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1 Integration of Differential Forms

Our goal is to define the integral of a differential n-form on an n-dimensional differentiable
Manifold. For that, we will first start with the case of Rn, then move to a Manifold with a
straightforward structure and, after proving the existence of the Partition of Unity, generalize
it for all differentiable manifolds.

Let ω be a differential n-form defined on the open set U ⊂Mn. It’s support K is the closure
of the set A defined by:

A = {p ∈Mn; w(p) 6= 0}

1.1 The real case (n-form on Rn)

To handle the real case let us assume that Mn = Rn with

ω = a(x1, . . . , xn) dx1 ∧ . . . ∧ dxn
Assume furthermore, that the support K of ω is compact and K ⊂ U .
We now define: ∫

U
ω =

∫
K
a dx1 . . . dxn

Notice that the right side is the usual multiple integral in Rn.

1.2 The general case (n-form on Mn)

Let now M be compact (K, the support of ω will also be compact) and orientable (the coordinate
changes have positive jacobians).

We will distinguish two cases depending on K being contained in some coordinate neighbor-
hood or not.

1.2.1 K is contained in some coordinate neighborhood

With K ⊂ Vα = fα(Uα) (coordinate neigborhood), the local representation ωα of ω in Uα is

ωα = aα(x1, . . . , xn) dx1 ∧ . . . ∧ dxn
Similar to 1.1, we now define:∫

M
ω =

∫
Vα

ωα =

∫
Uα

aαdx1 . . . dxn

Again, the right hand side is an integral in Rn.
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Given that otehr neighborhoods are possible, we still have to show that this definition is
independent of the choice of coordinate neighborhood.

Let K be contained in another coordinate neighborhood Vβ = fβ(Uβ). We can safely assume
that Vα = Vβ. If that’s not the case, we can contract both Uα and Uβ until this applies.

With (x1, . . . , xn) ∈ Uα and (y1, . . . , yn) ∈ Uβ, the change of coordinates

f = f−1α ◦ fβ : Uβ −→ Uα

is given by xi = fi(y1, . . . , yn), i = 1, . . . , n.
Because ωβ = f∗(ωα), we have

ωβ = det(df)aβdy1 ∧ . . . ∧ dyn
where aβ is as follows:

aβ = aα(f1(y1, . . . , yn), . . . , fn(y1, . . . , yn))

By applying the change of variables for multiple integrals in Rn, we obtain:∫
Vα

ωα =

∫
Uα

aαdx1 . . . dxn =

∫
Uβ

det(df)aβdy1 . . . dyn
1
=

∫
Vβ

ωβ

Note that the last equality (1) holds because det(df) > 0, which explains the reason for the
assumption that M is oriented: without the orientation, the sign of the integral wouldn’t be well
defined. �

1.2.2 K is contained in no coordinate neighborhood

In the preceding section we saw that the integral of a differential form with a domain contained
in a coordinate system was just a multiple integral. Now, to be able to integrate in more complex
domains, we need to reduce that complexity in some way, which can be done in two different
ways: by dividing the domain in simpler domains and adding up the results, or by decomposing
the form into forms which are zero outside some simpler domains.

The second alternative is the one we will be using with the help of the partition of unity,
which will enable us to give a simple definition of the form’s integral :∫

M
ω =

m∑
i=1

∫
M
ϕiω

Note: the
m∑
i=1
ϕi contained in the definition is the aforementioned partition of unity

The Partition of Unity

Definition 1. Given a covering {Vα} of a compact differentiable manifold M , a differentiable
partition of the unity subordinate to the covering {Vα} is a family of differentiable functions
ϕ1, . . . , ϕm such that:

1.
m∑
i=1
ϕi = 1

2. 0 ≤ ϕi ≤ 1 i ∈ {1, . . . ,m} and the support of ϕi is contained in some Vαi = Vi.

Note: if M is orientable, {Vα} is chosen compatible with the said orientation.
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We now want to prove the existence of a differentiable partition of the unity subordinate
to a given covering by coordinate neighborhoods of a compact differentiable manifold Mn (not
necessarily oriented).

We will first need two technical lemma that will later help us to prove the existence of the
partition of unity.

We define Br(0) = { p ∈ Rn; |p| < r }.

