Spaces of Constant Curvature

1. Theorem of Cartan

Consider two *n*-dimensional manifolds M, \tilde{M} with curvature R and \tilde{R} respectively and points $p \in M$ and $p \in \tilde{M}$. Since M and \tilde{M} have the same dimension we find linear isometries between $T_P M$ and $T_{\tilde{p}}\tilde{M}$. Choose a linear isometry $i: T_p(M) \to T_{\tilde{p}}(\tilde{M})$.

Let $V \subset M$ be a normal neighbourhood of p such that $\exp_{\tilde{p}}$ is defined at $i \circ \exp_{p}^{-1}(V)$. This is always possible. To find such neighbourhood, we know from Proposition 2.9 in Chapter 3 that we always find a normal neighbourhood V of p. Let U be the neighbourhood in $T_{p}M$, such that $\exp_{p}U = V$. It is $0 \in U$ and since i is linear, we have $0 \in i \circ \exp^{-1}(V) = i(U)$. Now $\exp_{\tilde{p}}$ is defined in some set $0 \in \tilde{U} \subset T_{\tilde{p}}\tilde{M}$. Finally, we choose V small enough, such that $i \circ \exp_{p}^{-1}(V) \subset \tilde{U}$ and get the desired $V \subset M$.

We define

$$f: V \to \tilde{M}$$
$$q \mapsto \exp_{\tilde{p}} \circ i \circ \exp_{p}^{-1}(q)$$

For every point $q \in V$ there exists a unique geodesic passing through p and q since V is a normal neighbourhood of p. Due to Homogeinity of the geodesic we can consider this geodesic to be normalized. Let $\lambda : [0, t] \to M$ with $\lambda(0) = p$ and $\lambda(t) = q$ be that geodesic. Denote by P_t the parallel transport along λ from $\lambda(0)$ to $\lambda(t)$.

Consider now the normalized geodesic $\tilde{\lambda} : [0, 1] \to \tilde{M}$ given by $\tilde{\lambda}(0) = \tilde{p}, \tilde{\lambda}'(0) = i(\lambda'(0))$. Denote by \tilde{P}_t the parallel transport along $\tilde{\lambda}$ from $\tilde{\lambda}(0)$ to $\tilde{\lambda}(t)$. We define:

$$\phi_t : T_q(M) \to T_{f(q)}(\tilde{M})$$
$$v \mapsto \tilde{P}_t \circ i \circ P_t^{-1}(v)$$

Theorem 1 (Cartan). With the setting above, if we have for every $q \in V$ and all $x, y, u, v \in T_qM$:

$$\langle R(x,y)u,v\rangle = \langle \tilde{R}(\phi_t(x),\phi_t(y))\phi_t(u),\phi_t(v)\rangle,$$

then $f: V \to f(V)$ is a local isometry and $df_p = i$.

Proof. f is a local isometry iff for all $q \in V$ and all $v, w \in T_qM$:

$$\langle v, w \rangle_q = \langle df_q(v), df_q(w) \rangle_{f(q)}$$

holds. Due to the identity

$$\langle v, w \rangle = \frac{1}{2} \left(\|v\|^2 + \|w\|^2 - \|v - w\|^2 \right)$$

it is sufficient to show that for every $q \in V$ and every $v \in T_q M$

$$\|v\|_{q} = \|df_{q}(v)\|_{q} \tag{1}$$

holds. For that we choose $q \in V$. Let $\lambda : [0, l] \to M$ be a normalized geodesic with $\lambda(0) = p$ and $\lambda(l) = q$.

Let $v \in T_q(M)$. By Proposition 3.9 in Chapter 5 there is a unique Jacobi field along λ satisfying J(0) = 0and J(l) = v. Now we choose an orthonormal basis $\{e_1, ..., e_n\}$ of T_pM with $e_n = \lambda'(0)$. Denote by $e_i(t)$, $i \in \{1, ..., n\}$ the parallel transport of e_i along λ . Now we can write

$$J(t) = \sum_{i}^{n} a_i(t) e_i(t)$$

where a_i is some differentiable function. Using the Jacobi equation at t = 0, we conclude that for $j \in \{1, ..., n\}$

