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Abstract. We construct explicitly an infinite family of Ramanujan graphs which are bipartite and bireg-

ular. Our construction starts with the Bruhat-Tits building of an inner form of SU3(Qp). To make the
graphs finite, we take successive quotients by infinitely many discrete co-compact subgroups of decreasing

size.
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1. Introduction

Expander graphs are highly connected yet sparse graphs. By a highly connected graph we mean a graph
in which all small sets of vertices have many neighbors. They have wide ranging applications, especially in
computer science and coding theory. They also model neural connections in the brain and many other types
of networks. One is usually interested in regular or biregular expanders. The expansion property is controlled
by the size of the spectral gap of the graph. Asymptotically, Ramanujan graphs are optimal expanders as
we will explain below. Infinite families of regular Ramanujan graphs of fixed degree were first constructed
in the late 1980’s by Lubotzky, Phillips and Sarnak [LPS88], and independently by Margulis [Mar88]. Since
then, the study of problems related to the existence and construction of Ramanujan graphs has become an
active area of research. Until recently, all constructions of families of regular Ramanujan graphs have been
obtained using tools from number theory, including deep results from the theory of automorphic forms. As
a result, the graphs obtained have degree q + 1, where q is a power of a prime. Using similar methods,
the authors of [BC11] give a roadmap toward the construction of infinite families of Ramanujan bigraphs,
i.e., biregular, bipartite graphs satisfying the Ramanujan condition, of bidegree (q3 + 1, q + 1), where q is a
power of a prime. However, they stop short of providing explicit examples. Very recently, Marcus, Spielman
and Srivastava [MSS14] used the method of interlacing polynomials to prove the existence of arbitrary
degree Ramanujan bigraphs. By making the two degrees equal, this implies the existence of arbitrary degree
(regular) Ramanujan graphs. Their proof is non-constructive.

In this article, we follow the roadmap given in [BC11] to explicitly construct an infinite family of Ramanu-
jan bigraphs. We start with a quadratic extension, E/Q, and define a division algebra D which is non-split
over E i.e., D is not isomorphic to the matrix algebra M3(E). We then use this to define a special unitary
group G over E from D by means of an involution of the second kind. We define this involution such that
the corresponding local unitary group is isomorphic to SU3(Qp) at the place p, i.e., Gp = G(Qp) ∼= SU3(Qp),
and compact at infinity. We also give a concrete description of an infinite family of discrete co-compact
subgroups of Gp which act without fixed points on Gp.

Since the division algebra D is non-split, Corollary 4.6 of [BC11] guarantees that each quotient of the
Bruhat-Tits tree of Gp by one of the above subgroups satisfies the Ramanujan condition. Therefore, we
obtain an infinite family of Ramanujan bigraphs of bidegree (p3 + 1, p+ 1). We note that most of this work
could be carried out over a general totally real number field but we often choose to work over Q to simplify
the notation.
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2. Preliminaries and Notation

In this section we introduce the notation used throughout the article and give a brief review of Ramanujan
graphs and bigraphs, unitary groups, and buildings.

2.1. Ramanujan graphs and bigraphs. While [BC11] also contains a concise review of this topic, we
find it useful for the reader to have an overview within the current article. In [Lub12], Lubotzky gives a
review of expander graphs with applications within mathematics. Hoory, Linial and Wigderson [HLW06]
provide a review accessible to the nonspecialist with many applications, especially to computer science. For
an elementary introduction to regular Ramanujan graphs, we refer the reader to [DSV03].

A graph X = (V,E) consists of a set of vertices V together with a subset of pairs of vertices called edges.
In this article, all graphs are undirected. Thus, the pair of vertices forming an edge is unordered. The degree
of a vertex is the number of edges incident to it. A graph is called k-regular if all vertices have degree k. A
graph is called (l,m)-biregular if each vertex has degree l or m. A bipartite graph is a graph that admits a
coloring of the vertices with two colors such that no two adjacent vertices have the same color. A bigraph is
a biregular, bipartite graph.

We denote by Ad(X) the adjacency matrix of X and by Spec(X) the spectrum of X. Thus, Spec(X)
is the collection of eigenvalues of Ad(X). Since the adjacency matrix is symmetric, Spec(X) ⊂ R. For a

k-regular graph, we have k ∈ Spec(X). For an (l,m)-biregular graph, we have
√
lm ∈ Spec(X). Moreover,

if we denote by λi the eigenvalues of a graph, for a connected k-regular graph we have

k = λ0 > λ1 ≥ λ2 ≥ · · · ≥ −k.

