
Spaces of Constant Curvature

1. Theorem of Cartan

Consider two n−dimensional manifolds M, M̃ with curvature R and R̃ respectively and points p ∈ M and
p ∈ M̃ . Since M and M̃ have the same dimension we find linear isometries between TPM and Tp̃M̃ . Choose
a linear isometry i : Tp (M)→ Tp̃(M̃).
Let V ⊂ M be a normal neighbourhood of p such that expp̃ is defined at i ◦ exp−1p (V ). This is always

possible. To find such neighbourhood, we know from Proposition 2.9 in Chapter 3 that we always find a
normal neighbourhood V of p . Let U be the neighbourhood in TpM , such that expp U = V . It is 0 ∈ U and
since i is linear, we have 0 ∈ i ◦ exp−1(V ) = i(U). Now expp̃ is defined in some set 0 ∈ Ũ ⊂ Tp̃M̃ . Finally, we
choose V small enough, such that i ◦ exp−1p (V ) ⊂ Ũ and get the desired V ⊂M .
We define

f : V → M̃

q 7→ expp̃ ◦i ◦ exp−1p (q)

For every point q ∈ V there exists a unique geodesic passing through p and q since V is a normal neighbourhood
of p. Due to Homogeinity of the geodesic we can consider this geodesic to be normalized. Let λ : [0, t]→ M

with λ(0) = p and λ(t) = q be that geodesic. Denote by Pt the parallel transport along λ from λ(0) to λ(t).
Consider now the normalized geodesic λ̃ : [0, 1]→ M̃ given by λ̃(0) = p̃, λ̃′(0) = i(λ′(0)). Denote by P̃t the

parallel transport along λ̃ from λ̃(0) to λ̃(t). We define:

φt : Tq(M)→ Tf(q)(M̃)

v 7→ P̃t ◦ i ◦ P−1t (v)

Theorem 1 (Cartan). With the setting above, if we have for every q ∈ V and all x, y, u, v ∈ TqM :

〈R(x, y)u, v〉 = 〈R̃ (φt(x), φt(y))φt(u), φt(v)〉,

then f : V → f(V ) is a local isometry and dfp = i.

Proof. f is a local isometry iff for all q ∈ V and all v, w ∈ TqM :

〈v, w〉q = 〈dfq(v), dfq(w)〉f(q)

holds. Due to the identity

〈v, w〉 =
1

2

(
‖v‖2 + ‖w‖2 − ‖v − w‖2

)
it is sufficient to show that for every q ∈ V and every v ∈ TqM

‖v‖q = ‖dfq(v)‖q (1)

holds. For that we choose q ∈ V . Let λ : [0, l] → M be a normalized geodesic with λ(0) = p and λ(l) = q.
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Let v ∈ Tq(M). By Proposition 3.9 in Chapter 5 there is a unique Jacobi field along λ satisfying J(0) = 0

and J(l) = v. Now we choose an orthonormal basis {e1, ..., en} of TpM with en = λ′(0). Denote by ei(t),
i ∈ {1, ..., n} the parallel transport of ei along λ. Now we can write

J(t) =
n∑
i

ai(t)ei(t)

where ai is some differentiable function. Using the Jacobi equation at t = 0, we conclude that for j ∈ {1, ..., n}

a′′j (0) +
n∑
i

〈R (λ′(0), ei(0)) en(0), ej(0)〉ai(0) = a′′j (0) +
n∑
i

〈R (en, ei) en, ej〉ai(0) = 0

holds. Now we consider M̃ . Let λ̃ : [0, l] 7→ M̃ be a normalized geodesic given by λ̃(0) = p̃ and λ̃′(0) = i(λ′(0)).
Let ẽj(t) := φt(ej(t)) and define a Vector field on M̃

J̃(t) =
∑
i

ai(t)ẽi(t)

with t ∈ [0, l]. J̃ is the field along λ̃ given by J̃ = φt ◦ J By hypothesis

〈R (en, ei) en, ej〉 = 〈R̃(ẽn, ẽi)ẽn, ẽj〉

holds and we conclude for j ∈ {1, ..., n}

a′′j +
∑
i

〈R̃(ẽn, ẽi)ẽn, ẽj〉ai = 0

So J̃ is a Jacobi field along λ̃ with J̃(0) = φt ◦ J(0) = 0. Since parallel transport is an isometry, ‖J̃(l)‖ =

‖J(l)‖ = ‖v‖.
Due to (1) it is sufficient to proove

J̃(l) = dfq(v) = dfq(J(l)) (2)

Since J and J̃ are Jacobi fields along λ and λ̃ respectively and vanish at 0, we have from Corollary 2.5 of
Chapter 5 for t ∈ [0, l]

J(t) = (d expp)tλ′(0)(tJ
′(0)),

J̃(t) = (d expp̃)tλ̃′(0)(tJ̃
′(0)).