$$a_j''(0) + \sum_i^n \langle R(\lambda'(0), e_i(0)) e_n(0), e_j(0) \rangle a_i(0) = a_j''(0) + \sum_i^n \langle R(e_n, e_i) e_n, e_j \rangle a_i(0) = 0$$

holds. Now we consider \tilde{M} . Let $\tilde{\lambda} : [0, l] \mapsto \tilde{M}$ be a normalized geodesic given by $\tilde{\lambda}(0) = \tilde{p}$ and $\tilde{\lambda}'(0) = i(\lambda'(0))$. Let $\tilde{e}_j(t) := \phi_t(e_j(t))$ and define a Vector field on \tilde{M}

$$\tilde{J}(t) = \sum_{i} a_i(t)\tilde{e}_i(t)$$

with $t \in [0, l]$. \tilde{J} is the field along $\tilde{\lambda}$ given by $\tilde{J} = \phi_t \circ J$ By hypothesis

$$\langle R(e_n, e_i) e_n, e_j \rangle = \langle \hat{R}(\tilde{e}_n, \tilde{e}_i) \tilde{e}_n, \tilde{e}_j \rangle$$

holds and we conclude for $j \in \{1, ..., n\}$

$$a_j'' + \sum_i \langle \tilde{R}(\tilde{e}_n, \tilde{e}_i)\tilde{e}_n, \tilde{e}_j \rangle a_i = 0$$

So \tilde{J} is a Jacobi field along $\tilde{\lambda}$ with $\tilde{J}(0) = \phi_t \circ J(0) = 0$. Since parallel transport is an isometry, $\|\tilde{J}(l)\| = \|J(l)\| = \|v\|$.

Due to (1) it is sufficient to proove

$$\tilde{J}(l) = df_q(v) = df_q(J(l))$$
(2)

Since J and \tilde{J} are Jacobi fields along λ and $\tilde{\lambda}$ respectively and vanish at 0, we have from Corollary 2.5 of Chapter 5 for $t \in [0, l]$

$$J(t) = (d \exp_p)_{t\lambda'(0)}(tJ'(0)),$$

$$\tilde{J}(t) = (d \exp_{\tilde{p}})_{t\tilde{\lambda}'(0)}(t\tilde{J}'(0)).$$

So $J(l) = (d \exp_p)_{l\lambda'(0)}(lJ'(0))$ and therefore $lJ'(0) = (d \exp_p)_{l\lambda'(0)}^{-1}(J(l))$ Consider $\tilde{J} = \phi_t \circ J$ for t = 0. We have then $\phi_0 = i$ since there is no parallel transport. We conclude $\tilde{J}'(0) = i(J'(0))$ and finally

$$\tilde{J}(l) = (d \exp_p)_{l\tilde{y}'(0)}(l\tilde{J}'(0)) = (d \exp_p)_{l\tilde{y}'(0)}li(J'(0)) = (d \exp_p)_{l\tilde{y}'(0)}i(lJ'(0))$$
$$= (d \exp_p)_{l\tilde{y}'(0)} \circ i \circ ((d \exp_p)_{l\lambda'(0)})^{-1}(J(l)) = df_q(J(l))$$

Finally we have from (2) that $(df)_p(v) = \tilde{J}(l) = \phi_0 \circ J(l) = \tilde{P}_0 \circ i \circ P_0^{-1} \circ J(l) = \tilde{P}_0 \circ i \circ P_0^{-1}(v) = i(v)$

2. Hyperbolic Space

Definition The Riemannian Manifold (H^n, g_{ij}) is called the **hyperbolic space** of dimension *n*. The **upper** half space is given by

$$H^{n} = \{(x_{1}, ..., x_{n}) \in \mathbb{R}^{n}; x_{n} > 0\}$$

and the metric by

$$g_{ij}\left(x_1,...,x_n\right) = \frac{\delta_{ij}}{x_n^n}$$

Proposition 2. The hyperbolic space H^n is a complete simply connected Riemannian Manifold with constant sectional curvature -1.

Proof. In the book.

Proposition 3. The straight lines perpendicular to the hyperplane $x_n = 0$, and the circles of H^n whose planes are perpendicular to the hyperplane $x_n = 0$ and whose centers are in this hyperplane are the geodesics of H^n .

3. Space Forms

Definition A **space form** is a complete Riemannian manifold with constant sectional curvature.