Thus, k is the largest absolute value of an eigenvalue of X. We denote by λ(X) the next largest absolute
value of an eigenvalue. If X is bipartite, the spectrum is symmetric and −k is an eigenvalue. Let X be a
finite connected bigraph with bidegree (l,m), l ≥ m. Suppose X has n1 vertices of degree l and n2 vertices
of degree m. We must have n2 ≥ n1. Then, Spec(X) is the multiset

{±λ0,±λ1, . . . ,±λn1
, 0, . . . , 0︸ ︷︷ ︸

n2−n1

},

where λ0 =
√
lm > λ1 ≥ · · · ≥ λn1

≥ 0. Then, with the above notation, λ(X) = λ1.
If W is a subset of V , the boundary of W , denoted by ∂W , is the set of vertices outside of W which are

connected by an edge to a vertex in W , i.e.,

∂(W ) = {v ∈ V \W | {v, w} ∈ E, for some w ∈W}.

The expansion coefficient of a graph X = (V,E) is defined as

c = inf

{
|∂W |

min{|W |, |V \W |}

∣∣∣∣ W ⊆ V : 0 < |W | <∞
}
.

Note that, if |V | = n is finite, then

c = min

{
|∂W |
|W |

∣∣∣∣ W ⊆ V : 0 < |W | ≤ n

2

}
.

A graph X = (V,E) is called an (n, k, c)-expander if X is a k-regular graph on n vertices with expansion
coefficient c. The expansion coefficient c of a regular graph is related to λ(X), the second largest absolute
value of an eigenvalue [LPS86, Proposition 1.2] by

2c ≥ 1− λ(X)

k
.
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Good expanders have large expansion coefficient. Thus, good expanders have small λ(X) (or large spectral
gap, k − λ(X)). Alon and Boppana [Alo86, LPS88] showed that asymptotically λ(X) cannot be arbitrarily
small. They proved that, if Xn,k is a k-regular graph with n vertices, then

lim inf
n→∞

λ(Xn,k) ≥ 2
√
k − 1.

Lubotzky, Phillips and Sarnak [LPS86] defined a Ramanujan graph to be a graph that beats the Alon-
Boppana bound.

Definition 2.1. A k-regular graph X is called a Ramanujan graph if λ(X) ≤ 2
√
k − 1.

Feng and Li [FL96] proved the analog to the Alon-Boppana bound for biregular bipartite graphs. They
showed that, if Xn,l,m is a (l,m)-biregular graph with n vertices, then

lim inf
n→∞

λ(Xn,l,m) ≥
√
l − 1 +

√
m− 1.

Then, Solé [Sol99] defines Ramanujan bigraphs as the graphs that beat the Feng-Li bound.

Definition 2.2. A finite, connected, bigraph X of bidegree (l,m) is a Ramanujan bigraph if

|
√
l − 1−

√
m− 1| ≤ λ(X) ≤

√
l − 1 +

√
m− 1.

Solé’s definition is equivalent to the following definition given by Hashimoto [Has89].

Definition 2.3. A finite, connected, bigraph of bidegree (q1 + 1, q2 + 1) is a Ramanujan bigraph if

|(λ(X))2 − q1 − q2| ≤ 2
√
q1q2.

Our goal is to construct an infinite family of Ramanujan bigraphs of the same bidegree and with the
number of vertices growing without bound. In general, it is difficult to check that a large regular or biregular
graph is Ramanujan. In this article, the graphs are quotients of the Bruhat-Tits building attached to an
inner form of the special unitary group in three variables. We then employ a result of [BC11], which uses
the structure of the group, to estimate the spectrum of the building quotient in order to conclude that the
graphs constructed are Ramanujan.

