Theorem of Gauss-Bonnet

In this chapter M will be a compact, oriented, differentiable manifold of dimension two. X will be a differentiable vector field on M.

1. The Riemannian Metric on M

First, we will define a Riemannian metric on M. We start off with a finite differentiable structure (f^{α}, U^{α}) of M - which exists since M is compact - and define arbitrarily an inner product $\langle , \rangle^{\alpha}$ on each coordinate neighbourhood $f^{\alpha}(U^{\alpha})$. Now we choose a differentiable partition of unit $\{\varphi_{\alpha}\}$ subordinate to the covering $\{f^{\alpha}(U^{\alpha})\}$ and set for each $p \in M$

$$\langle,\rangle_{p} = \sum_{\alpha} \varphi_{\alpha}\left(p\right)\langle,\rangle_{p}^{\alpha}$$

 φ_{α} and $\langle,\rangle_{p}^{\alpha}$ vary differentiably with p, so \langle,\rangle_{p} as well. $\langle,\rangle_{p}^{\alpha}$ is positive definite and $0 \leq \varphi_{\alpha} \leq 1$, so \langle,\rangle_{p} is positive definite.

2. The Index of X at p

Definition A point $p \in M$ is a singular point of X if X(p) = 0. The singular point p is isolated if there exists a neighbourhood $V \subset M$ of p which contains no singular point other than p.

Let $p \in M$ be an isolated singular point of X. Now we approach the next definition

- 1. Choose a Riemannian metric on M
- 2. Choose a neighbourhood $V \subset M$ of p which contains no singular point of X other than p and is homeomorphic to an open disk in the plane.
- 3. Let $\{\overline{e}_1, \overline{e}_2\}$ be the moving frame, where $\overline{e}_1 = \frac{X}{|X|}$ and \overline{e}_2 is a unit vector field orthogonal to \overline{e}_1 and in the orientation of M. Thus $\overline{\omega}_1, \overline{\omega}_2, \overline{\omega}_{12}$ is defined in $V \{p\}$.
- Choose a moving frame {e₁, e₂} which is defined throughout V and has again the same orientation as M. We obtain ω₁, ω₂, ω₁₂ in V.
- 5. Choose a simple closed Curve C bounding a compact region of V, oriented as ∂V and containing p in its interior.
- 6. As in the chapter before, we name the difference $\tau := \overline{\omega}_{12} \omega_{12}$ which is defined in $V \{p\}$. From Lemma 5 of Chapter 5 we know that restriction of τ to C is the differential of the angle $\varphi(t)$ between e_1 and \overline{e}_1 along C.

Definition Using the setup above, we define index I of X at p as following:

$$\int_C \tau = \int_C d\varphi = 2\pi \cdot I$$

3. Well-defindness of *I*

Lemma 1. The definition of I does not depend on the chosen Curve C

Proof Consider first the case in which we have two simple non-intersecting closed curves C_1 and C_2 around p, as in the definition of I which bound an annular region \triangle . We show that the computed indices I_1 and I_2 coincide, by using Stokes-Theorem and the fact, that τ is closed:

$$0 = \frac{1}{2\pi} \int_{\Delta} d\tau = \frac{1}{2\pi} \int_{C_1} \tau + \frac{1}{2\pi} \int_{-C_2} \tau = \frac{1}{2\pi} \int_{C_1} \tau - \frac{1}{2\pi} \int_{C_2} \tau = I_1 - I_2$$

If in general, C_1 and C_2 intersect we choose the curve C_3 which does not intersect both C_2 and C_1 and apply the argumentation above and conclude $I_1 = I_2 = I_3$

Lemma 2. Consider $S_r := \partial B_r$, the boundary of a disk of radius r around p and the moving frame $\{\overline{e}_1, \overline{e}_2\}$ of the definition and the corresponding $\overline{\omega}_{12}$. Then

$$\lim_{r \to 0} \frac{1}{2\pi} \int\limits_{S_r} \overline{\omega}_{12} =: \overline{I}$$

exists.