Lemma 1. There exists a differentiable function ϕ : B3(0) −→ R such that:

1. ϕ(p) = 1, if p ∈ B1(0)

2. 0 ≤ ϕ(p) ≤ 1, if p ∈ B2(0)

3. ϕ(p) = 0, if p ∈ B3(0)−B2(0)

Proof. Consider the C∞ function α : R −→ R given by

α(t) = e
− 1

(t+1)(t+2) , t ∈ (−2,−1)

α(t) = 0, t /∈ (−2,−1)

and the integral

γ(t) =

∫ t

−∞
α(s)ds

The maximum value of the differentiable function γ is given by
∫ −1
−2 α(s)ds = A and, by

setting β(t) = γ(t)/A we obtain a differentiable function with the following properties:

β(t) = 0, if t ≤ −2

0 ≤ β(t) ≤ 1, if t ∈ (−2,−1)

β(t) = 1, if t ≥ −1.

We obtain the required function ϕ : B3(0) −→ R by defining ϕ(p) = β(− |p|), p ∈ B3(0).
�

Lemma 2. Let Mn be a differentiable manifold, let p ∈ M and let g : U ⊂ Rn −→ M be a
parametrization around p. Then, it is possible to obtain a parametrization f : B3(0) −→ M
around p in such a way that f (B3(0)) ⊂ g(U) and that f−1(p) = (0, . . . , 0).

Proof. Let (x01, . . . , x
0
n) ∈ U be such that g(x01, . . . , x

0
n) = p. U is open so there exists an r > 0

such that Br(x
0
1, . . . , x

0
n) ⊂ U . Let T be translation in Rn that takes (x01, . . . , x

0
n) to (0, . . . , 0)

and let H : R −→ R be defined by H(p) = 3
rp.

Using H ◦ T : Br(x
0
1, . . . , x

0
n) −→ B0(0, . . . , 0) we define the parametrization f : B3(0) −→

M by

f = g ◦ T−1 ◦H−1

which satisfies the required conditions. �

Proposition 1. (Existence of a differentiable partition of unity). Let M be a compact manifold
and let {Vα} be a covering of M by coordinate neighborhoods. Then there exists differentiable
functions ϕ1, . . . , ϕm conforming a differentiable partition of the unity.
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Proof. For each p ∈M we consider the parametrization fp given by Lemma 2 with fp(B3(0)) =
Vp ⊂ Vα for some Vα ∈ {Vα}. Set Wp = fp(B1(0)) ⊂ Vp.

The family {Wα} is an open covering of M and we can select from it a (compactness) finite
covering W1, . . . ,Wm and the corresponding covering V1, . . . , Vm.

We define functions θi : M −→ R, i = 1, . . . ,m, by

θi = ϕ ◦ f−1i in Vi; θi = 0 in M − Vi (ϕ as given by Lemma 1)

These functions are differentiable and the support of θi is contained in Vi.
To finish up, we define the family ϕi that satisfies the required conditions:

ϕi(p) =
θi(p)∑m
j=1θj(p)

, p ∈M

�

Armed with the partition of unity we can now define the integral of an n-form ω on Mn, a
compact oriented differential manifold, as follows:

Let {ϕi} a differentiable partition of unity subordinate to the covering {Vα}. The support
of the form ϕiω is contained in Vi. We now set:∫

M
ω =

m∑
i=1

∫
M
ϕiω

We only have to demonstrate the independence from the chosen covering (and its partition
of unity).

Consider hence another covering {Wβ} of M with the same orientation as {Vα}, and let
{ψj} , j = 1, . . . , s be its subordinate partition of unity. Then, {Vα ∩Wβ} will be a covering of
M with a subordinate partition of unity {ϕiψj}. Because for each i, respectively j, the functions
are defined in Vi, respectively in Wj , we obtain the following equalities:

m∑
i=1

∫
M
ϕiω =

m∑
i=1

∫
M
ϕi

 s∑
j=1

ψj

ω =
∑
i,j

∫
M
ϕiψjω

s∑
j=1

∫
M
ψjω =

s∑
j=1

∫
M

(
m∑
i=1

ϕi

)
ψjω =

∑
i,j

∫
M
ϕiψjω

�

2 The Stokes Theorem

In this section, we want to prove Stokes Theorem, which states that, given an n-form ω on a
bounded manifold M , the integral of dω in M equals the one of i∗ω in ∂M (i being the inclusion
of the boundary in the manifold).

2.1 Preliminaries

First we will need some new definitions!

