Spaces of Constant Curvature

1. Theorem of Cartan

Consider two n—dimensional manifolds M, M with curvature R and R respectively and points p € M and
p € M. Since M and M have the same dimension we find linear isometries between TpM and T, ,;M . Choose
a linear isometry i : T, (M) — Tj(M).

Let V' C M be a normal neighbourhood of p such that exp; is defined at ¢ o exp, (V). This is always
possible. To find such neighbourhood, we know from Proposition 2.9 in Chapter 3 that we always find a
normal neighbourhood V' of p . Let U be the neighbourhood in 7, M , such that exp,U = V. It is 0 € U and
since 1 is linear, we have 0 € i o exp™' (V) = i(U). Now exp; is defined in some set 0 € U C T;M. Finally, we
choose V small enough, such that i o exp, (V) C U and get the desired V C M.

We define
VoM
q — exp;oioexp,’ (q)

For every point ¢ € V' there exists a unique geodesic passing through p and ¢ since V' is a normal neighbourhood
of p. Due to Homogeinity of the geodesic we can consider this geodesic to be normalized. Let A : [0,¢] — M
with A(0) = p and A\(¢) = ¢ be that geodesic. Denote by P, the parallel transport along A from A(0) to A(¢).

Consider now the normalized geodesic A : [0,1] — M given by A(0) = 5, N'(0) = i(N(0)). Denote by P, the
parallel transport along A from A(0) to A(t). We define:

qf)t : Tq(M) — Tf(q)(M)

v PoioP7(v)
Theorem 1 (Cartan). With the setting above, if we have for every ¢ € V and all x,y,u,v € T,M:

(R(z,y)u,0) = (R (9:(2), ¢1(y)) $a(w), de(v)),
then f:V — f(V) is a local isometry and df, = i.
Proof. f is a local isometry iff for all ¢ € V' and all v,w € T, M:
(v, w)g = {dfg(v), dfg(w)) 5(q)
holds. Due to the identity

(v, w) =5 (I + wll® = flo = w]]?)

N | —

it is sufficient to show that for every ¢ € V' and every v € T, M

[vllg = lldfs(v)llq (1)

holds. For that we choose ¢ € V. Let A : [0,] — M be a normalized geodesic with A(0) = p and A\(I) = q.
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Let v € T,(M). By Proposition 3.9 in Chapter 5 there is a unique Jacobi field along A satisfying J(0) = 0
and J(I) = v. Now we choose an orthonormal basis {ey,...,e,} of T,M with e, = N (0). Denote by e;(t),

i € {1,...,n} the parallel transport of e; along A\. Now we can write

= Z a;(t)ei(t)

where q; is some differentiable function. Using the Jacobi equation at ¢t = 0, we conclude that for j € {1,...,n}

)+ Z (0)) €n(0),€;(0))a;( )+ Z (en,€i) en,ej)a;(0) =0

holds. Now we consider M. Let A : [0,1] — M be a normalized geodesic given by A(0) = p and N'(0) = i(X(0)).
Let ¢;(t) := é(e;(t)) and define a Vector field on M

= Zai(t)é t

with ¢ € [0,1]. J is the field along A given by J = ¢; o J By hypothesis

<R (Gn, 61') €n, 6j> = <R<én7 éz)én, é]>
holds and we conclude for j € {1,....,n}

"
aj + E en,ez )én, €)a; =0

So J is a Jacobi field along A with J(0) = ¢ o J(0) = 0. Since parallel transport is an isometry, ||.J(1)|| =

7D = [loll-

Due to (1) it is sufficient to proove

J(1) = dfy(v) = df,(J (1)) (2)

Since J and J are Jacobi fields along A and ) respectively and vanish at 0, we have from Corollary 2.5 of

Chapter 5 for t € [0,]

J(t) = (dexp,)en(o)(tJ'(0)),

J(t) = (dexpy),5 (o) (£J'(0)).

So J(I) = (dexp,)iv()(lJ'(0)) and therefore [.J'(0) = (dexpp);\}(o)((](l)) Consider J = ¢, o J for t = 0. We
have then ¢, = i since there is no parallel transport. We conclude J'(0) = i(.J’(0)) and finally

J(1) = (dexp,)ig (o) (1'(0)) = (dexp, )iz oli(J'(0)) = (d exp,)ig(0yi(1J'(0))
= (dexp, )i () 0@ 0 ((dexp,)v)  (J(1) = dfy(J(1))

Finally we have from (2) that (df),(v) = J(I) = ¢go J(I) = Pyoio Py o J(I) = Pyoio Py (v) = i(v) O
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2. Hyperbolic Space
Definition The Riemannian Manifold (H", g;;) is called the hyperbolic space of dimension n. The upper
half space is given by

H" ={(z1,...,2,) € R"; 2, > 0}

and the metric by

(51‘]‘
gij (I‘l, ...,$n> = x_g

Proposition 2. The hyperbolic space H™ is a complete simply connected Riemannian Manifold with constant

sectional curvature -1.
Proof. In the book. ]

Proposition 3. The straight lines perpendicular to the hyperplane x,, = 0, and the circles of H™ whose planes

are perpendicular to the hyperplane x,, = 0 and whose centers are in this hyperplane are the geodesics of H™.

3. Space Forms

Definition A space form is a complete Riemannian manifold with constant sectional curvature.

Theorem 4. Let M™ be a space form of Curvature K. Then the universal covering M of M, with the covering

metric, s 1somorphic to
1. H", i«f K = —1,
2. R", if K =0,
3. 8" if K=1

Lemma 5. Let M and N be connected Riemannian manifolds and fy,fo : M — N two local isometries.
Suppose that there is p € M such that fi (p) = fa(p) and (df1), = (df2),. Then fi = fo.

