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1 Why Polynomials?
First introduced by James Wadell Alexander II in 1923, knot polynomials have proved
themselves by being one of the most efficient ways of classifying knots. In this spirit,
one expects two different projections of a knot to have the same knot polynomial; one
therefore demands that a good knot polynomial be invariant under the three Reide-
meister moves (although this is not always case, as we shall find out). In this report,
we present 5 selected knot polynomials: the Bracket, Kauffman X, Jones, Alexander
and HOMFLY polynomials.

2 The Bracket Polynomial

2.1 Calculating the Bracket Polynomial
The Bracket polynomial makes for a great starting point in constructing knot poly-
nomials. We start with three simple rules, which are then iteratively applied to all
crossings in the knot:

A direct application of the third rule leads to the following relation for (untangled)
unknots:

The process of obtaining the Bracket polynomial can be streamlined by evaluating
the contribution of a particular sequence of actions in undoing the knot (states) and
summing over all such contributions to obtain the net polynomial.

2.2 The Problem with Bracket Polynomials
The bracket polynomials can be shown to be invariant under types 2 and 3 Reidemeis-
ter moves. However by considering type 1 moves, its one major drawback becomes
apparent. From:
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we conclude that that the Bracket polynomial does not remain invariant under
type 1 moves. This can be fixed by introducing the writhe of a knot, as we shall see
in the next section. But despite its shortcomings, Bracket polynomials can be used
to prove conjectures which are notoriously difficult to prove otherwise. One such
conjecture is the statement that any two given reduced alternating projections of the
same knot have the same number of crossings.

2.3 The Kauffmann X and Jones Polynomials
A type 1 invariant 'version' of the Bracket polynomial can be introduced by defining
the writhe of a knot. To do so, we classify crossings as either L− or L+. A L+

(L−) crossing (say) is where the overstrand has a positive (negative) slope (with both
over- and understrands 'pointed upwards'). To every L+ (L−) crossing we assign the
number +1 (−1). The writhe is then given by the sum of these numbers.

Figure 1: The writhe of this knot is given by 4− 3 = 1.

The Kauffmann X polynomial is then easily obtained from the Bracket polynomial,
simply by multiplying in prefactor:

The Kauffmann X polynomial can be shown to be invariant also under type 1 Rei-
demeister (note that the writhe is invariant under type 2 and 3 moves). Furthermore,
the Jones polynomial can be obtained by substituting 1

t4 for A, thereby normalizing
the Kauffmann X polynomial.
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3 The Alexander Polynomial
It was the first polynomial to be described in 1928 by the topologist James Alexander.
It can be shown that the polynomial is invariant under the three Reidemeister moves,
so we can change the projection of a knot while computing the polynomial.
We use two simplified rules discovered by John Conway in 1969 to compute the poly-
nomial. But first let us introduce the so called skein relations.
Think of a knot with an orientation. Pick a specific crossing. According to the skein
relation we can say it is either a L+-knot or a L−-knot. By splitting the two strings
of a crossing and gluing them together in a way that the orientation is preserved we
get an L0-knot.

Using these relations and the following rules we can now compute the polynomial
of an oriented knot.

∆(◦) = 1, for every projection of the unknot

∆(L+)− ∆(L−) + (t1/2 − t−1/2)∆(L0) = 0

Pick a crossing an decide wether the knot is a L+-knot or a L−-knot. Rearrange
the equations to either ∆(L+) or ∆(L−) and compute the two leftover knots. One
can show that after a finite number of steps one is left with just a finite number of
trivial knots of which we know the polynomial.

Now let us arrange this process in a diagram, called the resolving tree to get an
impression of the procedure.

Figure 2: A resolving tree for the trefoil knot
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4 HOMFLY Polynomial
TheHOMFLY Polynomial is a generalisation of both the Jones and Alexander Polyno-
mial and a Laurent Polynomial in 2 variables: m, l. Again we're using a skein relation
to define it.

P (◦) = 1, for every projection of the unknot

lP (L+) + l−1(L−) +mP (L0) = 0

As with the Jones and Alexander Polynomial the HOMFLY Polynomial is invari-
ant under the three Reidemeister moves and hence an invariant for knots.
Now, what does it mean that the HOMFLY Polynomial is a generalisation? By replac-
ing l =

√
−1 and m =

√
−1(t1/2 − t−1/2) we're left with the Alexander Polynomial.

∆(L+)− ∆(L−) + (t1/2 − t−1/2)∆(L0) = 0

By substituting with the right variables the same holds true for the Jones Polyno-
mial.

An amazing property which is worth mentioning is that the polynomial of a com-
position knot is just the product of the polynomials of the factor knots.

P (L1#L2) = P (L1)P (L2)

5 Amphichirality
A knot K ist amphichiral if it is ambient isotopic to its mirror image K*. It is obtained
by changing every crossing of K to its opposite, while the orientation is preserved.

Figure 3: The figure-eight knot is amphichiral.

Now consider the Kaufmann Polynomial. One can show that the following holds
true for an amphichiral knot K:

XK(A) = XK(A−1)

So the polynomial of an amphichiral knot K is palindromic, that is to say, the
coefficients must be the same backwards and forwards.
Let's look at the Polynomial of the figure-eight knot, which is palindromic.
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A8 −A4 + 1−A−4 +A8

In comparison, the polynomial of the trefoil knot is not palindromic and indeed
there are two distinct projections of the trefoil knot, the left-handed and right-handed
trefoil knot.

−A16 +A12 +A4
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