Definition 2. A half-space of Rn is the set

Hn = {(x1, . . . , xn) ∈ Rn; x1 ≤ 0}
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An open set in Hn is the intersection with Hn of an open set U in Rn
A function f : V −→ R defined in an open set V ∈ Hn is differentiable if there exists an

open set U ∈ V and a differentiable function f in U such that f |V = f . The differential of f at

p ∈ V is defined as dfp = dfp.

Definition 3. An n-dimensional differentiable manifold with (regular) boundary is a set M and
a family of injective maps fα : Uα ⊂ Hn −→M of open sets of Uα ⊂ Hn into M such that:

1.
⋃
α
fα
(
Uα
)

= M

2. For all pairs α, β with fα
(
Uα
)
∩ fβ

(
Uβ
)

= W 6= ∅ the sets f−1α (W ) and f−1β (W ) are open

sets in Hn and the maps f−1β ◦ fα, f
−1
α ◦ fβ are differentiable.

3. The family is maximal relative to 1 and 2.

A point p ∈M is said to be a point in the boundary of M if for some parametrization around p
we have that f (0, x2, . . . , xn) = p.

Note that the definition is almost identical to the definition of differential Manifold, only
adding the boundary and replacing Rn by Hn. All other definitions are introduced the same
way just replacing Rn by Hn.

The set of points in the boundary of M is called the boundary of M and denoted by ∂M .
If ∂M = ∅ the above definition agrees with the one of a differentiable manifold given in the
previous lecture.

Lemma 3. The definition of point in the boundary does not depend on the parametrization

Proof. Let f1 : U1 −→ M be a parametrization around p with f1(q) = p, q = (0, x2, . . . , xn)
and assume the existence of a parametrization f2 : U2 −→ M around p with f2(q2) = p, q2 =
(x1, x2, . . . , xn) and x1 6= 0. Furthermore, let W = f1

(
U1

)
∩ f2

(
U2

)
.

The map

f−11 ◦ f2 : f−12

(
W
)
−→ f−11

(
W
)

is a diffeomorphism. Because x1 6= 0 , there is a neighborhood U of q2, U ⊂ f−12

(
W
)
, that

does not intersect the x1-axis.
The restriction f−11 ◦ f2 to U is differentiable with non-zero jacobian and, because of the

inverse function theorem, it will take a neighborhood V ⊂ U of q2 diffeomorphically onto f−11 ◦
f2
(
V
)
. But this would mean that f−11 ◦ f2

(
V
)

contains points (x1, x2, . . . , xn) with x1 > 0 and
thus not in Hn, which is a contradiction to our assumption. �

Proposition 2. The boundary ∂M of an n-dimensional differentiable manifold M with boundary
is an (n-1)-differentiable manifold. Furthermore, if M is orientable, an orientation for M induces
an orientation for ∂M .

Proof. Let p ∈M be a point in the boundary of M and let fa : Uα −→Mn be a parametrization
around p.

Given f−1α (p) = (0, x2, . . . , xn) ∈ Uα, let Uα = Uα ∩
{

(x1, . . . , xn) ∈ Rn; x1 = 0
}

, which is

an open set in Rn−1, and fα = fα|Uα .

According to Lemma 3, fα
(
Uα
)
⊂ ∂M and by letting p run the points of ∂M , we see that{(

Uα, fα
)}

is a differentiable structure of ∂M and ∂M a (n-1)-differentiable manifold.

Now assume that M is orientable and set an orientation
{(
Uα, fα

)}
for it.

{(
Uα, fα

)}
is, as

per above, a differentiable structure for ∂M . We want to show that det(d(f
−1
α ◦ fβ)q) > 0; q ∈

∂M (the jacobian of the change of coordinates is positive).
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For a point q whose image is on the boundary, because the change of coordinates fα ◦ f−1β
takes a point (0, xβ2 , . . . , x

β
n) into a point (0, xα2 , . . . , x

α
n), we get:

det(d(f
−1
α ◦ fβ)) =

∂xα1

∂xβ1
det(d(f

−1
α ◦ fβ))

∂xα1
∂xβ1

> 0 and, since det(d(f−1α ◦ fβ)) is positive by hypothesis, it follows that det(d(f
−1
α ◦ fβ)q) >

0; q ∈ ∂M . �

2.2 Stokes Theorem

Theorem 1. (Stokes Theorem) Let Mn be a differentiable manifold with boundary, compact
and oriented. Let ω be a differential (n-1)-form on M , and let i : ∂M −→ M be the inclusion
map of the boundary ∂M into M . Then∫

∂M
i∗ω =

∫
M
dω

Proof. Let K be the support of ω. We will consider two cases: K is contained and K is not
contained in a coordinate neighborhood.

