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The present paper contains notes of my talk given in the seminar Hyperbolic
geometry, symmetry groups, and more organized by Prof. Dr. Anna Wienhard
and Dr. Gye-Seon Lee in the winter term 2013/2014. It is based on publications
of Xin Nie [Nie] and Yves Benoist [Ben01], [Ben02].

Let Λ be a group generated by reflections with respect to the faces of a
triangle P ⊂ H2. The group Λ shall admit the presentation

< r1, r2, r3 | {(rirj)mij : i, j ∈ {1, 2, 3}} >,

where mji = mij ∈ {2, 3, 4, ...} with mii = 1 and 1
m12

+ 1
m13

+ 1
m23

< 1. Denote
this presentation by Γ0. We want to study the space

FΓ0 = {ρ ∈Hom(Γ0, G) faithful with discrete image Γ := ρ(Γ0)

dividing a properly convex open set Ωρ ⊂ S2},

where G is the group of projective transformations of the projective sphere S2.
The group Γ divides Ω if its action on Ω is proper and cocompact. The group
G acts on FΓ0

by conjugation and we can define the quotient

XΓ0 = G�
FΓ0 .

Our goal is to sketch a proof of the following proposition:

Proposition 1. If all mij are not equal to 2 then XΓ0 is homeomorphic to R+.
Otherwise it is homeomorphic to a point.

If XΓ0
is homeomorphic to R+ then there is a one-parameter family of rep-

resentations {ρt}t∈R+
such that, if Ωt is the convex open set associated to ρt,

then Ωt converges to P when t tends to 0 or ∞. This fact is being illustrated
in Figure 1.
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Figure 1: Deformation of Ωt, where Γ0 is the (4, 4, 4)-triangle group. The plots
were created with SAGE [S+09]. The source code is included in the appendix.
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In order to study the space XΓ0
, we need to know more about projective

reflections and find conditions that tell us when the translates of a triangle under
the action of the group generated by the reflections with respect to its faces tile
a convex subset of S2.

Definition. Let V := R3.

1. The projective sphere is the set S2 = S(V ) := (V − {0})/R+.

2. The group of its projective transformations is G := SL±(3,R).

3. A reflection σ is an element of order 2 in G which is the identity on a
hyperplane.

All projective reflections are of the form σ = σα,v := Id − α ⊗ v for some
linear form α ∈ V ∗ and v ∈ V with α(v) = 2. We have σ|ker(α) = Idker(α), and
σ(v) = −v. The action on S2 is defined by σ(x) = x− α(x)v.

Definition. A subset Ω ⊆ S2 is convex if its intersection with any great circle
is connected. It is properly convex if it is convex and its closure Ω does not
contain two opposite points.

Lemma 2. Let σ1 = σα1,v1 and σ2 = σα2,v2 be distinct projective reflections,
let ∆ be the group they generate, and define a12 := α1(v2) and a21 := α2(v1).
Let L be the intersection of the two half-spheres α1 ≤ 0 and α2 ≤ 0.

1. If a12 > 0 or a21 > 0 then the δ(L), δ ∈ ∆, do not tile any subset of S2.

2. Suppose now a12 ≤ 0 and a21 ≤ 0. Consider the following cases:

(a) a12a21 = 0. If both a12 and a21 are equal to 0 then the product is of
order 2, and the δ(L) tile S2. Otherwise they do not tile.

(b) 0 < a12a21 < 4. The product σ1σ2 is a rotation of angle θ given by
4 cos( θ2 )2 = a12a21. If θ = 2π/m for some integer m ≥ 2 then σ1σ2

is of order m, and the δ(L) tile S2. Otherwise they do not tile.

Proof. See Proposition 6 in [Vin].

Let σi := Id−αi⊗vi, i = 1, 2, 3, be projective reflections, let Γ be the group
they generate and define aij := αi(vj) for all i, j = 1, 2, 3. According to Lemma
2, if we want the images γ(P ) of the triangle P , which is the intersection of
the half-spheres αi ≤ 0, to tile some subset of S2, the following conditions are
necessary: For all i 6= j we have

1. aij and aji are either both negative or both 0,

2. aijaji = 4 cos( π
mij

)2 with an integer mij ≥ 2.