Proof Let $r_2 < r_1$ and \triangle the annular region bounded by S_{r_1} and S_{r_2} . As r_1, r_2 go to zero, \triangle vanishes and by stokes theorem we get:

$$\int_{S_{r_1}} \overline{\omega}_{12} - \int_{S_{r_2}} \overline{\omega}_{12} = \int_{\Delta} d\overline{\omega}_{12} \xrightarrow{r_i \to 0} 0 \tag{1}$$

So any sequenze

$$\int\limits_{S_{r_1}} \overline{\omega}_{12}, \int\limits_{S_{r_2}} \overline{\omega}_{12}, \dots$$

with $\{r_n\} \to 0$, is a Cauchy sequence. Thus there exists a limit

$$\lim_{r \to 0} \frac{1}{2\pi} \int_{S_r} \overline{\omega}_{12} = \overline{I} \quad \blacksquare$$

Lemma 3. The definition of I does not depend on the choice of the frame $\{e_1, e_2\}$.

Proof Let $r_2 < r_1$ and S_{r_1}, S_{r_2} as before. We know $\overline{\omega}_{12} = \omega_{12} + \tau$ and conclude:

$$\int_{S_{r_1}} \overline{\omega}_{12} = \int_{S_{r_1}} \omega_{12} + \int_{S_{r_1}} \tau = \int_{B_{r_1}} d\omega_{12} + \int_{S_{r_1}} \tau = -\int_{B_{r_1}} K\omega_1 \wedge \omega_2 + 2\pi I$$
$$= -\int_{B_{r_1}} K\sigma + 2\pi I$$

In (1) we let r_2 go to zero and by Lemma 2 we get some real number \overline{I} with:

$$\int_{S_{r_1}} \overline{\omega}_{12} - 2\pi \overline{I} = \int_{B_{r_1}} d\overline{\omega}_{12} = -\int_{B_{r_1}} K\overline{\omega}_1 \wedge \overline{\omega}_2$$
$$= -\int_{B_{r_1}} K\sigma$$

Thus $\overline{I} = I$. Since \overline{I} in Lemma 2 was independent from $\{e_1, e_2\}$, so I is.

Lemma 4. The definition of I does not depend on the chosen metric.

Proof Let \langle , \rangle^0 and \langle , \rangle^1 be two Riemannian metrics on M. Let , for $t \in [0, 1]$

$$\langle,\rangle^t := t \cdot \langle,\rangle^1 + (1-t) \langle,\rangle^0$$

Since \langle , \rangle^0 and \langle , \rangle^1 are Riemannian metrics on M, \langle , \rangle^t is also a Riemannian metric on M. Thus \langle , \rangle^t is a oneparameter family of metrics on M which starts with \langle , \rangle^0 and ends with \langle , \rangle^1 . Let I_0, I_t, I_1 be the corresponding indices. I_t is a continuous function of t. To prove this, we see that \overline{e}_{1_t} and \overline{e}_{2_t} of the corresponding moving frame $\{\overline{e}_{1_t}, \overline{e}_{2_t}\}$ of \langle , \rangle^t varies continuously with t, since

$$\overline{e}_{1_t} = \frac{X}{\sqrt{\langle X, X \rangle^t}} = \frac{X}{\sqrt{t \cdot \langle X, X \rangle^1 + (1-t) \langle X, X \rangle^0}}$$

Following the definitions $\overline{\omega}_{1_t}$ and $\overline{\omega}_{2_t}$ vary linearly with \overline{e}_{1_t} and \overline{e}_{2_t} and $\overline{\omega}_{12_t}$ varies linearly with $\overline{\omega}_{1_t}$ and $\overline{\omega}_{2_t}$. Hence $\overline{\omega}_{12_t}$ varies continuously with t. By Lemma 2 we conclude that I_t varies continuously with t. Since I_t is an Integer, it follows I_t is constant and $I_0 = I_1$.