2.2. Unitary groups in three variables. We denote by F a local or global field of characteristic zero. For
a detailed discussion on unitary groups, we refer the reader to [Rog90]. Let E/F be a quadratic extension
and φ : E3×E3 → E be a Hermitian form. Then the special unitary group with respect to φ is an algebraic
group over F whose functor of points is given by

SU(φ,R) = {g ∈ SL3(E ⊗F R) | φ(gx, gy) = φ(x, y) ∀x, y ∈ E3 ⊗F R}

for any F -algebra R. We use SU3 to denote the standard special unitary group corresponding to the
Hermitian form given by the identity matrix; that is,

SU3(R) = {g ∈ SL3(E ⊗F R) | tḡg = Id3}

where ḡ is conjugation with respect to the extension E/F .
Let D be a central simple algebra of degree three over E and α be an involution of the second kind, i.e.,

an anti-automorphism of D that acts on E by conjugation with respect to E/F . By Wedderburn’s theorem
[KMRT98, Theorem 19.2], D is a cyclic algebra over E. Let ND denote the reduced norm of D. Then,
(D,α) defines a special unitary group G by

G(R) = {d ∈ (D ⊗F R)× | α(d)d = 1, ND⊗FR(d) = 1}.

Moreover, all special unitary groups are obtained in this way from (D,α) [Rog90, section 1.9].
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2.3. Buildings. Let F be a non-archimedean local field and let E/F be an unramified separable quadratic
extension. Let G = SU3 be defined as above. Let O = OE be the ring of integers of E and p be the
unique maximal ideal in O. Let k = O/p be the residue field. We denote by B the Borel subgroup of
upper-triangular matrices and by B(k) the k-points of B. We denote by I the preimage of B(k) under the
reduction mod p map G(O)→ G(k). The group I is an Iwahori subgroup. Then the Weyl group W of G is
the infinite dihedral group. Let s1 and s2 be the reflections generating W . For i = 1, 2, let Ui = I ∪ IsiI.
These subgroups are the representatives of the G-conjugacy classes of maximal compact subgroups of G
[HH89]. Moreover, I = U1 ∩ U2.

The Bruhat-Tits building associated with G is a one dimensional simplicial complex defined as follows.
The set of 0-dimensional simplices consists of one vertex for each maximal compact subgroup of G. If K1

and K2 are two maximal compact subgroups of G, we place an edge between the vertices corresponding to
K1 and K2 if and only if K1 ∩K2 is conjugate to I in G. The edges form the set of 1-dimensional simplices
of the building. Since they are the faces of the largest dimension, they are the chambers of the building.
The group G acts simplicially on the building in a natural way. The building associated with SU3 is a
(q3 + 1, q + 1) tree, where q is the cardinality of the residue field k. For more details on buildings we refer
the reader to [Tit79] and [Gar97].

2.4. Ramanujan bigraphs from buildings. Let G be the group SU3 over Qp (or a finite extension of

Qp). Let X̃ be the Bruhat-Tits tree of G. Let E be an imaginary quadratic extension of Q and let D be a
central simple algebra of degree 3 over E and α an involution of the second kind on D. Let G be the special
unitary group over Q determined by (D,α). We have the following theorem of Ballantine and Ciubotaru
[BC11] that motivates our work.

Theorem 2.4. [BC11, Theorem 1.2] Let Γ be a discrete, co-compact subgroup of G which acts on G without

fixed points. Assume that D 6= M3(E), G(Qp) = G and G(R) is compact. Then the quotient tree X = X̃/Γ
is a Ramanujan bigraph.

In the rest of this article we give a description of an algebra D together with an involution α fulfilling the
assumptions of the above theorem, as well as an infinite collection of discrete, co-compact subgroups of G
which act on G without fixed points.

3. Choosing the algebra and the involution

The goal of this section is to determine explicitly a global division algebra D which is central simple of
degree three over its center E and is equipped with an involution α of the second kind with fixed field F
such that the related special unitary group G,

G(R) = {d ∈ (D ⊗F R)× | α(d)d = 1 and ND⊗FR(d) = 1},
yields compactness at infinity. Such an algebra exists by the Hasse principle (see for example [HL04, p. 657]),
which actually is much stronger: For any set of local data, there is a global one localizing to it. We note that
in [BC11] the authors refer to [CHT08] for the existence of the global group (and thus the algebra defining it).
The example of central simple algebra with involution given in [BC11] does not necessarily lead to Ramanujan
bigraphs. It is not a division algebra and the resulting unitary group has non-tempered representations
occurring as local components of automorphic representations. Therefore, Rogawski’s Theorem [Rog90,
Theorem 14.6.3] does not apply.