So J(l) = (d expp)lλ′(0)(lJ
′(0)) and therefore lJ ′(0) = (d expp)

−1
lλ′(0)(J(l)) Consider J̃ = φt ◦ J for t = 0. We

have then φ0 = i since there is no parallel transport. We conclude J̃ ′(0) = i(J ′(0)) and finally

J̃(l) = (d expp)lỹ′(0)(lJ̃
′(0)) = (d expp)lỹ′(0)li(J

′(0)) = (d expp)lỹ′(0)i(lJ
′(0))

= (d expp)lỹ′(0) ◦ i ◦
(
(d expp)lλ′(0))

−1(J(l)
)

= dfq(J(l))

Finally we have from (2) that (df)p(v) = J̃(l) = φ0 ◦ J(l) = P̃0 ◦ i ◦ P−10 ◦ J(l) = P̃0 ◦ i ◦ P−10 (v) = i(v)
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2. Hyperbolic Space

Definition The Riemannian Manifold (Hn, gij) is called the hyperbolic space of dimension n. The upper
half space is given by

Hn = {(x1, ..., xn) ∈ Rn;xn > 0}

and the metric by

gij (x1, ..., xn) =
δij
xnn

Proposition 2. The hyperbolic space Hn is a complete simply connected Riemannian Manifold with constant
sectional curvature -1.

Proof. In the book.

Proposition 3. The straight lines perpendicular to the hyperplane xn = 0, and the circles of Hn whose planes
are perpendicular to the hyperplane xn = 0 and whose centers are in this hyperplane are the geodesics of Hn.

3. Space Forms

Definition A space form is a complete Riemannian manifold with constant sectional curvature.

Theorem 4. Let Mn be a space form of Curvature K. Then the universal covering M̃ of M , with the covering
metric, is isomorphic to

1. Hn, if K = −1,

2. Rn, if K = 0,

3. Sn, if K = 1

Lemma 5. Let M and N be connected Riemannian manifolds and f1, f2 : M → N two local isometries.
Suppose that there is p ∈M such that f1 (p) = f2(p) and (df1)p = (df2)p. Then f1 = f2.

Proof. Let V be a normal neighbourhood of p such that the restriction f1|V and f2|V are diffeomorphisms.
We define ϕ := f−11 ◦ f2 : V → V and have ϕ(p) = p and dϕp = id. It is f1 = f2. In order to proove that, let
q ∈ V . Since V is a normal neighbourhood of p, there exists a unique v ∈ TpM such that expp(v) = q. So it
is ϕ(q) = q.

Choose r ∈ M now and let α : [0, 1] → M , such that α(0) = p, α(1) = r. Since M is connected this is
well-defined. Consider

A := {t ∈ [0, 1]; f1(α(t)) = f2(α(t)) and (df1)α(t) = (df2)α(t)}

Since f1 = f2 on V , supA > 0. If t0 := supA 6= 1, we start over the proof with the point p = α(t0) but get a
contradiction because then there is no normal neighbourhood around p. Therefore supA = 1, hence f1 = f2

on M .
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Proof of the Theorem. By the covering map of the universal covering, we know that for each point in M̃ we
have some neighbourhood that is homeomorphic to some neighbourhood in M . So M̃ is a simply connected,
complete Riemannian manifold, with constant sectional curvature K, since these properties are all local.
Firstly, we consider the first two cases of the theorem an denote by ∆ both Hn and Rn. Choose some p ∈ ∆,
p̃ ∈ M̃ and a linear isometry i : Tp(∆) → Tp̃(M̃). From the fact that ∆ is a complete, simply connected
Riemannian manifold with non-positive sectional curvature, we conclude by the Theorem of Hadamard, that
expp : Tp(∆)→ ∆ is a diffeomorphism and so exp−1p is well defined on ∆. Since M̃ is complete expp̃ is defined
on all Tp̃(M̃). It follows, that also

f : ∆→ M̃

q 7→ expp̃ ◦i ◦ exp−1p (q)

