
CASIMIR OPERATORS FOR SYMPLECTIC GROUPS

KATHRIN MAURISCHAT

Abstract. We give a full set of generators for the center of the universal envelopping

Lie algebra of the symplectic group of arbitrary genus. They are of trace type and

are given in terms of a basis chosen such that the action on representations of given

K-type becomes transparent. We give examples for the latter.

Introduction

The original intension of this work was to understand the action of Casimir operators

on automorphic forms for the symplectic group Spm(R) of a broard class or K-types.

We achieve partial results. In [3], this problem is done for the standard first Casimir

operator C1. Using the Cartan decomposition of the symplectic lie algebra g = k ⊕ p,

one decomposes C1 = tr(E+E−) + k, where tr(E+E−) is a differential operator on the

Siegel halfplane depending only on pC and k is some constant coming from kC depending

on the K-type only. Surprisingly, an analog for higher Casimir operators (i.e. elements

of the center of the universal envelopping algebra) up to the genus m does not exist in

literature. Usually Casimir operators are realized with respect to a Cartan subalgebra

which evidently is not of any help here.

We use a basis of gC = kC ⊕ p+ ⊕ p− which has pleasing properties: Lie multiplication

as well as matrix multiplication is simple and the dual basis (with respect to half the
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trace) is essentially deduced by rearranging. The basis differs from that used in [3] in

the kC-part.

The starting point of discussion is the common formula ([1], IV. 7)

(1) Dr(Π) =
∑
i1,...,ir

tr (Π(Xi1) · · ·Π(Xir))X∗i1 · · ·X
∗
ir

for Casimir elements. Here, Xi runs through a basis of gC, the elements X∗i form its

dual with respect to a non-degenerate, Lie invariant bilinear form and Π is a nontrivial

finite-dimensional representation of g. It is well-known that these elements belong to

the center Z(gC) of the universal envelopping algebra and are independent of the chosen

basis. What is more, an other choice of Π as well as of the bilinear form alters the results

by a common multiple constant. We evaluate this formula for the basis mentioned above

and the natural representation of g to get a set {D2, . . . , D2m} of m Casimir elements

which indeed generates Z(gC). As examples, we give precise formulae for D2, D4.

We apply the result to determine the action of Z(gC) on a representation of K-type

(λ, . . . , λ) to be given by that of tr(E+E−), . . . , tr((E+E−)m). For automorphic forms,

the latter are differential operators on the Siegel halfplane and we have recovered a

theorem of Maass ([2], §8, p.116).

1. Notation

Let G = Spm(R) be the real symplectic group of genus m and let g = spm(R) be its

Lie algebra. We consider the matrix realization of its complexification gC ⊂M2m,2m(C)

consisting of those g satisfying

g′

 0 −1m

1m 0

+

 0 −1m

1m 0

 g = 0.
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The Cartan decomposition for g implies that gC = kC ⊕ p+ ⊕ p−, where kC is given by

those matrices satisfying A −S

S A

 , A′ = −A, S′ = S,

and

p± =


 X ±iX

±iX −X

 , X ′ = X

 .

Let ekl ∈ Mm,m(C) be the elementary matrix having entries (ekl)ij = δikδjl and let

X(kl) = 1
2(ekl + elk).

The elements E±kl = E±lk of p± are defined to be those corresponding to X = X(kl),

1 ≤ k, l ≤ m. Then E±kl, 1 ≤ k ≤ l ≤ m, form a basis of p±. For abbreviation, let

E± = (E±kl)kl

be the matrix with matrix valued entries E±kl. A basis of kC is given by the elements

Bkl, 1 ≤ k, l ≤ m, corresponding to A = 1
2(ekl − elk) and S = i

2(Ekl + elk). Let

B = (Bkl)kl

be the matrix with entries Bkl and let B∗ be its transpose having entries B∗kl = Blk.

Lie multiplication in gC is easily checked to be given by

[E+ij , E+kl] = 0, [E−ij , E−kl] = 0,

[E+ij , E−kl] = δikBjl + δjlBik + δilBjk + δjkBil,

[Bij , E+kl] = δjkE+il + δjlE+ik,

[Bij , E−kl] = −δikE−jl − δilE−jk,

[Bij , Bkl] = δjkBil − δilBkj .
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We denote by B the nondegenerate bilinear form on gC defined by

(2) B(g, h) =
1

2
tr(g · h).