3.1. Cyclic central simple algebras of degree three. Let E be a number field. Let L be a cyclic algebra
of degree three over E, and let ρ be a generator of its automorphism group which is isomorphic to the cyclic
group C3. Then, define a cyclic central simple algebra D of degree three over E by

D = L⊕ Lz ⊕ Lz2,
where z is a generic element satisfying z3 = a ∈ E× subject to the relation

zl = ρ(l)z for any l ∈ L.
By a theorem of Wedderburn [KMRT98, Theorem 19.2], any central simple algebra of degree three is cyclic.
From now on we will assume D is in the form given above. As D is a vector space over L with basis
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{1, z, z2}, we write the multiplication by d ∈ D from the right in terms of matrices to obtain an embedding
D ↪→M3(L),

d = l0 + l1z + l2z
2 7→ A(l0, l1, l2) :=

 l0 l1 l2
aρ(l2) ρ(l0) ρ(l1)
aρ2(l1) aρ2(l2) ρ2(l0)

 ,

for l0, l1, l2 ∈ L. Let NL/E denote the norm of L/E, and TrL/E denote the trace of L/E. Then for the
reduced norm of D we have

ND(d) = detA(l0, l1, l2) = NL/E(l0) + aNL/E(l1) + a2NL/E(l2)− a TrL/E(l0ρ(l1)ρ2(l2)).

In order for D to be a division algebra, we have to assume that L/E is a field extension. Since L is a cyclic
C3-algebra over E, it follows that L/E is C3-Galois. Additionally, D is a division algebra if and only if
neither a nor a2 belongs to the norm group NL/E of L/E [Pie82, p.279].

3.2. Involutions of the second kind. Let E/F be a quadratic extension of number fields, and let 〈τ〉 ∼= C2

be its Galois group. In order to equip a division algebra D over E with an involution α of the second kind
with fixed field F , we need to extend the nontrivial automorphism τ of E to D.

We start by extending τ to L, τ : L→ D. For this we have two possibilities. Either, the image L′ := τ(L)
equals L or it does not. If L′ does not equal L, then τ gives rise to an isomorphism of L to L′ inside some
field extension containing both. However, L and L′ are not isomorphic as extensions of E, otherwise D
would not be a division algebra. So L/F is not Galois. Notice that in this case L along with L′ generate D.
In contrast, if we extend τ : L → L, i.e., τ(L) = L, then 〈τ, ρ〉 is an automorphism group of L/Q of order
at least six. That is, the degree six extension L/F is Galois with Galois group 〈τ, ρ〉, which is isomorphic to
the cyclic group C6 or the symmetric group S3.

3.3. Compactness at infinity. We now assume F is totally real. For simplicity, let F = Q.
In order for the unitary group defined by (D,α) to be compact at infinity, we need E/Q to be imaginary

quadratic. To see this, assume E/Q is real quadratic. Then, E∞ = E ⊗Q R ∼= R⊕R would split. Therefore,
L∞ would split as well and we would be able to find an isomorphism D∞ ∼= M3(R) ⊕M3(R), where the
involution is given by (see [PR94, p.83])

(x, y) 7→ (ty, tx),

and the reduced norm is given by

ND(x, y) = det(x) det(y).

Thus,

G∞ := G(R) = {(x, y) ∈ D∞ | ( tyx, txy) = (Id3, Id3) and det(x) det(y) = 1} ∼= GL3(R)

is not compact.
Next we remark that in the case when L/Q is Galois, the Galois group is necessarily C6. To see this,

assume L/E is a C3 = 〈ρ〉-Galois extension such that L/Q is S3-Galois. At infinity, we have

E∞ = E ⊗Q R ∼= C

and τ acts by complex conjugation. Therefore,

L∞ = L⊗Q R ∼= L⊗E C ∼= C⊕ C⊕ C,

with the isomorphism given by

l ⊗ s 7→ (ρ0(l)s, ρ1(l)s, ρ2(l)s) for l ∈ L and s ∈ E∞.

