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In the following Chapter we are going to define the main concepts as well as the basic results.
From now on, differentiable will always signify of class C∞

Definition 1: A differentiable manifold of dimension n is a set M and a family of injective
mappings xα : Uα ⊂Rn → M (where Uα is an open set of Rn), such that:

1.
⋃
α

xα(Uα) = M

2. for any pair α,β with xα(Uα)
⋂

xβ(Uβ) = W 6= ;, the sets x−1
α (W ) and x−1

β
(W ) are open

sets of Rn and the mappings x−1
β

◦xα are differentiable.

3. The family {(Uα, xα)} is maximal relative to conditions 1 and 2.

The pair (Uα, xα) (or the mapping xα) with p ∈ xα(Uα) is called a parametrization (or system
of coordinates) of M at p, xα(uα) is then called a coordinated neighborhood at p. A family
satisfying 1 and 2 is called a differentiable structure.
The condition 3 is included for technical reasons. Indeed, given a differentiable structure, we
can complete it to a maximal one. Therefore, with a certain abuse of lenguage, we can say
that a differentiable manifold is a set with a differentiable structure.

Definition 2: Let M n
1 and M m

2 (where n,m are the dimensions of M1, M2 respectively). A map-
pingφ : M1 → M2 is differentible at p ∈ M1 if given a parametrization y : V ⊂Rm → M2 atϕ(p)
there exists a parametrization x : U ⊂ Rn → M1 at p such that ϕ(x(U )) ⊂ y(V ) and the map-
ping

y−1 ◦ϕ◦x : U ⊂Rn →Rm

is differentiable at x−1(p).ϕ is differentiable on an open set of M1 if it is differentiable at every
point of this open set (it follows from condition 2 that this definition does not depend on the
parametrization).The expression y−1 ◦ϕ◦ x is called the expression of ϕ in the parametriza-
tions x and y .

Definition 3: Let M be a differentiable manifold. A differentiable function α : (−ε,ε) → M
is called a (differentiable) curve in M . Suppose that α(0) = p ∈ M and let D be the set of
functions on M that are differentiable at p. The tangent vector to the curve α at t = 0 is a
function α′(0) : D →R given by

α′(0)( f ) = d( f ◦α)

d t

∣∣∣∣
t=0

, f ∈ D
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A tangent vector at p is the tangent vector at t = 0 of some curveα : (−ε,ε) → M withα(0) = p.
The set of all tangent vectors to M at p will be indicated by Tp M .
Further, the set Tp M is a vector space with assiciated basis {( ∂

∂x1
)0, · · · , ( ∂

∂xn
)0}. It is immediate

that the basis depends on the parametrization, but not the linear structure.

Proposition 4: Let M n
1 and M m

2 be differentiable manifolds and let ϕ : M1 → M2 be a diffe-
rentiable mapping. For every p ∈ M1 and for each v ∈ Tp M1, choose a differentiable curve
α : (−ε,ε) → M1 with α(0) = p,α′(0) = v . Take β=ϕ◦α. The mapping dϕp : Tp M1 → Tϕ(p)M2

given by dϕp (v) =β′(0) is a linear mapping that does not depend on the choice of α.

Definitions 5:

The linear mapping dϕp is called the differential of ϕ at p.

Let M1 and M2 be differential manifolds. A mapping ϕ : M1 → M2 is a diffeomorphism
if it is differentiable, bijective and its inverse is differentiable. ϕ is said to be a local
diffeomisphism at p ∈ M1 if there exist neighborhoods U of p and V of ϕ(p) such that
ϕ : U →V is a diffeomorphism.

Theorem 6: Let ϕ : M n
1 → M n

2 be a differentiable mapping and let p ∈ M1 be. dϕp : Tp M1 →
Tϕ(p)M2 is an isomorphism if and only if ϕ is a local diffeomorphism at p.