With respect to B we get the following dual basis: E∗±kl = 1
1+δkl

E∓kl as well as B∗kl = Blk

for all k, l.

2. Casimir elements

In the following, we study words in the matrices E+, E−, B and B∗. Let us define some

conditions on these words:

(i) E+ is followed by E− or B∗.

(ii) E− is followed by E+ or B.

(iii) B is followed by E+ or B.

(iv) B∗ is followed by E− or B∗.

(v) E+ occurs with the same multiplicity as E−.

We start with a combinatorial lemma.

Lemma 2.1. Let r > 0 be an integer. Then there are 22r possibilities to choose a word

w of length 2r in the matrices E+, E−, B and B∗ such that the conditions (i) to (v) are

satisfied.

Proof of Lemma 2.1. We make a second claim slightly modifying Lemma 2.1 and prove

it along with the lemma itself by induction on r.

Claim: There are 22r possibilities to choose a word w of length 2r in the matrices

E+, E−, B and B∗ such that the conditions (i) to (iv) and

(v’) The multiplicity of E+ is that of E− enlarged or reduced by one.

are satisfied.
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For r = 1, the four possible words of the lemma are E+E−, E−E+, BB and B∗B∗, while

the four possibilities of the claim are E+B
∗, E−B, BE+ and B∗E−. Now look at a word

w of length 2(r+ 1) satisfying (i)–(v). First, if w ends with E+E− or with E−E+, then

the initial subword of length 2r satisfies (i)–(v). And for any of these initial subwords,

the ending among E+E− and E−E+ is unique. This gives 22r possibilities for w, using

the lemma for r. Similarly, we get 22r possibilities for a word where E± does not occur

in the last two letters. If exactly one of the last two letters is E±, then we get 2 · 22r

possibilities, this time using the claim for r. Altogether these are 22(r+1) possibilities.

Similarly, we get the result for the claim, too. �

In the following, we formally take the trace of a word w in the operator valued matrices.

For example,

tr(E+E−) =
∑
k,l

E+klE−lk.

Theorem 2.2. Let g = spm(R) be the Lie algebra of the symplectic group of genus m.

(a) The r-th Casimir element is given by

D2r =
∑
w

(−1)L(w) tr(w),

where the sum is over all words w of length 2r satisfying conditions (i) to (v)

above, and L(w) is the number of times E−B and BE+ occur isolatedly in w

counted cyclicly.

(b) The center Z(gC) of the universal envelopping algebra of gC is generated by the

m Casimir operators D2, . . . , D2m.

Here isolated means that E−B and BE+ must not hit each other, e.g. L(E−BE+B
∗) = 1

while L(E−BBE+) = 2. And cyclic means that we have to take into account that the

trace is cyclicly invariant, so e.g. L(E+E−BB) = L(E−BBE+) = 2.
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Example 2.3. By Lemma 2.1, we have to sum over the traces of 22r words w. So the

first two Casimirs are

D2 = tr(E+E−) + tr(E−E+) + tr(BB) + tr(B∗B∗),

D4 = tr(E+E−E+E−) + tr(E−E+E−E+) + tr(BBBB) + tr(B∗B∗B∗B∗)

+
∑
ζ∈Z4

(
tr(ζ(E+E−BB)) + tr(ζ(E−E+B

∗B∗))− tr(ζ(E+B
∗E−B))

)
,

where Z4 is the group of cyclic permutations of four elements.

Proof of Theorem 2.2. (a) We define the following matrices

K1 =

 1m i1m

−i1m 1m

 , K2 =

1m −i1m

i1m 1m

 ,

P+ =

1m i1m

i1m −1m

 , P− =

 1m −i1m

−i1m −1m

 .

Notice that K2
j = Kj , while P 2

± = 0. In the following, we use the abbriviation

ejkK1 =

 ejk iejk

−iejk ejk

 ,

for the (m×m)-elementary matrix ejk and the (2m× 2m)-matrix K1 (analogly ejkK2,

ejkP±). Now we show that D2r in (1) has the claimed shape. A single summand of D2r

looks like

tr(X
(1)
j1j2

X
(2)
k1k2
· · ·X(2r−1)

j2r−1j2r
X

(2r)
k2r−1k2r

)(X
(1)
j1j2
· · ·X(2r)

k2r−1k2r
)∗,

where X
(n)
jnjn+1

runs through the basis E±jk, 1 ≤ j ≤ k ≤ m, Bjk, 1 ≤ j, k ≤ m.