4. The Theorems

Theorem 5. Let p_1, \ldots, p_k be the isolated singular points of X and I_1, \ldots, I_k their corresponding indices. For any Riemannian metric on M,

$$\int_{M} K\sigma = 2\pi \sum_{i=1}^{k} I_{i} =: 2\pi \cdot \chi(M)$$

K is the Gaussian curvature of the metric, σ its element of area. $\chi(M)$ is called the **Euler-Poincaré** characteristic of M.

Proof Let $\{\overline{e}_1, \overline{e}_2\}$ be the moving frame in $M - \bigcup_i \{p_i\}$ where $\overline{e}_1 = \frac{X}{|X|}$ and \overline{e}_2 is a unit vector field orthogonal to \overline{e}_1 in the orientation of M. Furthermore B_i will be a ball with center p_i and \overline{e}_2 is a unit vector field orthogonal no singular point other than p_i . Note that ∂B_i has the orientation induced by B_i which is opposite to the orientation of $M - B_i$, so by Lemma 2

$$\int_{M-\bigcup_{i}B_{i}} K\sigma = \int_{M-\bigcup_{i}B_{i}} K\overline{\omega}_{1} \wedge \overline{\omega}_{2} = -\int_{M-\bigcup_{i}B_{i}} d\overline{\omega}_{12} = \int_{\bigcup_{i}(\partial B_{i})} \overline{\omega}_{12} = \sum_{i} \int_{\partial B_{i}} \overline{\omega}_{12} \xrightarrow{r_{i} \to 0} 2\pi \sum_{i} I_{i} \quad \blacksquare$$

Theorem 6. Given an oriented, compact, two-dimensional differentiable manifold \mathcal{M} with boundary $\partial \mathcal{M}$, a differentiable vector field X on \mathcal{M} that is nowhere tangent to $\partial \mathcal{M}$, isolated singular points $p_1, \ldots, p_k \in \mathcal{M} \setminus \partial \mathcal{M}$ of X and their indices I_1, \ldots, I_k . Then for any Riemannian metric on \mathcal{M}

$$\int_{\mathcal{M}} K\sigma + \int_{\partial M} k_g ds = 2\pi \chi \left(\mathcal{M} \right)$$

 k_g is the geodesic curvature of $\partial \mathcal{M}$, ds the arc element of $\partial \mathcal{M}$.

Proof Choose a Riemannian metric on M and let $\{\overline{e}_1, \overline{e}_2\}$ be again the orthonormal oriented moving frame with $\overline{e}_1 = \frac{X}{|X|}$. Choose in a neighbourhood $V \subset M$ of ∂M another oriented orthonormal moving frame $\{e_1, e_2\}$ such that, restricted to ∂M , e_1 is tangent to ∂M . Let $i : \partial M \to M$ be the inclusion map and φ the angle between \overline{e}_1 and e_1 along ∂M . Since e_1 is parallel to ∂M we get from the proof of Proposition 4 in Chapter 5

$$i^*\overline{\omega}_{12} = i^*\omega_{12} + d\varphi \tag{2}$$

Let B_i be a ball of center p_i , such that B_i contains no other point than p_i . From Stokes Theorem we get:

$$\int_{M-\bigcup B_i} K\overline{\omega}_1 \wedge \overline{\omega}_2 = -\int_{M-\bigcup B_i} d\overline{\omega}_{12} = \int_{\bigcup \partial B_i} \overline{\omega}_{12} - \int_{\partial M} i^* \overline{\omega}_{12}$$
(3)

By (2) and the definition of k_g , we get

$$\int_{\partial M} i^* \overline{\omega}_{12} = \int_{\partial M} i^* \omega_{12} + \int_{\partial M} d\varphi = \int_{\partial M} k_g ds + \int_{\partial M} d\varphi = \int_{\partial M} k_g ds \tag{4}$$

 $\int_{\partial M} d\varphi$ has to be a 2π multiple and due to the fact that $\overline{e}_1 = \frac{X}{|X|}$ is nowhere tangent to ∂M , it is 0. Taking the limit when the radii of B_i goes to zero and combining (3) and (4), we obtain

$$\int_{\mathcal{M}} K\sigma + \int_{\partial M} k_g ds = 2\pi \chi \left(\mathcal{M} \right)$$