Definition 7: Let M m and N n be differentiable manifolds. A differentiable mapping ϕ : M →
N is said to be an immersion if dϕp : Tp M → Tϕ(p)N is injective for all p ∈ M . If in addition,ϕ
is a homeomorphism onto ϕ(M) ⊂ N , where ϕ(M) has the subspace topology induced from
N , we say that ϕ is an embedding. If M ⊂ N and the inclusion i : M ⊂ N is an embedding, we
say that M is a submanifold of N .

Proposition 8: Let ϕ : M n
1 → M m

2 , n ≤ m, be an immersion of the differentiable manifold
M1 into the differentiable manifold M2. For every point p ∈ M1, there exists a neighborhood
V ⊂ M1 of p such that the restriction ϕ|V : V → M2 is an embedding.

Definition + Example 9 (The tangent bundle): Let M n be a differentiable manifold and let
T M := {(p, v) : p ∈ M , v ∈ Tp M }. We are going to provide the set T M with a differentiable
structure.
Let {(Uα, xα)} be a maximal differentiable structure on M . Denote by (xα1 , · · · , xαn ) the coordi-
nates of Uα and by { ∂

∂xα1
, · · · , ∂

∂xαn
} the associated bases to the tangent spaces of xα(Uα). For

every α, define
yα : Uα×Rn → T M

by

yα(xα1 , · · · , xαn ,u1, · · · ,un) = (xα(xα1 , · · · , xαn ),
n∑

i=1
ui

∂

∂xαi
), (u1, · · · ,un) ∈Rn

We are going to show that {(Uα×Rn , yα}) is a differentiable structure on T M . Since
⋃
α

xα(Uα) =
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M and (d xα)q (Rn) = Txα(q)M , q ∈Uα, we have only to prove the condition 2. Now let

(p, v) ∈ yα(Uα×Rn)
⋂

yβ(Uβ×Rn)

Then
(p, v) = (xα(qα),d xα(vα)) = (xβ(qβ),d xβ(vβ)),

where qα ∈Uα, qβ ∈Uβ, vα, vβ ∈Rn . Therefore,

y−1
β ◦ yα(qα, vα) = y−1

β (xα(qα),d xα(vα)) = ((x−1
β ◦xα)(qα),d(x−1

β ◦xα)(vα)).

Since x−1
β

◦xα is differentiable, d(xβ ◦xα) is as well. It follows that condition 2 is verified.

Example 10 (Regular surfaces in Rn): A subset M k ⊂ Rn is a regular surface of dimension
k ≤ n if for every point p ∈ M k there exists a neighborhood V of p in Rn and a mapping
x : U → M ∩V of an open set U ⊂Rk onto M ∩V such that:

x is a differentiable homeomorphism.

(d x)q :Rk →Rn is injective for all q ∈U .

It can be proved that if x : U → M k and y : V → M k are two parametrizations with x(U )∩
y(V ) =W 6= ;, then the mapping h = x−1◦ y : y−1(W ) → x−1(W ) is a diffeomorphism. We give
a sketch of the proof: Let (u1, · · · ,uk ) ∈U and (v1, · · · , vn) ∈Rn , and write x in these coordina-
tes as

x(u1, · · · ,uk ) = (v1(u1, · · · ,uk ), · · · , vn(u1, · · ·uk ))

From condition 2 we can suppose that

∂(v1, · · · , vk )

∂(u1, · · · ,uk )
(q) 6= 0

Extend x to a mapping F : U ×Rn−k →Rn given by

F (u1, · · · ,uk , tk+1, · · · , tn) =(v1(u1, · · · ,uk ), · · · , vk (u1, · · · ,uk ), vk+1(u1, · · · ,uk )

+ tk+1, · · · , vn(u1, · · · ,uk )+ tn)

where (tk+1, · · · , tn) ∈ Rn−k . It is clear that F is differentiable and the restriction of F to U ×
{(0, · · · ,0)} coincides with x. By a calculation, we obtain that

det (dFq ) = ∂(v1, · · · , vk )