A K is contained in some coordinate neighborhood V = f(U) of a parametrization f : U ⊂
Hn −→M . In U ,

ω =

n∑
j=1

ajdx1 ∧ . . . ∧ dxj−1 ∧ dxj+1 ∧ . . . ∧ dxn

Where aj = aj(x1, . . . , xn) is a differentiable function on U . dω is given by:

dω =

 n∑
j=1

(−1)j−1
∂aj
∂xj

 dx1 . . . dxn

A1 We will first examine the case where the border isn’t contained in the coordinate neigh-
borhood.

In such a case ω is zero in ∂M and i∗ω = 0 which gives us
∫
∂M i∗M = 0 and we only need

to show that
∫
M dω = 0 to end the proof.

Let us first extend aj to Hn:

aj(x1, . . . , xn) = aj(x1, . . . , xn), if (x1, . . . , xn) ∈ U
aj(x1, . . . , xn) = 0, if (x1, . . . , xn) ∈ Hn − U

The functions are differentiable in Hn (f−1(K) ⊂ U ). We now construct a parallelepiped
Q ⊂ Hn with boundaries x1j ≤ xj ≤ x0j containing f−1(K). We then proceed to explicitly
calculate the integral:

∫
M
dω =

∫
U

 n∑
j=1

(−1)j−1
∂aj
∂xj

 dx1 . . . dxn =
∑
j

(−1)j−1
∫
Q

∂aj
∂xj

dx1 . . . dxn

=
∑
j

(−1)j−1
∫

[aj(x1, . . . , xj−1, x
0
j , xj+1, . . . , xn)

− aj(x1, . . . , xj−1, x1j , xj+1, . . . , xn)] dx1 . . . dxj−1dxj+1 . . . dxn = 0

With the last equality being a result of aj = 0 on the edges of Q.
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A2 Lets now assume that f(U) ∩ ∂M 6= ∅. We write the inclusion map i as x1 = 0, xj = xj
We will extend the aj functions as in A1 and construct a parallelepiped Q containing f−1(K),

given by x11 ≤ x1 ≤ 0, x1j ≤ xj ≤ x0j , j ∈ {2, . . . , n}. Again, we only need to calculate the
integral:

∫
M
dω =

∑
j

(−1)j−1
∫
Q

∂aj
∂xj

dx1 . . . dxn

=

∫
Q

[a1(0, x2, . . . , xn)− a1(x11, x2, . . . , xn)dx2 . . . dxn

+
n∑
j=2

(−1)j−1
∫
Q

[aj(x1, . . . , x
0
j , . . . , xn)− aj(x1, . . . , x1j , . . . , xn)] dx1 . . . dxj−1dxj+1 . . . dxn

Because aj(x1, . . . , x
0
j , . . . , xn) = aj(x1, . . . , x

1
j , . . . , xn) = 0 for 2 ≤ j ≤ n and a1(x

1
1, x2, . . . , xn) =

0, we obtain the desired result:∫
M
ω =

∫
a1(0, x2, . . . , xn)dx2 . . . dxn =

∫
∂M

i∗ω

B We now want to consider the general case. Let {Vα} be a covering of M by coordinate
neighborhoods compatible with orientation and ϕ1, . . . , ϕm be its subordinate differential par-
tition of unity. The forms ωj = ϕjω, j ∈ 1, . . . ,m satisfy the conditions of case A and, since∑

j dϕj = 0, we have ∑
ωj = ω,

∑
dωj = dω

. Hence, ∫
M
dω =

m∑
j=1

∫
M
dωj =

m∑
j=1

∫
∂M

i∗ωj =

∫
∂M

i∗
∑
j

ωj =

∫
∂M

i∗ω

�

3 Divergence Theorem

Definition 4. Let υ the n-form in Rn defined by υ = dx1 ∧ · · · ∧ dxn, i.e. the n-form such that
υ(e1, . . . , en) = 1, where {ei}, i = 1, . . . , n is the canonical basis of Rn. Then υ is called the
volume element of Rn.