The next theorem due to Tits and Vinberg is the key to understand XΓ0
. It

says that the conditions given above are not only necessary, but also sufficient.
Further information on this theorem can be found in [Ben02].

3



Theorem 3. Let P ⊂ S2 be a triangle, and for each face i of P , let σi =
Id − αi ⊗ vi be a projective reflection fixing the face i. Suppose that P is the
intersection of the half-spheres αi ≤ 0 and that the projective reflections satisfy

1. aij and aji are either both negative or both 0, and

2. aijaji = 4 cos( π
mij

)2 with an integer mij ≥ 2.

Then

1. the group Γ generated by the reflections σi is discrete,

2. the triangles γ(P ), γ ∈ Γ, tile a convex subset Ω ⊂ S2, and

3. the morphism σ : Γ0 → Γ given by σ(ri) = σi is an isomorphism.

We outline the idea of the proof of Theorem 3. Define an abstract space X
by glueing copies of P indexed by Γ0 together along their edges and show that
this space is convex. A bijection from X into Ω =

⋃
γ∈Γ γ(P ) yields the desired

properties.
Define X := Γ0 × P/∼. The equivalence relation is generated by

(γ, p) ∼ (γ′, p′) if p′ = p and γ−1γ′ ∈ Γp,

where Γp is the group generated by the σi such that p is contained in the face
i. Furthermore, define

π : X → S2, π(γ, p) = γp.

We need the notion of a segment in order to determine, whether a space is
convex.

Definition. 1. A subset S ⊂ S2 is called a segment if S̊ is a 1-dimensional
convex subset.

2. For every x, y ∈ X, a segment [x, y] is a compact subset of X such that
the restriction of π to [x, y] is a homeomorphism onto some segment of S2

with endpoints π(x) and π(y).

Lemma 4. For every x, x′ ∈ X there exists at least one segment [x, x′].

Lemma 5. The map π : X → Ω is bijective and Ω is convex.

Proof. According to the previous lemma, there is a segment [x, x′] for all x, x′ ∈
X. Hence, if π(x) = π(x′), then x = x′ (see the definition of a segment in X).
This proves that π : X → Ω is bijective (the map is surjective because of the
definition of Ω). Since π : X → Ω is bijective, all pairs of points in Ω can be
joined by a segment. Therefore Ω is convex.

This concludes the proof of Theorem 3, since the statements 2. and 3. follow
from Lemma 5, and 1. follows from 2.

Lemma 6. The following statements are equivalent:

1. For every vertex x of P , the group Γx is finite.
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2. The convex set Ω is open.

Note that under these conditions Γ divides Ω. Hence, to be sure that the
translates γ(P ) tile some open convex set, it is enough to check local conditions
around each vertex of the triangle.

According to [Ben01] the set Ω is properly convex if the vectors vi generate
V and the linear forms αi generate V ∗.

Now, we will identify the quotient space XΓ0
with a quotient space of ma-

trices M̄/∼. Let ρ ∈ FΓ0
and Γ = ρ(Γ0), then, according to Theorem 3, Γ

is generated by projective reflections σi, satisfying the conditions stated in the
theorem. Hence, ρ can be identified with a 3× 3 matrix A = (aij), with aii = 2
for i = 1, 2, 3 and aij ≤ 0 for i 6= j. Two representations Γ1 = ρ1(Γ0) and
Γ2 = ρ2(Γ0), that are given by A1 and A2, are conjugate by a projective trans-
formation if and only if A1 and A2 are conjugate by a matrix diag(λ1, λ2, λ3)
with λi > 0.

Conversely, let M̄ be the set of all 3 × 3 matrices A such that its entries
aij satisfy the conditions given in Theorem 3. Define an equivalence relation
as follows: A1 and A2 in M̄ are equivalent if they are conjugate by a matrix
diag(λ1, λ2, λ3) with λi > 0. Let M := M̄/∼. As every A ∈ M̄ yields a
representation ρ : Γ0 → G in FΓ0

, we have

XΓ0
∼= M.

Now, it suffices to prove Proposition 1 for the quotient space M . Therefore,
we need to introduce cyclic products.

Definition. Let A = (aij) be an n × n matrix and let 1 ≤ i1, ..., ik ≤ n with
k ≥ 1 be an ordered set of pairwise distinct indices. Then ai1i2ai2i3 ...aik−1ikaiki1
is a cyclic product of length k.