∂(u1, · · · ,uk )
(q) 6= 0

Now we are under the conditions of the inverse function theorem, which guarantees the exis-
tence of a neighborhood Q of x(q) where F−1 exists and is differentiable. By the continuity of
y , there exists a neighborhood R ⊂ V of r such that y(R) ⊂ Q. Note that the restriction of h
to R, h|R = F−1 ◦ y|R is a composition of differentiable mappings. Thus h is differentiable at r ,
hence in y−1(W ). A similar argument would prove that h−1 is differentiable as well, proving
the assertion.

Definition 11: Let M be a differentiable manifold. We say that M is orientable if M admits a
differentiable structure {(Uα, xα)} such that:
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for every pair α,βwith xα(Uα)∩xβ(Uβ) =W 6= ;, the differential of the change of coor-
dinates x−1

β
◦xα has positive determinant.

In the opposite case, we say that M is non-orientable. If M is orientable, a choice of a diffe-
rentiable structure satisfying th condition from above is called as orientation of M .

Example 12 (Discontinuous action of a group): We say that a group G acts on a differentiable
manifold M if there exists a mapping ϕ : G ×M → M such that:

1. For each g ∈ G , the mapping ϕg : M → M given by ϕg (p) = ϕ(g , p), p ∈ M , is a diffeo-
morphism, and ϕe = I dM .

2. If g1, g2 ∈G , ϕg1g2 =ϕg1 ◦ϕg2 .

Frequently, when dealing with a single action, we set g p :=ϕ(g , p).
We say that the action is properly discontinuous if every p ∈ M has a neighborhood U ⊂ M
such that U ∩g (U ) =; for all g 6= e. When G acts on M , the action determines an equivalence
relation ∼ on M , in which p1 ∼ p2 if and only if p2 = g p1 for some g ∈G . Denote the quotient
space of M by this equivalence relation by M/G . The mapping π : M → M/G , p 7→Gp will be
called the projection of M onto M/G .
Now let M be a differentiable manifold and let G×M → M be a properly discontinuous action
of a group G on M . We are going to show that there is a differentiable structure on M/G such
that π : M → M/G is a local diffeomorphism.
For each point p ∈ M choose a parametrization x : V → M at p so that x(V ) ⊂U , where U ⊂ M
is a neighborhood of p such that U ∩ g (U ) = ;, g 6= e. Because of that π|U is injective, hence
y = π◦ x : V → M/G is injective. The family {(V , y)} clearly covers M/G . Now we are going to
show that this family is a differentiable structure; let y1 = π◦ x1 : V1 → M/G and y2 = π◦ x2 :
V2 → M/G be two mappings with y1(V1)∩ y2(V2) 6= ; and let πi be the restriction of π to
xi (Vi ), i = 1,2. Let q ∈ y1(V1)∩ y2(V2) and let r = x−1

2 ◦π−1
2 (q). Let W ⊂V2 be a neighborhood

of r such that (π2 ◦x2)(W ) ⊂ y1(V1)∩ y2(V2). Then the restriction to W is given by

(y−1
1 ◦ y2)|W = x−1

1 ◦π−1
1 ◦π2 ◦x2

Therefore, it is enough to show that π−1
1 ◦π2 is differentiable at p2 = π−1

2 (q). Let p1 = π−1
1 ◦

π2(p2). Then p1 and p2 are equivalent in M , hence there is a g ∈ G such that g p2 = p1. It
follows easily that the restriction (π−1

1 ◦π2)|x2(W ) coincides with the diffeomorphism ϕ|x2(W ),
which proves that π−1

1 ◦π2 is differentiable at p2 and so we have constructed a differentiable
structure on M/G .

Proposition 13: With the notation from the previous example the manifold M/G is orientable
if and only if there exists an orientation of M that is preserved by all the diffeomorphisms of G .