Definition 5. (Hodge star operation)
Given a k-form ω in Rn, we will define an (n− k)-form ∗w by setting

∗(dxi1 ∧ · · · ∧ dxik) = (−1)σ(dxj1 ∧ · · · ∧ dxjn−k)

and extending it linearly, where i1, . . . , ik, j1, . . . , jn−k, (i1 . . . ik, j1 . . . jn−k) is a permutation of
(1, . . . , n) and σ is 0 or 1 according to the permutation is even or odd, respectively.

Example 1. If we have a differentiable vector field in Rn, that can be considered as a differ-
entiable map v : Rn → Rn, we can obtain a 1-form ω by the canonical isomorphism induced by
the inner product: ω(−) = 〈v,−〉, or, in coordinates ω = v1dx1 ∧ · · · ∧ v3dx3. Then we have ∗ω
is an (n− 1)-form given by

∗ω = v1dx2 ∧ · · · ∧ dxn − v2dx1 ∧ (dx2) · · · ∧ dxn + · · ·+ (−1)n−1vndx2 ∧ · · · ∧ dxn
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Now we can compute d(∗ω) that is an n-form and it is equal to:

d(∗ω) =
n∑
1

∂vi
∂xi

dx1 ∧ · · · ∧ dxn

So, we have that
d(∗ω) = (divv)υ

Theorem 2. (Divergence theorem) Let M be a bounded region of R3 such that the boundary
∂M of M is a regular hyper-surface of R3; M is then a compact 3-dimensional manifold with
boundary ∂M . Let v be a differentiable vector field in R3, and let w be the 1-form in R3 dual to
v in the natural inner product of R3. Then,∫

M
div(v) υ =

∫
∂M
〈v,N〉σ

Proof. Let v be a differentiable vector field in R3, and let w be the 1-form in R3 dual to v in
the natural inner product of R3. Then, d(∗ω) = (divv) υ, where υ is the volume element of R3.
Now choose an orientation for R3 and let N be the unit normal vector of ∂M in the induced
orientation. Finally, let σ be the area element of ∂M .
Consider, in a neighbourhood U ⊂ R3 of p ∈M , differentiable orthonormal fields e1, e2, N such
that, in the points of ∂M , e1, e2 are tangent to ∂M .
Then

i∗ ∗ ω(e1, e2) = ω(N) = 〈v,N〉
i.e. i∗(∗ω) = 〈v,N〉σ.
In fact, if we change basis from the standard one to {e1, e2, N}, we see that ω(−) = ω(e1)〈e1,−〉+
ω(e2)〈e2,−〉+ ω(N)〈N,−〉, in coordinates ω = ω(e1)de1 + ω(e2)de2 + ω(N)dN .
So, (∗ω) = ω(e1)de2 ∧ dN − ω(e2)de1 ∧ dN + ω(N)de1 ∧ de2.

i∗ ∗ ω(N) (e1, e2) = ω(N) = 〈v,N〉

Thus, in this case ∫
M
d(∗ω) =

∫
∂M

i∗(∗ω)

can be written as ∫
M
div(v) υ =

∫
∂M
〈v,N〉σ

4 Poincaré’s Lemma

Definition 6. Let Mn an n-dimensional differentiable manifold. A differential k-form ω is said
to be exact if there exist a (k − 1)-form β such that dβ = ω. It is said to be locally exact if for
each p ∈Mn there exist a neighbourhood V of p in which it is exact.
ω is said to be closed if dω = 0. It is said to be locally closed if for each p ∈ Mn there exist a
neighbourhood V of p in which it is exact.

Remark 1. Since d2 = 0, an exact form is closed, but the converse of the above fact does not
hold in general.

Example 2. Let’s consider the 1-form ω = xdy−ydx
x2+y2

, defined in R2 − {(0, 0)} = U .
We see that ω is closed. In fact,

dω =d

(
x

x2 + y2

)
∧ dy +

x

x2 + y2
d2y − d

(
y

x2 + y2

)
∧ dx+

y

x2 + y2
d2x

=d

(
x

x2 + y2

)
∧ dy − d

(
y

x2 + y2

)
∧ dx = 0
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On the other hand, there exist no 1-form, i.e. differentiable function g in U such that dg = ω,
otherwise, by Stokes theorem, if C = (x, y) ∈ R2, x2 + y2 = 1,∫

C
ω =

∫
C
dg =

∫
∂C
g = 0

But it is easy to see that this is impossible, because it is easy to prove that
∫
C ω = 2π.