Notice that [L : E] = 3, so there is always a real primitive element, and thus there is an E-basis for L which
is τ -invariant. Here multiplication in L∞ is defined coordinate wise. The S3-action is given by

ρ(l ⊗ s) = ρ(l)⊗ s 7→ (ρ1(l)s, ρ2(l)s, ρ0(l)s)

and

τ(l ⊗ s) 7→ (τ(l)τ(s), ρ2τ(l)τ(s), ρτ(l)τ(s)).
5



Thus, for any (t0, t1, t2) ∈ L∞ we have

ρ(t0, t1, t2) = (t1, t2, t0),

τ(t0, t1, t2)) = (t̄0, t̄2, t̄1),

with the usual complex conjugation. Without specifying the algebra (D,α) containing L any further, we
read off that D∞ is isomorphic to the matrix algebra M3(C) with L∞ embedded diagonally. This leads to
the following result.

Proposition 3.1. Let E,L, and (D,α) be as above, and assume L/Q is S3-Galois. Then the split torus

T∞ = {(t̄t−1, t, t̄−1) | t ∈ C×} ⊂ L∞
is contained in G∞. In particular, G∞ is non-compact.

Proof of Proposition 3.1. We check the definition of G for elements of T∞. We have

ND((t̄t−1, t, t̄−1)) = NL∞/E∞((t̄t−1, t, t̄−1)) = t̄t−1 · t · t̄−1 = 1,

as well as

α((t̄t−1, t, t̄−1)) · (t̄t−1, t, t̄−1) = τ((t̄t−1, t, t̄−1)) · (t̄t−1, t, t̄−1) = (tt̄−1, t−1, t̄) · (t̄t−1, t, t̄−1) = 1.

Therefore, T∞ defines a non-compact torus of G∞. �

In the case when L/Q is Galois, there is an obvious (but not unique) choice of an involution of the second
kind. As τ extends to an automorphism of L, it is defined on any coefficient of A(l0, l1, l2). Thus, the map

α(A(l0, l1, l2)) := tτ(A(l0, l1, l2)) =

τ(l0) τ(aρ(l2)) τ(aρ2(l1))
τ(l1) τρ(l0) τ(aρ2(l2))
τ(l2) τρ(l1) τρ2(l0)


clearly satisfies the conditions

α2 = id,

α(A ·B) = α(B) · α(A),

α |E= τ.

In order for α to be an involution on D of the second kind, we must have that the image α(D) is contained
in D. Defining

l̃0 = τ(l0), l̃1 = τ(a)τρ(l2), l̃2 = τ(a)τρ2(l1),

this condition is equivalent to
α(A(l0, l1, l2)) = A(l̃0, l̃1, l̃2)).

That is, τ(l0) τ(aρ(l2)) τ(aρ2(l1))
τ(l1) τρ(l0) τ(aρ2(l2))
τ(l2) τρ(l1) τρ2(l0)

 =

 l̃0 l̃1 l̃2
aρ(l̃2) ρ(l̃0) ρ(l̃1)

aρ2(l̃1) aρ2(l̃2) ρ2(l̃0)

 .

This evidently reduces to the following conditions

τρ = ρτ on L

and
aτ(a) = 1.

We summarize the above discussion in the following theorem.

Theorem 3.2. Assume the extension L/Q is Galois, and that α is defined by

α(A(l0, l1, l2)) = tτ(A(l0, l1, l2)).

Then (D,α) is a division algebra which is central simple over E with involution α of the second kind if and
only if the following conditions are satisfied:

(i) a ∈ E×, and a, a2 /∈ NL/E

(ii) NE/Q(a) = aτ(a) = 1
(iii) τρ = ρτ on L, i.e. L/Q is C6-Galois.
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Moreover, if these conditions are satisfied, the group G∞ is compact.

Proof of Theorem 3.2. The first part of the theorem is proved above. What is left to show is compactness
at infinity. The realization of L inside the diagonal subgroup of M3(L) is chosen such that it is compatible
with the isomorphism

L∞ = L⊗Q R ∼= L⊗E C ∼= C3

induced by the three embeddings of L into C. Indeed, D∞ ∼= M3(C) with involution α : M3(C) → M3(C)
given by α(A) = tA. Therefore,

G∞ ∼= {A ∈M3(C) | tA ·A = Id3, detA = 1} = SU3(R),

is induced by the standard hermitian form of signature (3, 0). Thus, G∞ is compact. �

Notice that it is non-trivial to satisfy condition (iii) of Theorem 3.2, as a quadratic field E/Q does not
necessarily allow an extension L of degree three which is C6-Galois over Q. However, there are situations
which allow for the conditions of Theorem 3.2 to be satisfied. Below we provide such an example.