First we examine conditions for a pair X
(n)
j1j2

X
(n+1)
k1k2

to occur in some summand. To

get nice formulae, we sum over all pairs of the same kind. First, let X
(n)
j1j2

= E+j1j2
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and X
(n+1)
k1k2

= E−k1k2 . Computing the matrix product E+j1j2E−k1k2 , taking duals and

rearranging summation, we get

∑
j1≤j2;k1≤k2

tr(· · ·E+j1j2E−k1k2 · · · )
(1 + δj1j2)(1 + δk1k2)

(· · · )∗E−j1j2E+k1k2(· · · )∗(3)

=
1

4

∑
j1,j2,k1,k2

tr
(
(δj1k1ej2k2 + δj1k2ej2k1 + δj2k1ej1k2 + δj2k2ej1k1)K2

)
·(· · · )∗E−j1j2E+k1k2(· · · )∗

=
∑

j1,j2,k1

tr(· · · ej1k1K2 · · · )(· · · )∗E−j1j2E+j2k1(· · · )∗.

Similarly we get for the other choices of basis elements

∑
j1≤j2;k1≤k2

tr(· · ·E−j1j2E+k1k2 · · · )(· · ·E−j1j2E+k1k2 · · · )∗(4)

=
∑

j1,j2,k1

tr(· · · ej1k1K1 · · · )(· · · )∗E+j1j2E−j2k1(· · · )∗,

∑
j1≤j2;k1,k2

tr(· · ·E+j1j2Bk1k2 · · · )(· · ·E+j1j2Bk1k2 · · · )∗(5)

= −
∑

j1,j2,k1

tr(· · · ej1k1P+ · · · )(· · · )∗E−j1j2Bj2k1(· · · )∗,

∑
j1≤j2;k1,k2

tr(· · ·E−j1j2Bk1k2 · · · )(· · ·E−j1j2Bk1k2 · · · )∗(6)

=
∑

j1,j2,k1

tr(· · · ej1k1P− · · · )(· · · )∗E+j1j2B
∗
j2k1(· · · )∗,

∑
j1,j2;k1≤k2

tr(· · ·Bj1j2E−k1k2 · · · )(· · ·Bj1j2E−k1k2 · · · )∗(7)

= −
∑

j1,j2,k1

tr(· · · ej1k1P− · · · )(· · · )∗Bj1j2E+j2k1(· · · )∗,
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j1,j2;k1≤k2

tr(· · ·Bj1j2E+k1k2 · · · )(· · ·Bj1j2E+k1k2 · · · )∗(8)

=
∑

j1,j2,k1

tr(· · · ej1k1P+ · · · )(· · · )∗B∗j1j2E−j2k1(· · · )∗,

∑
j1,j2,k1,k2

tr(· · ·Bj1j2Bk1k2 · · · )(· · ·Bj1j2Bk1k2 · · · )∗(9)

=
∑

j1,j2,k1

[
tr(· · · ej1k1K1 · · · )(· · · )∗Bj1j2Bj2k1(· · · )∗

+ tr(· · · ej1k1K2 · · · )(· · · )∗B∗j1j2B
∗
j2k1(· · · )∗

]
.

From equations (3) to (9) we get the following conditions for the occuring summands

(i’) E+j1j2 is followed only by E−j2k1 or B∗j2k1 .

(ii’) E−j1j2 is followed only by E+j2k1 or Bj2k1 .

(iii’) Bj1j2 is followed only by E+j2k1 or Bj2k1 .

(iv’) B∗j1j2 is followed only by E−j2k1 or B∗j2k1 .

These conditions correspond to the former (i) to (iv). Now let us sum over j1, . . . , j2r,

k1 . . . , k2r.