It is possible, however, to find a neighbourhood V ⊂ U of each p ∈ U and a differentiable
function gV such that dgV = ω.

In this section we will show that the situation of this example is completely general, in other
words, we will show that the condition dw = 0, i.e . w is a closed form, is a sufficient condition
for ω to be locally exact.

Definition 7. An n-dimensional differentiable manifold Mn is said to be contractible to some
point p0 ∈M if there exist a differentiable map H : Mn×R→Mn, H(p, t) ∈M, p ∈M, t ∈ R
such that

H(p, 1) = p, H(p, 0) = p0, ∀p ∈M

Example 3. Rn is contractible to an arbitrary point. In fact, we can define

H(p, t) = p0 + (p− p0)t

With the same argument, we can show that the ball Br(0) = {p ∈ Rn; |p| < r} is contractible
to the origin 0.

Now we are going to prove the Poincaré’s Lemma, in other words, we are going to show
that, if M is smoothly contractible to a point, then every closed form dω is exact.
At first, we need to define a differential form on the product Mn × R. To do that, we need to
remember the projection map π : M ×R→M,π(p, t) = p.
In addition, if we have a k-form ω in Mn, we can consider the k-form in M ×R, given by

ω1 = H∗ω

where H is the map of the definition of contractibility.

To prove the theorem, we start with a Lemma.

Lemma 4. Every k-form w1 in M ×R can be written uniquely as

w1 = w0 + dt ∧ η

where w0 is a k-form on M ×R with the property that w0(v1, . . . , vk) = 0, if some vi, i = 1, .., k,
belongs to the kernel of dπ and η is a (k − 1)-form with a similar property.

Proof. Let p ∈ M and f : U → M be a parametrization around p. Then f(U) × R is a
coordinate neighbourhood of M × R, with coordinates, say, (x1 ◦ π, . . . , xn ◦ π, t), that we will
call (x̄1, . . . , x̄n, t).
In f(U)×R, ω1 can be written as

ω1 =
∑
i1,...,ik

ai1,...,ikdxi1 ∧ .. ∧ dxik + dt ∧
∑

bi1,...,ik−1
dxi1 ∧ · · · ∧ dxik−1

= ω0 + dt ∧ η.

It is very easy to see that ω0 and η have the required properties.
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Furthermore, if the decomposition

w1 = w0 + dt ∧ η

holds in all of M , it has to be locally equal of the form

ω1 =
∑
i1,...,ik

ai1,...,ikdxi1 ∧ · · · ∧ dxik + dt ∧
∑

bi1,...,ik−1
dxi1 ∧ · · · ∧ dxik−1

= ω0 + dt ∧ η.

To prove the existence, it is sufficient to define ω0 and η on each coordinate neighbourhood using
2. In the intersection of two of such neighbourhood, the definition agree by uniqueness, thus ω0

and η can be extended to the whole M satisfying the decomposition of the Lemma.
This proves the claim.

Now let’s consider the map it : M →M ×R, given by it(p) = (p, t).
It is the inclusion of M into M ×R at the ”level” t.
We want now to define a map I that takes k-forms of M ×R into (k− 1)-forms of M . If p ∈M
and v1 . . . vk ∈ TpM , then, the required map, at p is the following:

(Iω1)(v1..vk−1) =

∫ 1

0
{η(p, t)(dit(v1), . . . , dit(vk−1)}dt

where η is the form found in Lemma.

The crucial point of the theorem is contained in the following Lemma.

Lemma 5.
i∗1ω1 − i∗0ω1 = d(Iω1) + I(dω1).

Proof. Let p ∈M . We can use the same coordinate system (x1, . . . , xn, t) of M ×R introduced
in Lemma 4. At first, we notice that the operation I is additive,

I(α1 + α2) = I(α1) + I(α2)

It follows that, since ω1 = ω0 ∧ dt ∧ η, it suffices to consider the following two cases:

1. ω1 = fdxi1 ∧ .. ∧ dxik and

2. ω1 = fdt ∧ dxi1 ∧ · · · ∧ dxik−1
.