Lemma 7. Let A = (aij) be an 3 × 3 matrix satisfying the condition that for
any i we have aii 6= 0 and for any i 6= j, aij = 0 if and only if aji = 0. Let B
satisfy the same condition. We say A ∼ B if there are λi 6= 0 such that

diag(λ1, .., λ3)Adiag(λ1, .., λ3)−1 = B.

Then, A ∼ B if and only if for any ordered subset {i1, ..., ik} ⊆ {1, ..., 3} we
have

ai1i2 ...aik−1ikaiki1 = bi1i2 ...bik−1ikbiki1 .

Proof. See Lemma 1 in [Nie]. Suppose A ∼ B. Then a11 λ1a12λ
−1
2 λ1a13λ

−1
3

λ2a21λ
−1
1 a22 λ2a23λ

−1
3

λ3a31λ
−1
3 λ1a32λ

−1
2 a33

 =

b11 b12 b13

b21 b22 b23

b31 b32 b33


and all cyclic products coincide.

Now, suppose that all cyclic products with the same indices coincide. We
say that a matrix A is reducible if A can be put into block-diagonal form (one
may have to reorder the basis). Otherwise A is irreducible.
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The hypothesis on A and B implies that aii = bii and aij = 0 if and only
if bij = 0 for any i 6= j (consider cyclic products of length 1 or 2). Hence,
if necessary after a reordering of basis, the matrices A and B can be put into
block-diagonal form with irreducible blocks, and the rth block of A has the
same size as the rth block of B. Therefore, A and B are conjugate via diagonal
matrices if and only if their blocks are. Hence, in the following we can assume
that A and B are irreducible.

Let λ1 = 1. Irreducibility implies that for λ2 and λ3 we can choose

λ2 =

{
b23b31
a23a31

or
b21
a21

and λ3 =

{
b32b21
a32a21

or
b31
a31

Consider λ2: If a12 = 0 then a13 6= 0 and a32 6= 0, because otherwise A can be
put into block-diagonal form with more than one block. If a13 = 0 or a32 = 0,
then a12 6= 0 for the same reason.

It remains to check that the value of λ2 and λ3 does not depend on our
choice. For λ2 we have

b23b31

a23a31
=
a12

b12
=
b21

a21
,

where we used the fact that cyclic products of the same set of indices coincide.
The proof for λ3 works in the same way. It is a straightforward calculation to
show that A ∼ B for this choice of λi.

Proof of Proposition 1. Confer [Nie]. Let A,B ∈ M̄ . We differ two cases:

1. There are indices i, j such that mij = 2. Then, cyclic products of length

• one are diagonal entries, which are equal to 2,

• two are determined by the conditions given in Theorem 3, and

• three are equal to 0.

Hence, according to Lemma 7, it follows that A ∼ B.

2. For all i, j we have mij 6= 2. Again, cyclic products of length one or two
coincide. There are two cyclic products of length three:

φ(A) = a12a23a31 and φ̃(A) = a13a32a21

The product

φ(A)φ̃(A) = 43 cos

(
π

m12

)2

cos

(
π

m23

)2

cos

(
π

m13

)2

,

which determined by Theorem 3, is constant. By Lemma 7, we have
A ∼ B if and only if φ(A) = φ(B). The value of φ(A) is always negative.
We show that the map

ψ : M → R+, [A] 7→ |φ(A)|.

is a homeomorphism. Because of the argument above, the map is well-
defined. It is clear that ψ is continuous. Let

At :=

 2 −t cos( π
m12

) − cos( π
m12

) cos( π
m23

) cos( π
m13

)2

−t−1 cos( π
m12

) 2 − cos( π
m23

)

− 1
cos( π

m12
) cos( π

m23
) − cos( π

m23
) 2

 .
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Then φ(At) = −t. Define

ψ̃ : R+ →M, t→ [At].

The function ψ̃ is continuous and we have ψψ̃ = idR+ and ψ̃ψ = idM .
Hence, ψ is a homeomorphism.
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[Vin] È. B. Vinberg, Discrete linear groups generated by reflec-
tions, Mathematics of the USSR-Izvestiya, vol. 5, 1971,
http://stacks.iop.org/0025-5726/5/i=5/a=A07.