Definition 14: A vector field X on a differentiable manifold M is a correspondence that aso-
ciates to each point p ∈ M a vector X (p) ∈ Tp M . In terms of mappings, X is a mapping of M
into the tangent bundle T M . The field is differentiable if the mapping X : M → T M is diffe-
rentiable.
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Considering the parametrization x : U ⊂Rn → M we can write

X (p) =
n∑

i=1
ai (p)

∂

∂xi

where each ai : U → R is a function on U and { ∂
∂xi

} is the basis asociated to x, i = 1, · · · ,n. It
is clear that X is differentiable if and only if the functions ai are differentiable for some (and,
therefore, for any) parametrization. Hence if f is a differentiable function on M , we have the
following expression

(X f )(p) =∑
i

ai (p)
∂

∂xi
(p)

where f denotes the expression of f in the parametrization x. It is immediate that X is dif-
ferentiable if and only if X f ∈ D for any f ∈ D , that is when X : D → D . Observe that if
ϕ : M → M is a diffeomorphism, v ∈ Tp M and f is a differentiable function in a neighbor-
hood of ϕ(p), we have

(dϕ(v) f )ϕ(p) = d

d t
( f ◦ϕ◦α)

∣∣∣∣
t=0

= v( f ◦ϕ)(p)

Now, we are able to see some results of vector fields.

Lemma 15: Let X and Y be differentiable vector fields on a differentiable manifold M . Then
there exists a unique vector field Z such that, for every differentiable function f , Z f = (X Y −
Y X ) f .

The vector field Z is called the bracket of X and Y (Z = [X ,Y ] = X Y −Y X ) and has the follo-
wing properties.

Proposition 16: If X ,Y and z are differentiable vector fields on M , a,b ∈ R and f , g are diffe-
rentiable functions, then:

1. [X ,Y ] =−[Y , X ]

2. [aX +bY , Z ] = a[X , Z ]+b[Y , Z ]

3. [[X ,Y ], Z ]+ [[Y , Z ], X ]+ [[Z , X ],Y ] = 0

4. [ f X , g Y ] = f g [X ,Y ]+ f X (g )Y − g Y ( f )X

Theorem 17: Let X be a differentiable vector field on a differentiable manifold M , and let
p ∈ M . Then there exist a neighborhood U ⊂ M of p, an interval (−δ,δ), δ > 0, and a cur-

ve t 7→ ϕ(t , q), t ∈ (−δ,δ), q ∈ U , is the unique curve which satisfies ∂ϕ
∂t = X (ϕ(t , q)) and

ϕ(0, q) = q . The function ϕt : U → M , q 7→ϕ(t , q) is called the local flow of X .

Proposition 18: Let X ,Y be differentiable vector fields on a differentiable manifold M , let
p ∈ M , and let ϕt be the local flow of X in a neighborhood U of p. Then

[X ,Y ](p) = ĺım
t→0

1

t
[Y −dϕt Y ](ϕt (p))
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Definition 19:

1. Locally finite: A family of open sets Vα ⊂ M with
⋃
α

Vα = M is said to e locally finite if

every point p ∈ M has a neighborhood W such that W ∩Vα 6= ; for only a finite number
of indices.

2. Support: The support of a function f : M →R is the closure of the set of points where f
is different from zero.

3. Differentiable partition of unity: We say that a family { fα} of differentiable functions fα :
M →R is a differentiable partition of unity if:

For all α, fα ≥ 0 and the support of fα is contained in a coordinate neighborhood
Vα = xα(Uα) of a differentiable structure {(Uβ, xβ)} of M .

The family {Vα} is locally finite.∑
α

fα(p) = 1, for all p ∈ M (this condition makes sense, because for each p ∈ M ,

fα(p) 6= 0 only for a finite number of indices).

Theorem 20: A differentiable manifold M has a partition of unity if and only if every connec-
ted component of M is Hausdorff and has a countable basis.

6


