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Abstract

The main purpose of this talk is to present the Frobenius Theorem. A classical theorem of the
Differential Geometry that connects distributions or families of vector fields with sub-manifolds of
a smooth manifold M .

Motivation

Let M be a C∞ manifold, X a vector field on M and p ∈ M . We know that there exists a unique
maximal integral curve,

Cp(t) : (a, b) −→M ,

such that Cp(0) = p and its tangent velocity vector field is given by Ċp(t) = Xc(t), in particular

Ċp(0) = Xp. We also use the notation Cp(t) = Φ(t, p) ans say that Cp(t) is the integral curve of Y at
p.

We can see (locally) that Im(Cp) = N is a sub-manifold of M such that for any q ∈ N , it holds
TqN =< Xq >R.

We will say that D =< X >C∞(M) is a one-dimensional distribution on M , and, that N is an
integral manifold of D.

Our goal is to generalize the last result for higher dimensional distributions.

Local Parameter Groups and Commutative Vector Fields

Before we state and prove the Frobenius Theorem, we are going to learn some properties about vector
fields on a manifold M and the one parameter group generated by them.

Remark. From now on we are going to assume that M is a C∞ n-dimensional manifold.

Remember that given a vector field X on a manifold M , it has an associated family of local diffeo-
morphisms {ϕt}, called the one parameter group of local transformations generated by X. The local
diffeomorphims ϕt is given by,

ϕt : Ut −→M
p 7→ Φ(t, p),

where Ut = {p ∈M |a < t < b} and (a, b) = dom(Φ(t, p)).

Proposition 1. Let X, Y be vector fields on M and {ϕt}, {ψt} their corresponding one parameter
groups. The following statements are equivalent,

i. X, Y are commutative, i.e, [X,Y ] = 0.

ii. Y is invariant bu ϕt, i. e, for an arbitrary t ∈ R, (ϕt)∗Y = Y .

iii. ϕt and ψt are mutually commutative, i.e, for any t, s ∈ R, ϕt ◦ ψs = ψs ◦ ϕt .
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Proof. i. ⇒ ii.
First note that ϕ0 = idM ⇒ (ϕ0)∗ = idTpM . Therefore, for any p ∈M it holds (ϕ0)∗Yp = Yp.

On the other hand, the derivative with respect the parameter t of (ϕt)∗Y at t = t0 is given by,

d
dt((ϕt)∗Y )|t=t0 = limt→t0

(ϕt+t0 )∗Y−(ϕt0 )∗Y
t = limt→t0(ϕt0)∗

(ϕt)∗Y−Y
t

= (ϕt0)∗limt→t0
(ϕt)∗Y−Y

t = (ϕt0)∗[−X,Y ] = 0.

The latter tells us that (ϕt)∗Y is a constant vector field, i.e, it doesn’t depend on t. Therefore, for all
t we have (ϕt)∗Y = (ϕt0)∗Y = Y .

ii.⇒ iii.
Let ϕ : U −→ M be a local diffeomorphism. Let us take p ∈ U , Y a vector field on M and c(t) and
integral curve of Y .
Note the following, the curve γ(t) = ϕ ◦ c(t) : (a, b)→M is a smooth curve on M , s.t,

d
dtϕ ◦ c(t) = (ϕ)∗

c(t)
dt = (ϕ)∗Ċ(t) = (ϕ)∗Yc(t) = [(ϕ)∗Y ]ϕ◦c(t),

which implies that ϕ ◦ C(t) is an integral curve of (ϕ)∗Y .

Now, let us assume that ϕ ◦ c(0) = p, since ϕ is a local diffeomorphism we have c(0) = ϕ−1(p).

The last remark tells us the following, if c(t) is the integral curve of Y at ϕ−1(p) (i.e, c(t) = Φ(t, ϕ−1(p))
), then the curve γ(t) = ϕ ◦ c(t) is the integral curve of (ϕ)∗Y at p (i.e γ(t) = Φ̃(t, p))

Let us take an element ψ̃t of the one parameter family generated by (ϕ)∗Y . Then, for all p ∈ Ut

we have,

ψ̃t(p) = Φ̃(t, p) = ϕ ◦ Φ(t, ϕ−1(p)) = ϕ ◦ ψt(ϕ
−1(p)) = ϕ ◦ ψt ◦ ϕ−1(p) ⇒ ψ̃t = ϕ ◦ ψt ◦ ϕ−1. (1)

From now on, let ϕs be an element of the one parameter subgroup generated by X. It holds,

1. Since (ϕs)∗Y = Y , it’s clear that the local diffeomorphisms ψ̃t and ψt are the same.

2. From the latter and equation (1) we get that ψt = ϕs ◦ ψt ◦ ϕ−1s ⇒ ψt ◦ ϕs = ϕs ◦ ψt.

iii.⇒ i.
By assumption we know that ϕs ◦ ψt ◦ ϕ−1s = ψt, let us take p ∈M

a. By letting the parameter t vary, we get that ψt(p) = Φ(t, p) is the integral curve at p of Y .
Therefore, we have that d

dtψt(p)|t=0 = Yp.

b. In the last proof we showed that d
dtϕs ◦ ψt ◦ ϕ−1s (p)|t=0 = [(ϕs)∗Y ]p.

