1 6= n2

Proof As we have seen, each of these orbifolds are bad. It remains to show that there
are no other bad 2-orbifolds. Suppose O is a bad orbifold with no proper orbifold cov-
erings. Clearly it can have no reflector curves, or else mO would be a proper covering.
So XO is a surface without boundary. If XO weren’t simply connected, a classical
proper covering of it would induce a proper orbifold cover of O. Therefore XO must
be S2 or R2.

Suppose for contradiction that O has at least three cone points. Then there is a subset
U of XO homeomorphic to D2 and containing exactly three cone points, of orders
n1, n2, n3, say. As we showed in our discussion of triangle groups on R2, S2 and H2,
the orbifold O′ with cone points of orders n1, n2, n3 and underlying surface S2 has a
proper covering by one of R2, S2 and H2, which depends on the sum 1

n1
+ 1

n2
+ 1

n3
.

If we remove a disc containing no cone points from O′ we obtain a space homeomor-
phic to U and with the same cone points. Taking the preimage of this space under the
covering map gives a proper orbifold cover of it, and thus a proper orbifold covering
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of U . We may then glue a copy of O\U to each boundary component of this cover to
obtain a proper orbifold covering of O. Thus O must have at most two cone points.

Noting that if O had underlying surface R2 then it would be easy to find a proper
covering of it, we conclude that O must have underlying surface S2 and one or two
cone points. If O had two cone points with the same orders n, then it would be the
quotient of S2 by a finite cyclic group of rotations. ThusO must be of one of the types
listed in the statement of the proposition. �

3 Euler Characteristics on Orbifolds
The Euler characteristic χ(X) of a triangulable space X is a very useful topological
invariant. We’ll use it to motivate a similar definition for orbifolds, which will allow us
to further classify compact 2-orbifolds. Recall that the Euler characteristic of a trian-
gulable space can be defined as χ(X) =

∑
σi

(−1)dim(σi), where X is triangulated by
some finite simplicial complex with simplices σi.

Definition 3.1 LetO be a compact orbifold triangulated by a finite simplicial complex
such that Γx is constant (up to isomorphism) on the images of interiors of simplices.
Write Γ(σ) for the group on the interior of a simplex σ. Then let

χorb(O) :=
∑
σi

(−1)dim(σi)
1

Γ(σi)
.

Since this definition clearly extends that of the classical Euler characteristic, it will not
always be neccessary to distinguish between the two and so χ will be written for both.
It is not immediately obvious that the orbifold Euler characteristic is independent of the
triangulation. To demonstrate this fact for 2-orbifolds, we show that χ can be expressed
in a triangulation independent manner.

Proposition 3.1

χorb(O) = χ(XO)−
r∑
i=1

(
1− 1

ni

)
− 1

2

s∑
j=1

(
1− 1

mj

)
,

where O has r cone points u1, . . . , ur with orders n1, . . . , nr and s reflector corners
v1, . . . , vs with orders m1, . . . ,ms.

Proof Let σ1, . . . , σk be a suitable triangulation of O. Then we have

χ(XO)− χorb(O) =
∑
σi

(−1)dim(σi)

(
1− 1

|Γ(σi)|

)
.

The terms of the sum corresponding to simplices σi where Γ(σi) = {1} vanish, and
we are left with a calculation on each connected component of ΣO.
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For a cone point ui which lies in the image of some 0-simplex σ, the correspond-
ing contribution to the sum is simply 1− 1

|Γ(σ)| = 1− 1
ni

.

A connected component corresponding to a reflector circle in ΣO is triangulated by
a cycle of 1-simplices. The points corresponding to 0-simplices in this cycle have
local group isomorphic to either Z2 or D2m for some m, so contribute 1 − 1/2 or
1 − 1/(2m) = (1 − 1/2) + (1/2)(1 − 1/m) respectively. If the cycle has l 1-
simplices and covers the corner reflectors vj1 , . . . , vjp , then the overall contribution
to χ(XO)− χorb(O) is

−
l∑
i=1

(
1− 1

2

)
+

l−p∑
i=1

(
1− 1

2

)
+

p∑
i=1

((
1− 1

2

)
+

1

2

(
1− 1

mji

))

=

p∑
i=1

1

2

(
1− 1

mji

)
.

Putting these pieces together, we obtain the desired formula

χorb(O) = χ(XO)−
r∑
i=1

(
1− 1

ni

)
− 1

2

s∑
j=1

(
1− 1

mj

)
.

�

We are now in a position to prove a very useful result, which follows immediately from
the following lemma.

Lemma 3.1 Let Õ → O be an orbifold covering. Then the number of sheets of the
cover (defined as the number of preimages of a non-singular point) is given by∑

x̃|p(x̃)=x

|Γx|
|Γx̃|

for any point x in O.

Proof The result is trivially true when x is non-singular. Consider a singular point x.
Then there exists a coordinate system ψ : U → Ũ/Γ such that x ∈ U . Take some
non-singular y ∈ U . For each x̃ in the fiber of x, y has |Γx|/|Γx̃| preimages. Since y is
non-singular it has the same number of preimages as the number of sheets of the cover,
and the result follows. �

Proposition 3.2 Let Õ → O be a k-sheeted orbifold covering. Then

χorb(Õ) = kχorb(O).

This allows us to prove some interesting results. For example, the Euler characteristic
of a triangle orbifold ∆n1,n2,n3

is − 1
2

(
1− 1

ni

∑)
. Thus χ(∆2,3,5) = 1/60, so it can
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be covered by neither R2 nor H2. Similarly χ(∆2,3,6) = 0 and χ(∆2,3,7) = −1/84
show that each of these triangle orbifolds can have only one type of gemoetric structure
(parabolic and hyperbolic respectively).

Proposition 3.2 also leads to an alternative proof that the teardrop and spindle orb-
ifolds are bad. It is possible to define Riemannian metrics on orbifolds away from their
singularities by defining a Γ invariant metric on Ũ for each chart φ : U → Ũ/Γ, with
certain gluing conditions. Then the orbifolds in question cna be shown to have Rie-
mannian metrics of strictly positive curvature, and thus any covering manifold must
be compact. Since their Euler characteristic is one of 1 + 1/n or 1/n1 + 1/n2, any
manifold covering them must have Euler characteristic strictly greater than 2.

We now also have the tools to prove most of the theorem completely classifying closed
2-orbifolds.

Theorem 3.2 Let O be a closed 2-orbifold. Then O has an elliptic, parabolic or hy-
perbolic structure iff it is good. O has a hyperbolic structure iff χ(O) < 0, a parabolic
structure iff χ(O) = 0 and is bad or has an elliptic structure iff chi(O) > 0.

The equation given in proposition 3.1 can be used to show there are only finitely many
families of elliptic and parabolic orbifolds, so it is possible to explicitly demonstrate
the coverings by S2 or R2. The hyperbolic orbifolds require a rather more technical
approach. See [2] theorem 13.3.6 for the details, as well as a tabulation of the families
of bad, elliptic and parabolic orbifolds.
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