Theorem of Gauss-Bonnet

In this chapter M will be a compact, oriented, differentiable manifold of dimension two.
X will be a differentiable vector field on M.

1. The Riemannian Metric on M

First, we will define a Riemannian metric on M. We start off with a finite differentiable structure (f*, U%)
of M - which exists since M is compact - and define arbitrarily an inner product (,)* on each coordinate
neighbourhood f* (U®). Now we choose a differentiable partition of unit {¢,} subordinate to the covering
{f*(U*)} and set for each p € M
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9o and (, )5 vary differentiably with p, so (,), as well. (,)5 is positive definite and 0 < p, < 1, s0 (,),, is

positive definite. |

2. The Index of X at p

Definition A point p € M is a singular point of X if X (p) = 0. The singular point p is isolated if there

exists a neighbourhood V' C M of p which contains no singular point other than p.

Let p € M be an isolated singular point of X. Now we approach the next definition
1. Choose a Riemannian metric on M

2. Choose a neighbourhood V' C M of p which contains no singular point of X other than p and is

homeomorphic to an open disk in the plane.

3. Let {€1,e} be the moving frame, where &, = % and €; is a unit vector field orthogonal to €; and in

the orientation of M. Thus @y, s, w12 is defined in V' — {p}.

4. Choose a moving frame {ej, o} which is defined throughout V and has again the same orientation as

M. We obtain w1, ws,wqs in V.

5. Choose a simple closed Curve C' bounding a compact region of V', oriented as 0V and containing p in

1ts interior.

6. As in the chapter before, we name the difference 7 := @y — wis which is defined in V' — {p}. From
Lemma 5 of Chapter 5 we know that restriction of 7 to C' is the differential of the angle ¢ (t) between

e; and e; along C.

Definition Using the setup above, we define index I of X at p as following:
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3. Well-defindness of [
Lemma 1. The definition of I does not depend on the chosen Curve C
Proof Consider first the case in which we have two simple non-intersecting closed curves €} and Cy around

p, as in the definition of I which bound an annular region A. We show that the computed indices I; and I

coincide, by using Stokes-Theorem and the fact, that 7 is closed:
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If in general, C', and C, intersect we choose the curve C3 which does not intersect both C5 and C and apply

the argumentation above and conclude Iy = I, = I3 |}

Lemma 2. Consider S, := 0B,, the boundary of a disk of radius r around p and the moving frame {€1,e,}

of the definition and the corresponding wis. Then

exists.

Proof Let ro < r; and A the annular region bounded by S,, and S,,. As ri,72 go to zero, /A vanishes and
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by stokes theorem we get:

So any sequenze
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with {r,} — 0, is a Cauchy sequenze. Thus there exists a limit
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Lemma 3. The definition of I does not depend on the choice of the frame {e1, es}.

Proof Let ro < r; and S,,, S, as before. We know w5 = w12 + 7 and conclude:
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In (1) we let ry go to zero and by Lemma 2 we get some real number I with:
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Thus I = I. Since I in Lemma 2 was independent from {ej,ep}, so I'is. |

Lemma 4. The definition of I does not depend on the chosen metric.

Proof Let (,)° and (,)! be two Riemannian metrics on M. Let , for ¢ € [0,1]

(=t (O + =)

Since (,)? and (,)! are Riemannian metrics on M, (,)! is also a Riemannian metric on M. Thus (,)! is a one-
parameter familiy of metrics on M which starts with (,)? and ends with (,)!. Let Iy, I;, I; be the corresponding
indices. I; is a continuous function of ¢. To proove this, we see that €;, and e,, of the corresponding moving

frame {€1,,€,,} of (,)! varies continuosly with ¢, since
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Following the definitions t;, and Wy, vary linearly with €;, and €;, and @y, varies linearly with tw;, and ws,.
Hence w5, varies continuosly with ¢. By Lemma 2 we conclude that I, varies continuously with ¢. Since I; is

an Integer, it follows I; is constant and Iy = ;. |}

4. The Theorems

Theorem 5. Let pq, ..., p. be the isolated singular points of X and Iy, ..., I} their corresponding indices. For

any Riemannian metric on M,

k
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K is the Gaussian curvature of the metric, o its element of area. x (M) is called the Euler-Poincaré
characteristic of M.

X
X

to €1 in the orientation of M. Furthermore B; will be a ball with center p; an a radius r;, as small as it contains

Proof Let {€,€,} be the moving frame in M — | J,{p;} where &, = %+ and €, is a unit vector field orthogonal

no singular point other than p;. Note that 0B; has the orientation induced by B; which is opposite to the

orientation of M — B;, so by Lemma 2

/ Ko = / Ko, Ay = — / Ay = / 512:Z/wlgﬂ2w23 |

M-, B; M-, B; M-, B; U;(0Bs) ' 9B;

Fabian Cejka Gauss-Bonnet 29.02.2015



Theorem 6. Given an oriented, compact, two-dimensional differentiable manifold M with boundary OM, a
differnetiable vector field X on M that is nowhere tangent to OM, isolated singular points py, . .., pr € M\OM

of X and their indices I, ...I,. Then for any Riemannian metric on M

/Ka+/k:gds =21y (M)
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kq is the geodesic curvature of OM, ds the arc element of OM.

Proof Choose a Riemannian metric on M and let {€;,é;} be again the orthonormal oriented moving frame

X
| X[

such that, restricted to OM, e; is tangent to OM. Let i : OM — M be the inclusion map and ¢ the angle
between e; and e; along OM. Since e; is parallel to OM we get from the proof of Proposition 4 in Chapter 5

with e; = Choose in a neighbourhood V' C M of OM another oriented orthonormal moving frame {e;, s}

i*wlg = i*W12 + dSD (2)

Let B; be a ball of center p;, such that B; contains no other point than p;. From Stokes Theorem we get:

/ Ko, Nwy = —/ dw o = / Wiz — / Wi (3)

By (2) and the definition of k,, we get

/ i*wlgz/ i*w12+/ d@z/ kgds+/ dwz/ kqds (4)
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/. oas A has to be a 2m multiple and due to the fact that e; = |§—‘ is nowhere tangent to M, it is 0. Taking

the limit when the radii of B; goes to zero and combining (3) and (4), we obtain

/KJ+/kgds:27rx(M) |
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