Since, ϕs ◦ ψt ◦ ϕ−1s (p) = ψt(p), from a. and b. it follows that (ϕs)∗Y = Y , and so, we get that

[X,Y ] = lims→0
−(ϕ−s)∗Y−Y

s = 0
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Frobenius Theorem

We are going to study completely integrable distributions. In particular, we will state and prove
the Frobenius Theorem, which gives us the conditions to generalize the result that was given in the
motivation.

Definition. An r-dimensional distribution D on M is an smooth assigment of an r-dimensional
subspace Dp of TpM at each point p ∈M , such that Dp is C∞ with respect to p.
We also say that a vector field X on M belongs to D if Xp ∈ Dp for any point p ∈M .

Definition. A submanifold N of M is called an integral manifold of D, if TpN = Dp for any point
p ∈ N . Moreover, if an integral manifold of D exists through each point of M , D is said to be
completely integrable.

Example. The distribution D =< X >C∞(M) is completely integrable, since for all p ∈ M we can
find the integrable curve c(t) = Φ(t, p) at p.

Theorem (Frobenius Theorem). Let D be a distribution on a C∞ manifold M . Then, D is completely
integrable if and only if for any two vector fields X, Y belonging to D, the lie-bracket [X,Y ] also belongs
to D (a distribution with this property is said to be involutive).

Proof. ”⇒” We want to see that for any vector fields X, Y belonging to D, and, an arbitrary p ∈M ,
it holds [X,Y ]p ∈ Dp.
Since D is completely integrable there exist an integrable manifold N of D through p. Let r = dim(N),
we can choose a coordinate neighborhood (U, x1, ..., xn) of p, such that, x1(p) = x2(p) = ... = xn(p) = 0
and (N ∩ U, x1, x2, ..., xr, xr+1 = 0, ..., xn = 0) is a local chart of N . Due to the fact that for any
q ∈ NDq = TqN , we have

Dq =< ∂
∂x1
|q, ..., ∂

∂xr
|q >R.

On the other hand, the following holds:

1. The local expressions of X and Y are given by X =
∑n

i=1 ai
∂
∂xi

and Y =
∑n

i=1 bi
∂
∂xi

.

2. Since X, Y belong to D, we get that aj(x1, ..., xr, 0, ..., 0) = bj(x1, ..., xr, 0, ..., 0) = 0 for j > r.
Consequently,

∂aj
∂xi

(0) = 0 for i ≤ r and j > r,

∂bj
∂xi

(0) = 0 for i ≤ r and j > r.

3. Finally, we know that [X,Y ] =
∑n

i=1 cj
∂

∂xj
, where cj =

∑n
i=1 ai

∂bj
∂xi
− bi ∂aj∂xi

.

Let us take j > r, since ai = bi = 0 for i > r ⇒ cj =
∑r

i=1 ai
∂bj
∂xi
− bi ∂aj∂xi

. Moreover, we know that
∂aj
∂xi

(0) =
∂bj
∂xi

(0) = 0 for i ≤ r ⇒ cj(0) = 0.

From the latter, we get [X,Y ]p =
∑r

j cj(p)
∂

∂xj
|p ⇒ [X,Y ]p ∈ Dp.

3



”⇐” Let us assume that D is involutive, and, let us take an arbitrary point p ∈M . We want to find
an integral manifold N of D through p.
We can choose a small coordinate neighborhood (U, x1, ..., xn) of p, and, vector fields Y1, ..., Yr in D,
such that, {Y1, ..., Yn} is a linearly independent set for all q ∈ U . With respect to (U, x1, ..., xn) we
can write

Yi =
∑n

j=1 aij
∂

∂xj
for i = 1, ..., r.

Since {Y1, ..., Yn} is linear independent set, we can assume, w.l.o.g (change the order if necessary),
that the matrix A = [aij ]i,j=1,...,r is invertible. Let B = [bij ]i,j=1,...,r = A−1 and let us take the vector
fields

Xi =
∑r

k=1 bikYk.

