
Theorem of Gauss-Bonnet

In this chapter M will be a compact, oriented, differentiable manifold of dimension two.
X will be a differentiable vector field on M.

1. The Riemannian Metric on M

First, we will define a Riemannian metric on M . We start off with a finite differentiable structure (fα, Uα)

of M - which exists since M is compact - and define arbitrarily an inner product 〈, 〉α on each coordinate
neighbourhood fα (Uα). Now we choose a differentiable partition of unit {ϕα} subordinate to the covering
{fα (Uα)} and set for each p ∈M

〈, 〉p =
∑
α

ϕα (p) 〈, 〉αp

ϕα and 〈, 〉αp vary differentiably with p, so 〈, 〉p as well. 〈, 〉αp is positive definite and 0 ≤ ϕα ≤ 1, so 〈, 〉p is
positive definite.

2. The Index of X at p

Definition A point p ∈M is a singular point of X if X (p) = 0. The singular point p is isolated if there
exists a neighbourhood V ⊂M of p which contains no singular point other than p.

Let p ∈M be an isolated singular point of X. Now we approach the next definition

1. Choose a Riemannian metric on M

2. Choose a neighbourhood V ⊂ M of p which contains no singular point of X other than p and is
homeomorphic to an open disk in the plane.

3. Let {e1, e2} be the moving frame, where e1 = X
|X| and e2 is a unit vector field orthogonal to e1 and in

the orientation of M . Thus ω1, ω2, ω12 is defined in V − {p}.

4. Choose a moving frame {e1, e2} which is defined throughout V and has again the same orientation as
M. We obtain ω1, ω2, ω12 in V .

5. Choose a simple closed Curve C bounding a compact region of V , oriented as ∂V and containing p in
its interior.

6. As in the chapter before, we name the difference τ := ω12 − ω12 which is defined in V − {p}. From
Lemma 5 of Chapter 5 we know that restriction of τ to C is the differential of the angle ϕ (t) between
e1 and e1 along C.

Definition Using the setup above, we define index I of X at p as following:∫
C

τ =

∫
C

dϕ = 2π · I

Fabian Cejka Gauss-Bonnet 29.02.2015



3. Well-defindness of I

Lemma 1. The definition of I does not depend on the chosen Curve C

Proof Consider first the case in which we have two simple non-intersecting closed curves C1 and C2 around
p, as in the definition of I which bound an annular region 4. We show that the computed indices I1 and I2
coincide, by using Stokes-Theorem and the fact, that τ is closed:

0 =
1

2π

∫
4

dτ =
1

2π

∫
C1

τ +
1

2π

∫
−C2

τ =
1

2π

∫
C1

τ − 1

2π

∫
C2

τ = I1 − I2

If in general, C1 and C2 intersect we choose the curve C3 which does not intersect both C2 and C1 and apply
the argumentation above and conclude I1 = I2 = I3

Lemma 2. Consider Sr := ∂Br, the boundary of a disk of radius r around p and the moving frame {e1, e2}
of the definition and the corresponding ω12. Then

lim
r→0

1

2π

∫
Sr

ω12 =: I

exists.

Proof Let r2 < r1 and 4 the annular region bounded by Sr1 and Sr2 . As r1, r2 go to zero, 4 vanishes and
by stokes theorem we get: ∫

Sr1

ω12 −
∫
Sr2

ω12 =

∫
4

dω12
ri→0−→ 0 (1)

So any sequenze ∫
Sr1

ω12,

∫
Sr2

ω12, . . .

with {rn} → 0, is a Cauchy sequenze. Thus there exists a limit

lim
r→0

1

2π

∫
Sr

ω12 = I

Lemma 3. The definition of I does not depend on the choice of the frame {e1, e2}.

Proof Let r2 < r1 and Sr1 , Sr2 as before. We know ω12 = ω12 + τ and conclude:∫
Sr1

ω12 =

∫
Sr1

ω12 +

∫
Sr1

τ =

∫
Br1

dω12 +

∫
Sr1

τ = −
∫
Br1

Kω1 ∧ ω2 + 2πI

= −
∫
Br1

Kσ + 2πI
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In (1) we let r2 go to zero and by Lemma 2 we get some real number I with:∫
Sr1

ω12 − 2πI =

∫
Br1

dω12 = −
∫
Br1

Kω1 ∧ ω2

= −
∫
Br1

Kσ

Thus I = I. Since I in Lemma 2 was independent from {e1, e2}, so I is.