1. We know that ω1 = fdxi1 ∧ ..∧dxik . Let’s calculate dω1 = ∂f
∂t dt∧dxi1 ∧ · · ·∧dxik + terms

without dt.
Since we are in the coordinate system (x1, . . . , xn, t), the operation I allow to integrate
the local representation of ω1 along the second factor t. Therefore,

I(dω1)(p) =

(∫ 1

0

∂f

∂t
dt

)
dxi1∧· · ·∧dxik = (f(p, 1)−f(p, 0))dxi1 , . . . , dxik = i∗1ω(p)−i∗0ω(p)

, where we used the fact that (it ◦ π)∗ = (id)∗ in order to prove the first of the equations.
Since Iω1 = 0, we conclude the lemma in case (1).
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2. If ω1 = fdt∧ dxi1 ∧ ..∧ dxik−1
, then i∗1ω = 0 = i∗0ω. It is easy to show that considering the

fact that i∗t (dt) = d(i∗t (t)) = d(t ◦ it) = d(const) = 0.
On the other hand,

dω1 =

n∑
α=0

∂f

∂xα
dxα ∧ dt ∧ dxi1 ∧ · · · ∧ dxik−1

Therefore,

I(dω1)(p) = −
∑
α

(∫ 1

0

∂f

∂xα
dt

)
dxα ∧ dxi1 ∧ · · · ∧ dxik−1

and

d(Iω1)(p) = d{
(∫ 1

0
fdt

)
dxi1 ∧ · · · ∧ dxik−1

} =
∑
α

(∫ 1

0

∂f

∂xα
dt

)
dxα ∧ dxi1 ∧ · · · ∧ dxik−1

which complete the Case (2) and the proof of the Lemma.

Now we are ready to deal with the Poincaré’s Lemma.

Theorem 3. Let M be a contractible differentiable manifold, and let w be a differentiable k-form
in M with dw = 0. Then w is exact, i.e., there exist a (k − 1)-form α in M such that dα = ω.

Proof. Let π : M × R → M,π(p, t) = p the projection map and ω1 = H∗ω as defined above.
Since M is contractible, we have

H ◦ i1 = identity

and
H ◦ i0 = const = p0 ∈M

Thus,
ω = (H ◦ i1)∗ω = i∗1(H

∗ω) = i∗1ω1

0 = (H ◦ i0)∗ω = i∗0(H
∗ω) = i∗0ω1

Now, since dω = 0, we obtain that dω1 = H∗dω = 0. It follows by Lemma 5 that

ω = i∗1ω = d(Iω1) = d(α)

where α = Iω1.

5 Exercises

Exercise 1. Let g : R3 → R, f : R3 → R be a differentiable function and let M3 ⊂ R3 be a
compact differentiable manifold with boundary ∂M2.
Prove that:

1. (First Green’s identity)∫
M
〈gradf, gradg〉 υ +

∫
M
f∇2g υ =

∫
∂M

f〈gradg,N〉 σ

where υ and sigma are, respectively, the volume element of M and the area element of
∂M , and N is the normal of ∂M
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2. (Second Green’s identity)∫
M

(f∇2g − g∇2f)υ =

∫
∂M

(f〈gradg,N〉 − g〈gradg,N〉)σ

Proof. 1. The proof of the first Green’s identity is a simple application of the divergence
theorem proved above. We know that∫

M
div(v) υ =

∫
∂M
〈v,N〉σ

If we choose our vector field v = fgradg, we obtain:∫
M
div(fgradg) υ =

∫
∂M
〈fgradg,N〉σ

But it is very easy to check that

div(fgradg) = f∇2g + 〈gradf, gradg〉

and so, we have:∫
M
div(v) υ =

∫
M
f∇2g υ +

∫
M
〈gradf, gradg〉 υ =

∫
∂M
〈fgradg,N〉σ

2. To prove the second Green’s identity, we will use the first one. In fact, we know that∫
∂M
〈fgradg,N〉σ =

∫
M
f∇2g υ +

∫
M
〈gradf, gradg〉 υ

and ∫
∂M
〈ggradf,N〉σ =

∫
M
g∇2f υ +

∫
M
〈gradg, gradf〉 υ

Now, we just need to subtract the two equations in order to prove our statement∫
∂M
〈fgradg,N〉−〈ggradf,N〉σ =

∫
M
f∇2g υ+

∫
M
〈gradf, gradg〉 υ−

∫
M
g∇2f υ+

∫
M
〈gradg, gradf〉 υ

Since 〈gradf, gradg〉 = 〈gradg, gradf〉, the statement is proved.