By definition [AB]kij =
∑n

k=1 bikakj = δij for i, j = 1, ..., r, and so, Xi can be given in local coordinates
as follows

Xi =
∑r

j=1

∑n
k=1 bikakj

∂
∂xj

+
∑n

j=r+1

∑r
k=1 bikakj

∂
∂xj

=
∑r

j=1 δij
∂
∂xi

+
∑n

j=r+1 cij
∂

∂xj

= ∂
∂xi

+
∑n

j=r+1 cij
∂

∂xj
.

It’s clear that Xi belongs to D for all i = 1, ..., r, and,{X1, ..., Xn} is a linearly independent set. Con-
sequently, Dq =< {X1(q), ..., Xn(q)} > for all q ∈ D.

Also note that

[Xi, Xj ] = [ ∂
∂xi
, ∂
∂xj

] +
∑n

k=r+1[
∂
∂xi
, cik

∂
∂xk

] +
∑n

k=r+1[cjk
∂

∂xk
, ∂
∂xj

] +
∑n

k,k′=r+1
[cik

∂
∂xk

, cjk′
∂

∂x
k
′
],

and, since

[a ∂
∂xk

, b ∂
∂x

k
′
] = a ∂b

∂xk

∂
∂x

k
′
− b ∂a

∂x
k
′

∂
∂xk

, it tells us that [Xi, Xj ] =
∑n

k=r+1 C̃k
∂

∂xk
.

Moreover, since D is involutive we know that [Xi, Xj ] belongs to D, and, for that reason

[Xi, Xj ] =
∑r

k=1 fkXk, where fk ∈ C∞(U).

From the last computations and considerations we have that:

[Xi, Xj ] =
∑r

k=i fk
∂

∂xk
+
∑n

k=r+1 Ĉk
∂

∂xk
⇒

∑r
k=i fk

∂
∂xk

= 0

⇒ fk = 0 for all k = 1, ..., r ⇒ [Xi, Xj ] = 0.

The latter tells us that, the set {X1, ..., Xn} is a linear independent set of mutually commutative
vector fields, which generate and belong to D.

Now, let {ϕi
ti} be the one parameter group generated by Xi, and, let us take a small neighbor-

hood V of the origin in Rr, we can define a map

ϕ : V −→ U

by ϕ(t1, ..., tr) = ϕ1
t1 ◦ ϕ

2
t2 ◦ ... ◦ ϕ

r
tr(p).

Since the vector fields Xi are mutually commutative, we have that

ϕ(t1, ..., tr) = ϕi
ti ◦ ϕ

1
t1 ◦ ... ◦ ϕ

i−1
ti−1
◦ ϕi+1

ti+1
◦ ... ◦ ϕr

tr(p)
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and so, at t = 0, and, for f ∈ C∞(U) we have that

(ϕ)∗(
∂
∂ti

)f =
∂f◦ϕi

ti
(p)

∂ti
|ti=0 = Xi(p)f ⇒ (ϕ)∗(

∂
∂ti

) = Xi(p).

As a consequence, we get that (ϕ)∗ : T0Rr −→ TpM is an injective map, and, by tacking V as small
as necessary, ϕ is an embedding.

Let N = Imϕ, by the last result, N is a submanifold of M with the property that Dp = TpN .

We want to see now that for all q ∈ N , Dq = TqN . Since ϕ is an embedding there is a t = (t1, ..., tr),

such that, q = ϕ(t1, ..., tr) = ϕ1
t1 ◦ ... ◦ ϕ

r
tr(p),

in the same way as we did before, as the vector fields Xi are mutually commutative, we have that

q = ϕi
ti ◦ ϕ

1
t1 ◦ ...ϕ

i−1
ti−1
◦ ϕi+1

ti+1
◦ ... ◦ ϕr

tr(p).

Let us take

p̃ = ϕ1
t1 ◦ ...ϕ

i−1
ti−1
◦ ϕi+1

ti+1
◦ ... ◦ ϕr

tr(p)

, and, a small interval (a, b) ⊂ R, such that, ti ∈ (a, b) and the mapping γ(t) = ϕi
t(p̃) defines a curve

on N .
It is clear that γ(ti) = q. Moreover, since ϕi

t(p̃) is by definition an integral curve of Xi ⇒

γ̇(ti) = Xi(q) ⇒ Xi(q) ∈ TqN .

We also know that {X1(q), ..., Xr(q)} is a linear independent set and dim(TqN) = r ⇒

TqN = Dq

Reference:
Shigeyuki Morita, Geometry of Differential Forms, American Mathematical Society, 2001
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