Theorem 4. Let M^n be a space form of Curvature K. Then the universal covering \tilde{M} of M, with the covering metric, is isomorphic to

- 1. H^n , if K = -1,
- 2. \mathbb{R}^n , if K = 0,
- 3. S^n , if K = 1

Lemma 5. Let M and N be connected Riemannian manifolds and $f_1, f_2 : M \to N$ two local isometries. Suppose that there is $p \in M$ such that $f_1(p) = f_2(p)$ and $(df_1)_p = (df_2)_p$. Then $f_1 = f_2$.

Proof. Let V be a normal neighbourhood of p such that the restriction $f_1|_V$ and $f_2|_V$ are diffeomorphisms. We define $\varphi := f_1^{-1} \circ f_2 : V \to V$ and have $\varphi(p) = p$ and $d\varphi_p = id$. It is $f_1 = f_2$. In order to prove that, let $q \in V$. Since V is a normal neighbourhood of p, there exists a unique $v \in T_pM$ such that $\exp_p(v) = q$. So it is $\varphi(q) = q$.

Choose $r \in M$ now and let $\alpha : [0,1] \to M$, such that $\alpha(0) = p$, $\alpha(1) = r$. Since M is connected this is well-defined. Consider

$$A := \{t \in [0,1]; f_1(\alpha(t)) = f_2(\alpha(t)) \text{ and } (df_1)_{\alpha(t)} = (df_2)_{\alpha(t)}\}$$

Since $f_1 = f_2$ on V, $\sup A > 0$. If $t_0 := \sup A \neq 1$, we start over the proof with the point $p = \alpha(t_0)$ but get a contradiction because then there is no normal neighbourhood around p. Therefore $\sup A = 1$, hence $f_1 = f_2$ on M.

Proof of the Theorem. By the covering map of the universal covering, we know that for each point in \tilde{M} we have some neighbourhood that is homeomorphic to some neighbourhood in M. So \tilde{M} is a simply connected, complete Riemannian manifold, with constant sectional curvature K, since these properties are all local. Firstly, we consider the first two cases of the theorem an denote by Δ both H^n and \mathbb{R}^n . Choose some $p \in \Delta$, $\tilde{p} \in \tilde{M}$ and a linear isometry $i : T_p(\Delta) \to T_{\tilde{p}}(\tilde{M})$. From the fact that Δ is a complete, simply connected Riemannian manifold with non-positive sectional curvature, we conclude by the Theorem of Hadamard, that $\exp_p : T_p(\Delta) \to \Delta$ is a diffeomorphism and so \exp_p^{-1} is well defined on Δ . Since \tilde{M} is complete $\exp_{\tilde{p}}$ is defined on all $T_{\tilde{p}}(\tilde{M})$. It follows, that also

$$f: \Delta \to \tilde{M}$$
$$q \mapsto \exp_{\tilde{p}} \circ i \circ \exp_{p}^{-1}(q)$$

is well-defined. As we apply the Theorem of Cartan, f is a local isometry and $df_p(v) = i(v)$ for all $v \in T_p\Delta$ and since i is an isometry, we have $|df_p(v)| = |v|$ and conclude by Lemma 3.3 of Chapter 7 that f is an diffeomorphism which proves the first two cases.

For the spherical case, we fix $p \in S^n$, $\tilde{p} \in \tilde{M}$ and a linear isometry $i: T_p(S^n) \to T_{\tilde{p}}(\tilde{M})$. Define

$$f := \exp_{\tilde{p}} \circ i \circ \exp_{p}^{-1} : S^{n} - \{q\} \to \tilde{M}$$

where $q \in S^n$ is the antipodal point of p. Now choose $p' \in S^n - \{p, q\}$ and set $\tilde{p}' = f(p'), i' = df_{p'}$ and

$$f' := \exp_{\tilde{p}'} \circ i' \circ \exp_{p'}^{-1} : S^n - \{q'\} \to \tilde{M}$$

where q' is the antipodal point of p'. Since $S^n - (\{q\} \cup \{q'\}) = W$ is connected and

$$f(p') = \tilde{p}' = f'(p'),$$
 $df_{p'} = i' = df'_{p'}$

we conclude from the Lemma, that f = f' on W. Define

$$g: S^n \to \tilde{M}, r \mapsto \begin{cases} f(r) & , r \in S^n - \{q\} \\ f'(r) & , r \in S^n - \{q'\} \end{cases}$$

By the Theorem of Cartan g is a local isometry and by that a local diffeomorphism. g is a covering map and from Algebraic Topology, we know that g is a diffeomorphism and therefore g is an isometry.