Lemma 4. The definition of I does not depend on the chosen metric.

Proof Let 〈, 〉0 and 〈, 〉1 be two Riemannian metrics on M. Let , for t ∈ [0, 1]

〈, 〉t := t · 〈, 〉1 + (1− t) 〈, 〉0

Since 〈, 〉0 and 〈, 〉1 are Riemannian metrics on M , 〈, 〉t is also a Riemannian metric on M . Thus 〈, 〉t is a one-
parameter familiy of metrics onM which starts with 〈, 〉0 and ends with 〈, 〉1. Let I0, It, I1 be the corresponding
indices. It is a continuous function of t. To proove this, we see that e1t and e2t of the corresponding moving
frame {e1t , e2t} of 〈, 〉t varies continuosly with t, since

e1t =
X√
〈X,X〉t

=
X√

t · 〈X,X〉1 + (1− t) 〈X,X〉0

Following the definitions ω1t and ω2t vary linearly with e1t and e2t and ω12t varies linearly with ω1t and ω2t .
Hence ω12t varies continuosly with t. By Lemma 2 we conclude that It varies continuously with t. Since It is
an Integer, it follows It is constant and I0 = I1.

4. The Theorems

Theorem 5. Let p1, . . . , pk be the isolated singular points of X and I1, . . . , Ik their corresponding indices. For
any Riemannian metric on M ,

∫
M

Kσ = 2π
k∑
i=1

Ii =: 2π · χ (M)

K is the Gaussian curvature of the metric, σ its element of area. χ (M) is called the Euler-Poincaré
characteristic of M.

Proof Let {e1, e2} be the moving frame in M −
⋃
i{pi} where e1 =

X
|X| and e2 is a unit vector field orthogonal

to e1 in the orientation of M. Furthermore Bi will be a ball with center pi an a radius ri, as small as it contains
no singular point other than pi. Note that ∂Bi has the orientation induced by Bi which is opposite to the
orientation of M −Bi, so by Lemma 2∫

M−
⋃

iBi

Kσ =

∫
M−

⋃
iBi

Kω1 ∧ ω2 = −
∫

M−
⋃

iBi

dω12 =

∫
⋃

i(∂Bi)

ω12 =
∑
i

∫
∂Bi

ω12
ri→0−→ 2π

∑
i

Ii
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Theorem 6. Given an oriented, compact, two-dimensional differentiable manifoldM with boundary ∂M, a
differnetiable vector field X onM that is nowhere tangent to ∂M, isolated singular points p1, . . . , pk ∈M\∂M
of X and their indices I1, . . . Ik. Then for any Riemannian metric onM∫

M

Kσ +

∫
∂M

kgds = 2πχ (M)

kg is the geodesic curvature of ∂M, ds the arc element of ∂M.

Proof Choose a Riemannian metric on M and let {e1, e2} be again the orthonormal oriented moving frame
with e1 = X

|X| . Choose in a neighbourhood V ⊂M of ∂M another oriented orthonormal moving frame {e1, e2}
such that, restricted to ∂M , e1 is tangent to ∂M . Let i : ∂M → M be the inclusion map and ϕ the angle
between e1 and e1 along ∂M . Since e1 is parallel to ∂M we get from the proof of Proposition 4 in Chapter 5

i∗ω12 = i∗ω12 + dϕ (2)

Let Bi be a ball of center pi, such that Bi contains no other point than pi. From Stokes Theorem we get:∫
M−

⋃
Bi

Kω1 ∧ ω2 = −
∫

M−
⋃

Bi

dω12 =

∫
⋃
∂Bi

ω12 −
∫
∂M

i∗ω12 (3)

By (2) and the definition of kg, we get∫
∂M

i∗ω12 =

∫
∂M

i∗ω12 +

∫
∂M

dϕ =

∫
∂M

kgds+

∫
∂M

dϕ =

∫
∂M

kgds (4)

∫
∂M

dϕ has to be a 2π multiple and due to the fact that e1 = X
|X| is nowhere tangent to ∂M , it is 0. Taking

the limit when the radii of Bi goes to zero and combining (3) and (4), we obtain∫
M

Kσ +

∫
∂M

kgds = 2πχ (M)
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