is well-defined. As we apply the Theorem of Cartan, f is a local isometry and dfp(v) = i(v) for all v ∈ Tp∆
and since i is an isometry, we have |dfp(v)| = |v| and conclude by Lemma 3.3 of Chapter 7 that f is an
diffeomorphism which proves the first two cases.
For the spherical case, we fix p ∈ Sn, p̃ ∈ M̃ and a linear isometry i : Tp(S

n)→ Tp̃(M̃). Define

f := expp̃ ◦i ◦ exp−1p : Sn − {q} → M̃

where q ∈ Sn is the antipodal point of p. Now choose p′ ∈ Sn − {p, q} and set p̃′ = f(p′), i′ = dfp′ and

f ′ := expp̃′ ◦i′ ◦ exp−1p′ : Sn − {q′} → M̃

where q′ is the antipodal point of p′. Since Sn − ({q} ∪ {q′}) = W is connected and

f(p′) = p̃′ = f ′(p′), dfp′ = i′ = df ′p′

we conclude from the Lemma, that f = f ′ on W. Define

g : Sn → M̃, r 7→

{
f(r) , r ∈ Sn − {q}
f ′(r) , r ∈ Sn − {q′}

By the Theorem of Cartan g is a local isometry and by that a local diffeomorphism. g is a covering map and
from Algebraic Topology, we know that g is a diffeomorphism and therefore g is an isometry.

Definition Let G be a group and M be a set. G acts on M , if there is a map G ×M → M , (g, x) 7→ gx,
satisfying for x ∈M and g1, g2 ∈ G

ex = e, (g1g2)x = g1(g2x)

The orbit of x ∈M is defined as Gx := {gx, g ∈ G}. Denote by M/G := {Gx|x ∈M} the set of all orbits.
There exists a natural surjective π : M →M/G, x 7→ Gx The action of G is transitive if Gx = M .

As from now, we consider M to be an Riemannian manifold and G := Γ is supposed to be a subgroup of
isom(M) which acts in a totally discontinuos manner, meaning, for every x ∈ M there is a neighbourhood
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U ⊂M such that i(U)∩U = ∅ for all i ∈ Γ−{id}. In this case, we know from algebraic topology, the natural
projection π : M 7→ M/Γ is a regular map, so Γ acts transitive on π−1(p) and Γ is the group of covering
transformations. From Chapter 0 we know that M/Γ can be given a differentiable structure such that the
natural projection is a local diffeomorphism.
Additionally, we can define for every p ∈M/Γ and every u, v ∈ Tp(M/Γ) an inner product

〈u, v〉 := 〈dπ−1(u), dπ−1(v)〉p̃

where p̃ ∈ π−1(p). By definition π is a local isometry. This Riemannian metric is called the metric on M/Γ

induced by the covering π. Since we have that local isometry,M/Γ is complete if and only ifM is complete and
M/Γ has constant curvature K if and only if M has constant curbvature K. So M/Γ is a for M = Sn/Rn/Hn

a complete manifold of constant curvature 1/0/−1. The following proposition implies that there are no more
manifolds of that kind.

Proposition 6. Let M be a complete Riemannian manifold with constant sectional curvature K = 1/0/− 1.
Then M is isometric to M̃/Γ, where M̃ = Sn/Rn/Hn and Γ is a subgroup of isom(M̃) which acts in a totally
disonctinuos manner on M̃ . The metric on M̃/Γ is induced from the covering π : M̃ → M̃/Γ.

Proof. Let p : M̃ → M be the universal covering and provide M̃ with the covering metric, that is, given a
q ∈M , choose q′ ∈ p−1(q) and set for u, v ∈ TqM̃

〈u, v〉 = 〈dp−1(u), dp−1(v)〉q′

Let Γ be the group of covering transformations of the covering p. Then Γ ⊂ isom(M̃) is a subgroup and acts
on M̃ in a totally discontinuos manner. So, as described before, we can introduce on M̃/Γ the Riemannian
metric induced by the natural projection π : M̃ → M̃/Γ. From topology, we know, that p is regular and

p(x̃) = p(ỹ)⇐⇒ Γx̃ = Γỹ ⇐⇒ π(x̃) = π(ỹ).

for x̃, ỹ ∈ M̃ . So, the equivalence classes we get from p and π on M̃ are the same and we get some bijection
ψ : M → M̃/Γ such that π = ψ ◦ p. ψ is a local isometry, since π and p are local isometries. Since ψ is a
bijection, it is an isometry of M onto M̃/Γ.

Remark With the last proposition one can proove that every compact orientable surface of genus p > 1 can
be provided with a metric of constant negative curvature.
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