Definition Let G be a group and M be a set. G acts on M, if there is a map $G \times M \to M$, $(g, x) \mapsto gx$, satisfying for $x \in M$ and $g_1, g_2 \in G$

$$ex = e,$$
 $(g_1g_2)x = g_1(g_2x)$

The orbit of $x \in M$ is defined as $Gx := \{gx, g \in G\}$. Denote by $M/G := \{Gx | x \in M\}$ the set of all orbits. There exists a natural surjective $\pi : M \to M/G, x \mapsto Gx$ The action of G is transitive if Gx = M.

As from now, we consider M to be an Riemannian manifold and $G := \Gamma$ is supposed to be a subgroup of isom(M) which acts in a totally discontinuous manner, meaning, for every $x \in M$ there is a neighbourhood

 $U \subset M$ such that $i(U) \cap U = \emptyset$ for all $i \in \Gamma - \{id\}$. In this case, we know from algebraic topology, the natural projection $\pi : M \mapsto M/\Gamma$ is a regular map, so Γ acts transitive on $\pi^{-1}(p)$ and Γ is the group of covering transformations. From Chapter 0 we know that M/Γ can be given a differentiable structure such that the natural projection is a local diffeomorphism.

Additionally, we can define for every $p \in M/\Gamma$ and every $u, v \in T_p(M/\Gamma)$ an inner product

$$\langle u, v \rangle := \langle d\pi^{-1}(u), d\pi^{-1}(v) \rangle_{\tilde{p}}$$

where $\tilde{p} \in \pi^{-1}(p)$. By definition π is a local isometry. This Riemannian metric is called the metric on M/Γ induced by the covering π . Since we have that local isometry, M/Γ is complete if and only if M is complete and M/Γ has constant curvature K if and only if M has constant curbvature K. So M/Γ is a for $M = S^n/\mathbb{R}^n/H^n$ a complete manifold of constant curvature 1/0/-1. The following proposition implies that there are no more manifolds of that kind.

Proposition 6. Let M be a complete Riemannian manifold with constant sectional curvature K = 1/0/-1. Then M is isometric to \tilde{M}/Γ , where $\tilde{M} = S^n/\mathbb{R}^n/H^n$ and Γ is a subgroup of $isom(\tilde{M})$ which acts in a totally disonctinuos manner on \tilde{M} . The metric on \tilde{M}/Γ is induced from the covering $\pi : \tilde{M} \to \tilde{M}/\Gamma$.

Proof. Let $p: \tilde{M} \to M$ be the universal covering and provide \tilde{M} with the covering metric, that is, given a $q \in M$, choose $q' \in p^{-1}(q)$ and set for $u, v \in T_q \tilde{M}$

$$\langle u, v \rangle = \langle dp^{-1}(u), dp^{-1}(v) \rangle_{q'}$$

Let Γ be the group of covering transformations of the covering p. Then $\Gamma \subset isom(\tilde{M})$ is a subgroup and acts on \tilde{M} in a totally discontinuous manner. So, as described before, we can introduce on \tilde{M}/Γ the Riemannian metric induced by the natural projection $\pi : \tilde{M} \to \tilde{M}/\Gamma$. From topology, we know, that p is regular and

$$p(\tilde{x}) = p(\tilde{y}) \iff \Gamma \tilde{x} = \Gamma \tilde{y} \iff \pi(\tilde{x}) = \pi(\tilde{y}).$$

for $\tilde{x}, \tilde{y} \in \tilde{M}$. So, the equivalence classes we get from p and π on \tilde{M} are the same and we get some bijection $\psi: M \to \tilde{M}/\Gamma$ such that $\pi = \psi \circ p$. ψ is a local isometry, since π and p are local isometries. Since ψ is a bijection, it is an isometry of M onto \tilde{M}/Γ .

Remark With the last proposition one can prove that every compact orientable surface of genus p > 1 can be provided with a metric of constant negative curvature.