Definition 8. Given a differentiable function f : Rn → R, we will define the Laplacian ∇f :
Rn → R by

∇f = div(gradf)

Is it easy to show that this definition in equivalent to

∇f =
∑ ∂2f

∂x2i

and, with this definition, we can see that the Laplacian is a linear operator, i.e.

∇(f + g) = ∇f +∇g

.

Exercise 2. (introduction to potential theory in R) A differentiable function g : R3 → R is said
to be harmonic in a subset B ⊂ R3 if ∇2g = 0 for all p ∈ B. Let MinR3 be a bounded region
with regular boundary ∇M . Prove that:
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1. If g1 and g2 are harmonic in M and g1 = g2 in ∇M , then g1 = g2 in M .

2. If g is harmonic in M and we define

∂g1
∂N

= 〈gradg,N〉 = 0

in ∂M , where N is the unit normal vector of ∂M , then g = const. in M .

3. If g1 and g2 are harmonic in M and

∂g1
∂N

=
∂g2
∂N

in ∂M , then g1 = g2 + const in M .

4. If g is harmonic in M , then ∫
∂M

∂g

∂N
σ = 0

5. The function 1

(x2+y2+z2)
1
2

is harmonic in R3 − {0}

6. (Mean value theorem). Let f be harmonic in the region

Br = {p ∈ R3 | ‖p− p0‖2 ≤ r2}

whose boundary is the sphere Sr with center in p0. Then

f(p0) =
1

4πr2

∫
Sr

fσ

Proof. 1. We can use the first Green’s identity with f = g = g1 − g2 and we obtain:∫
M
〈grad(g1−g2), grad(g1−g2)〉 υ+

∫
M

(g1−g2)∇2(g1−g2) υ =

∫
∂M

(g1−g2)〈grad(g1−g2), N〉 σ

Since g1 = g2 in ∇M , f = g = 0 in ∇M and g1, g2, i.e. ∇2(g1 − g2) = 0 are harmonic
functions: ∫

M
〈grad(g1 − g2), grad(g1 − g2)〉 υ = 0

The norm of the gradient is equal to 0 in M and so, the function f = g = g1 − g2 is
constant in M and so, it must be null in M .
As a consequence, g1 = g2 in M .

2. We can use the first Green’s identity with f = g and we obtain:∫
M
〈gradg, gradg〉 υ +

∫
M
g∇2g υ =

∫
∂M

g〈gradg,N〉 σ

As in the previous case, we have:∫
M
〈grad(g), grad(g)〉 υ = 0

and so, g must be constant in M .
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3. Let’s define the function f = g1 − g2. We know that ∇2g1 = ∇2g2 = 0 and

∂g1
∂N

=
∂g2
∂N

or, in other words,

〈gradg1, N〉 = 〈gradg2, N〉 ⇒ 〈gradg1 − gradg2, Nrangle = 〈gradf,N〉 = 0

We also know that ∇2(f) = 0 because the two functions g1 and g2 are harmonic: the
function f is harmonic. So, using 2), f = const, i.e. g1 = g2 + const.

4. Let’s use the first Green’s identity with f = 1. We obtain:∫
M
〈grad1, gradg〉 υ +

∫
M
∇2g υ =

∫
∂M
〈gradg,N〉 σ

Since grad1 = 0 and ∇2g = 0,∫
∂M

∂g

∂N
=

∫
∂M
〈gradg,N〉 σ = 0

5. It follows with easy calculations by the definition of Laplacian operator.

6. Let’s use the second Green’s identity in the region D = Br − Bρ, ρ < r, with f = f and
g = 1

r . Since g and f are harmonic,∫
Sρ

(f
∂

∂N
(
1

r
)− (

1

r
)(
∂f

∂N
))σ =

∫
Sr

(f
∂

∂N
(
1

r
− 1

r

∂f

∂N
)σ

Furthermore, we know that ∂
∂N (1r ) = ∂

∂r (1r ) = (−1)
r2

and we can also use the point (4):

1

4πρ2

∫
Sρ

fσ =
1

4πr2

∫
Sr

fσ =

And if we just let ρ→ 0 we prove the claim because:

lim
ρ→0

1

4πρ2

∫
Sρ

fσ = lim
ρ→0

1

4πr2

∫
Sr

fσ =
1

4πr2

∫
Sr

fσ

lim
ρ→0

1

4πρ2

∫
Sρ

fσ = f(P ) =
1

4πr2

∫
Sr

fσ
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