[S+09] W. A. Stein et al., Sage Mathematics Software (Version 5.12), The Sage
Development Team, 2013, http://www.sagemath.org.

7



Listing 1: SAGE Code

1 ### Set Parameters
2

3 s = 2
4

5 p = 4
6 q = 4
7 r = 4
8
9 N = 1000

10

11 def is_in_interval(x):
12
13 temp_var = 0
14 temp_var_2 = false
15

16 m = 0
17 k = var(’k’)
18

19
20 while temp_var_2 is false:
21

22 if sum (3^k,k,0,m) <= x < sum (3^k,k,0,m+1):
23

24 temp_var_2 = true
25
26

27 if mod(m,2) == 1:
28
29 temp_var = 1
30
31
32 m = m + 1
33
34 return temp_var
35

36 xRotation =
37 matrix ([[1,0,0],
38 [0,cos(pi/4),-sin(pi/4)],
39 [0,sin(pi/4),cos(pi /4)]])
40 yRotation =
41 matrix ([[ cos(pi/4),0,sin(-pi/4)],
42 [0,1,0],
43 [-sin(-pi/4),0,cos(pi /4)]])
44
45 Rotation = yRotation * xRotation
46

47
48 e_1 = vector ([1 ,0,0])
49 e_2 = vector ([0 ,1,0])
50 e_3 = vector ([0 ,0,1])
51

52

53 e1 = matrix ([1 ,0 ,0]).T
54 e2 = matrix ([0 ,1 ,0]).T
55 e3 = matrix ([0 ,0 ,1]).T
56

57

58 I = matrix ([[1,0,0],[0,1 ,0] ,[0 ,0 ,1]])
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59

60
61 List_of_Unit_Vectors = [e1 ,e2 ,e3]
62

63
64 ### Define Reflections
65

66 Bilinear_Form_s =
67 matrix ([[1,-s*cos(pi/p),-cos(pi/q)/s],
68 [-cos(pi/p)/s,1,-s*cos(pi/r)],
69 [-cos(pi/q)*s,-cos(pi/r)/s,1]])
70
71
72 Generators = [I] * 3
73
74
75 for i in range (3):
76
77 Generators[i] =
78 I - 2 * Bilinear_Form_s *
79 List_of_Unit_Vectors[i] *
80 List_of_Unit_Vectors[i].T
81
82
83

84 Reflections = [I] * N
85
86 Reflections [0] = Generators [0]
87 Reflections [1] = Generators [1]
88 Reflections [2] = Generators [2]
89

90
91 for i in range(3,N):
92

93 Reflections[i] =
94 Generators[mod(i,3)] * Reflections[int(i/3)-1]
95

96
97 Remember_Repetition = [0] * N
98

99
100 for i in range(0,N):
101

102 for j in range(i+1,N):
103

104 if Reflections[i] == Reflections[j]:
105
106 Remember_Repetition[j] = 1
107
108

109 ### Plot
110
111 Convex_Set = polygon(
112 [[ Rotation [0][0] , Rotation [1][0]] ,
113 [Rotation [0][1] , Rotation [1][1]] ,
114 [Rotation [0][2] , Rotation [1][2]]] ,
115 color=’blue’)
116
117 for i in range(N):
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118

119 if Remember_Repetition[i] == 0:
120
121 L_1 = Rotation * Reflections[i] * e_1
122 L_2 = Rotation * Reflections[i] * e_2
123 L_3 = Rotation * Reflections[i] * e_3
124

125 L_1 = L_1 / sqrt(L_1*L_1)
126 L_2 = L_2 / sqrt(L_2*L_2)
127 L_3 = L_3 / sqrt(L_3*L_3)
128
129
130 select_color = is_in_interval(i+1)
131

132
133 if select_color == 0:
134 Convex_Set +=
135 polygon ([[ L_1[0],L_1[1]],
136 [L_2[0],L_2[1]],
137 [L_3[0],L_3[1]]] ,
138 color=’yellow ’)
139
140
141 if select_color == 1:
142 Convex_Set +=
143 polygon ([[ L_1[0],L_1[1]],
144 [L_2[0],L_2[1]],
145 [L_3[0],L_3[1]]] ,
146 color=’blue’)
147
148

149 show(Convex_Set ,axes =0)
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