Example 3.3. An example in the Galois-case. Let E = Q(
√
−3). Therefore, E contains a primitive third

root of unity, ζ3, and Kummer theory applies. That is, any cyclic C3-extension L/E can be obtained by

adjoining a third root, L = E( 3
√
b), where b ∈ E×\(E×)3. In particular, choose b = ζ3. Then, 3

√
ζ3 = ζ9 is

a primitive 9th root of unity. Then, L = E(ζ9) = Q(ζ9) is a cyclotomic field, which is tautologically cyclic
over Q. Its relative Galois group is Gal(L/E) = 〈ρ〉, where ρ(ζ9) = ζ3ζ9. Extending τ (complex conjugation)
from E to L means τ(ζ9) = ζ89 . Thus,

ρτ(ζ9) = ρ(ζ9)8 = ζ83ζ
8
9 = ζ̄3ζ

8
9 = τρ(ζ9).

Now choose an element a ∈ E× such that a, a2 /∈ NL/E and NE/Q(a) = 1. One can take for example

a =
2 +
√
−3

2−
√
−3

.

Then, trivially, NE/Q(a) = 1, and we verified using Magma that a, a2 /∈ NL/E .

Example 3.4. An example in the non-Galois case. Again, choose E = Q(
√
−3). But this time, choose a

cyclic degree three extension L = E(θ), θ3 = b, where b ∈ E×\(E×)3 is chosen such that L/Q is not Galois.
For example, one could choose b = 2ζ3. The automorphism ρ of L/E is given by ρ(θ) = ζ3θ, and the minimal
polynomial is given by X3 − b. Let θ′ be a root of X3 − τ(b), and let L′ = E(θ′). Then (within any field
extension containing both) L and L′ are non-equal, but there is an isomorphism α : L → L′ extending τ
given by τ(θ) = θ′. For the cyclic algebra (D,α) with involution, choose L as above and a = τ(b), i.e. z may
be identified with θ′. Then the above constraint

α(θ) = z

determines an involution on D of the second kind, as α(z) = α2(θ) = θ. For convenience, let d = l0+l1z+l2z
2,

lj ∈ L, be an arbitrary element of D, then

α(d) = α(l0) + θα(l1) + θ2α(l2),

and one easily checks α2(d) = d. Using the identification of D with a subring of M3(L) as before, we write
down this involution for matrices:

z =

0 1 0
0 0 1
a 0 0

 7→ α(z) =

θ 0 0
0 ρ(θ) 0
0 0 ρ2(θ)

 .

So for an element e0 + e1z + e2z
2 ∈ L′ = E(z) ⊂ D, i.e. ej ∈ E,

α(A(e0, e1, e2)) = A(τ(e0) + τ(e1)θ + τ(e2)θ2, 0, 0).

As α2 = id, we read off the image of l = e0 + e1θ + e2θ
2 ∈ L under α in matrix form:

α(A(l, 0, 0)) =

 τ(e0) τ(e1) τ(e2)
aτ(e2) τ(e0) τ(e1)
aτ(e1) aτ(e2) τ(e0)

 .
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Thus, finally

α(A(l0, l1, l2)) = α(A(l0, 0, 0)) + θα(A(l1, 0, 0)) + θ2α(A(l2, 0, 0)),

that is, for lj = ej0 + ej1θ + ej2θ
2 ∈ L with ejk ∈ E, we find

α(A(l0, l1, l2)) = A(l̃0, l̃1, l̃2),

where l̃j = τ(e0j) + τ(e1j)θ + τ(e2j)θ
2.

4. Choosing the family of subgroups

Let G be the global special unitary group constructed from the division algebra and the involution of the
second kind given in Example 3.3 of the previous section. Let p be a place where Gp := G(Qp) is isomorphic
to SU3(Qp). In this section, we will give an explicit infinite family of discrete co-compact subgroups of G
which act without fixed points on the Bruhat-Tits tree of Gp. Before we proceed, we need to describe the
place p explicitly. From [Rog90, 14.2] we have that Gp is isomorphic to SU3(Qp) if and only if p is inert in
E. In fact, we can see this directly as shown below. If p does not remain prime (i.e., is not inert), then there
are two cases. Either (i) p ramifies in E (i.e., (p) = p2, p = p) or (ii) p splits into two non-equal prime ideals
in E (i.e., (p) = pp with p 6= p).