Proof. Let V' be a normal neighbourhood of p such that the restriction fi]y and fs|y are diffeomorphisms.
We define p := f{ ' o fy : V — V and have ¢(p) = p and dy, = id. It is f; = fo. In order to proove that, let
q € V. Since V is a normal neighbourhood of p, there exists a unique v € T, M such that exp,(v) = ¢. So it
is (q) = q.

Choose r € M now and let o : [0,1] — M, such that a(0) = p, a(1) = r. Since M is connected this is
well-defined. Consider

A= {t € [0,1]; fila(t)) = fo(a(t)) and (dft)a) = (df2)arn }

Since fi = foon V,sup A > 0. If t5 := sup A # 1, we start over the proof with the point p = «(ty) but get a
contradiction because then there is no normal neighbourhood around p. Therefore sup A = 1, hence f; = f5
on M. [
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Proof of the Theorem. By the covering map of the universal covering, we know that for each point in M we
have some neighbourhood that is homeomorphic to some neighbourhood in M. So M is a simply connected,
complete Riemannian manifold, with constant sectional curvature K, since these properties are all local.
Firstly, we consider the first two cases of the theorem an denote by A both H™ and R™. Choose some p € A,
p € M and a linear isometry i : T,(A) — T;(M). From the fact that A is a complete, simply connected
Riemannian manifold with non-positive sectional curvature, we conclude by the Theorem of Hadamard, that
exp, : T,(A) = A is a diffeomorphism and so exp, !is well defined on A. Since M is complete exp; is defined

on all T5(M). It follows, that also

f:A=M

q > exp; 07 0 eXp;I(q)

is well-defined. As we apply the Theorem of Cartan, f is a local isometry and df,(v) = i(v) for all v € T,A
and since 7 is an isometry, we have |df,(v)| = |v| and conclude by Lemma 3.3 of Chapter 7 that f is an
diffeomorphism which proves the first two cases.

For the spherical case, we fix p € S™, p € M and a linear isometry i : T,(5") — TZ;(M). Define
f= e><;p15oioexp1;1 ST —{q} > M
where ¢ € S™ is the antipodal point of p. Now choose p’ € S™ — {p, ¢} and set § = f(p'), ' = df,y and
f'i=expyoi’o exp;/1 S —{¢} > M

where ¢’ is the antipodal point of p’. Since S™ — ({¢} U {¢'}) = W is connected and

we conclude from the Lemma, that f = f’ on W. Define

f(T’) ,TES”—{Q}

g:S" — M,r—
{ f'(r) res”={q}

By the Theorem of Cartan g is a local isometry and by that a local diffeomorphism. ¢ is a covering map and

from Algebraic Topology, we know that g is a diffeomorphism and therefore g is an isometry. m

Definition Let G be a group and M be a set. G acts on M, if there is a map G x M — M, (g,z) — gz,
satistying for x € M and g1,92 € G

er = e, (9192)r = g1(g2)

The orbit of z € M is defined as Gz := {gz,g € G}. Denote by M /G := {Gz|x € M} the set of all orbits.
There exists a natural surjective 7 : M — M /G, x — Gz The action of G is transitive if Gz = M.

As from now, we consider M to be an Riemannian manifold and G := I' is supposed to be a subgroup of

isom(M) which acts in a totally discontinuos manner, meaning, for every = € M there is a neighbourhood
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U C M such that i(U)NU = @ for all i € T'— {id}. In this case, we know from algebraic topology, the natural
projection m : M ~— M/T is a regular map, so I' acts transitive on 7 1(p) and I" is the group of covering
transformations. From Chapter 0 we know that M /T" can be given a differentiable structure such that the
natural projection is a local diffeomorphism.

Additionally, we can define for every p € M/I" and every u,v € T,(M/T") an inner product
(u,v) = {dr " (u),dr " (v));

where p € 7 1(p). By definition 7 is a local isometry. This Riemannian metric is called the metric on M/T’
induced by the covering 7. Since we have that local isometry, M /T" is complete if and only if M is complete and
M /T has constant curvature K if and only if M has constant curbvature K. So M/T" is a for M = S™/R™/H"
a complete manifold of constant curvature 1/0/ — 1. The following proposition implies that there are no more
manifolds of that kind.

Proposition 6. Let M be a complete Riemannian manifold with constant sectional curvature K =1/0/ — 1.
Then M is isometric to M /T, where M = S™/R"/H™ and T is a subgroup of isom(M) which acts in a totally

disonctinuos manner on M. The metric on M /T is induced from the covering  : M — M/T.

Proof. Let p : M — M be the universal covering and provide M with the covering metric, that is, given a
q € M, choose ¢' € p~'(q) and set for u,v € TqM

(u,v) = (dp™ (u),dp™ (v))g

Let I be the group of covering transformations of the covering p. Then I' C isom(M) is a subgroup and acts
on M in a totally discontinuos manner. So, as described before, we can introduce on M /T the Riemannian

metric induced by the natural projection 7 : M — M /T'. From topology, we know, that p is regular and

p(@) =p(y) <= Ti =Ty < n(z) = n(7).
for #,i € M. So, the equivalence classes we get from p and = on M are the same and we get some bijection
VM — M /T such that @ = 1 op. 9 is a local isometry, since m and p are local isometries. Since v is a

bijection, it is an isometry of M onto M /L. O

Remark With the last proposition one can proove that every compact orientable surface of genus p > 1 can

be provided with a metric of constant negative curvature.
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