(i) The only prime ramified in E is (p) = (3) = p2, where p = (
√
−3) = (−

√
−3) = p. In this case,

Ep/Qp is a ramified field extension. The involution α is then trivial on the localization Ep, as α(p) = p = p.
The group Gp will lead to a (p+ 1)-regular tree, the Bruhat-Tits building on SL2(Qp). This case has been
treated in [LPS88].

(ii) There are many primes p which are split in E = Q(
√
−3). The minimal polynomial is X2 + 3. This

is reducible modulo p if and only if p is split in E. Equivalently, the minimal polynomial is reducible if and
only if −3 is a square mod p. The two localizations Ep and Ep here are both equal to Qp. Therefore, the
field extension E/Q localizes as a split algebra Ep = Ep ⊕ Ep = Qp ⊕ Qp. The involution α is conjugation
on E, so α(p) = p. That is, α exchanges the two summands of Ep. Then, Dp = Dp⊕Dp, and for an element
(g1, g2) ∈ Dp to be in Gp we need

N(g1, g2) = (1, 1)

and

(1, 1) = α((g1, g2))(g1, g2) = (α(g2), α(g1))(g1, g2) = (α(α(g1)g2), α(g1)g2).

That is, g2 = α(g1)−1 for some g1 in the reduced norm one group, N1
Dp

, of Dp. Thus, Gp
∼= N1

Dp

∼= N1
Dp

.

Finally, if p is inert in E, then Ep/Qp is an unramified quadratic field extension. This is the case if and
only if −3 is not a square modulo p. Then Gp

∼= G(Qp). Therefore, only these primes are “good” primes for
us, i.e., leading to Ramanujan bigraphs. By quadratic reciprocity, for a prime p > 3,(

−3

p

)
=

{
1, p ≡ 1, 7 (mod 12)

−1 p ≡ 5, 11 (mod 12).

Thus the “good” primes are the primes p such that p ≡ 5, 11 (mod 12).
Fix a prime p ≡ 5, 11 (mod 12) and let q be a prime not equal to p. We follow the notation in [BC11,

4.3]. Let Z[p−1] be the subring of Q consisting of rational numbers with powers of p in the denominator.
Notice that G∞ and Gp are matrix groups with coefficients in R and Qp, respectively. By abuse of notation,
we denote by G∞(Z[p−1]) and Gp(Z[p−1]) the obvious subgroups in G∞ and Gp, respectively. It is clear
that G∞(Z[p−1]) and Gp(Z[p−1]) are isomorphic. Define G(Z[p−1]) := G∞(Z[p−1])×Gp(Z[p−1]) to be their
product in G∞ × Gp. It follows from [Bor63] that G(Z[p−1]) is a lattice in G∞ × Gp. For each positive
integer n, we define the kernel modulo qn,

Γ(qn) := ker(G(Z[p−1])→ G(Z[p−1]/qnZ[p−1]),

and

Γp(qn) := Γ(qn) ∩Gp.

Then, as shown in [BC11], each Γp(qn) is a discrete co-compact subgroup of Gp. It has finite index and no
nontrivial elements of finite order. Thus, each subgroup Γp(qn) acts on the Bruhat-Tits tree of Gp without
fixed points and the quotient building is a finite biregular graph of bidegree (p3 + 1, p+ 1).
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5. An infinite family of Ramanujan bigraphs

Let G be the inner form of SU3 constructed using the division algebra and involution of Example 3.3. Let
p be a prime congruent to 5 or 11 modulo 12 and q a prime not equal to p. We denote by X̃ the Bruhat-
Tits tree associated with Gp. For each positive integer n, let Γp(qn) be the subgroup of Gp constructed in

the previous section and let Xn be the quotient of X̃ by the action of Γp(qn). By [BC11, Corollary 4.6],
Xn is a Ramanujan bigraph. Thus, we have constructed an infinite family of Ramanujan bigraphs. As
Γp(qn+1) ( Γp(qn), the number of vertices of Xn tends to infinity as n → ∞. Moreover, for each n, the
graph Xn is a subgraph of Xn+1.
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