:=
∑

j1,...,j2r,k1...,k2r

tr(X
(1)
j1j2

X
(2)
k1k2
· · ·X(2r−1)

j2r−1j2r
X

(2r)
k2r−1k2r

)(X
(1)
j1j2
· · ·X(2r)

k2r−1k2r
)∗(10)

= (−1)L(w)
∑

j1,...,j2r,k1...,kr

tr(ej1k1ej3k2 · · · ej2r−1krσ(w))X̃
(1)
j1j2

X̃
(2)
j2k1
· · · X̃(2r−1)

j2r−1j2r
X̃

(2r)
j2rkr

= (−1)L(w)
∑

j1,...,j2r

tr(ej1j1σ(w))X̃
(1)
j1j2

X̃
(2)
j2j3
· · · X̃(2r)

j2rj1
,

where Ẽ± = E∓, B̃ = B∗, B̃∗ = B. Depending only on the word w = X̃(1) · · · X̃(2r),

X̃(l) ∈ {E+, E−, B,B
∗}, there is some sign (−1)L(w) and a matrix σ(w) which is a

product of r matrices of the form K1/2, P±. In this way we get the sum over one type

of word w satisfying conditions (i)–(iv). All other words do not occur in D2r.
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We evaluate (10) further. First we assume that w is a word in B,B∗ only. Then

(−1)L(w) = 1 and σ(w) is a product in K1 and K2. As K1K2 = 0 = K2K1, we get

(10) =
∑

j1,...,j2r

(
tr(ej1j1K1)Bj1j2 . . . Bj2rj1 + tr(ej1j1K2)B

∗
j1j2 . . . B

∗
j2rj1

)
=

∑
j1,...,j2r

(
Bj1j2 . . . Bj2r−1j2r +B∗j1j2 . . . B

∗
j2rj1

)
= tr(B2r) + tr((B∗)2r).

Now we allow E± to occur in w. Then σ(w) is a product of K1/2 and P±. Notice that

P+P− = K2, P−P+ = K1, P+K2 = 0 = K1P+, P+K1 = P+ = K2P+, P−K1 = 0 =

K2P− and P−K2 = P− = K1P−. Thus, σ(w) does not vanish if and only if w satisfies

(i) to (iv). Additionally, tr(σ(w)) 6= 0 if and only if P+ occurs exactly as often as P−,

i.e. if and only if

(v) E+ occurs with the same multiplicity as E−.

In this case tr(ej1j1σ(w)) = 1 and we have

(10) = (−1)L(w) tr(w).

Thus, part (a) of the theorem is proved apart from the sign (−1)L(w). To compute this

sign, we must count the signs (−1) given by equations (5) and (7) in the right way. That

is, we find L(w) to be the number of times E−B and BE+ occur isolatedly in w cyclicly.

For part (b) we notice that as long as r < m, the element D2(r+1) is not a polyno-

mial in D2, . . . , D2r. For example, we never get tr((E+E−)r+1) as a combination of

tr(E+E−), . . . , tr((E+E−)r). On the other hand it is well known and due to the Harish-

Chandra isomorphism that Z(gC) is generated by m elements of length 2, . . . , 2m. So

D2, . . . , D2m must do. �
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3. Applications

Let us assume we have an admissible representation Π of G = Spm(R) and let us look

at its isotypical component Πρ for some irreducible representation ρ of the maximal

compact subgroup K = Km. As K is isomorphic to the unitary group Um by

J : K → Um,

A −S

S A

 7→ A+ iS,

ρ is characterized by its highest weight (λ1, . . . , λm). Let vh 6= 0 be a highest weight

vector of ρ. For j ≥ k, the action of Bjk on vh is determined by

ρ(Bjk)vh =
d

dt
ρ(exp(tJ(Bjk)))vh |t=0

=


d
dtρ(diag(1, . . . , e−t, 1, . . . 1))vh |t=0= −λjvh, for j = k,

d
dtρ(1− tekj)vh |t=0= 0, for j > k,

as exp(tJ(Bjk)) is an upper triangular matrix if j ≤ k. Similarly we get for a lowest

weight vector vl,

ρ(Bkj)vl =

 −λjvl, for j = k,

0, for j > k.

Next we notice that for all words w occuring in Theorem 2.2, tr(w) is kC-invariant (as we

get telescopic sums for the commutators). Thus by Schur’s lemma, the Casimirs’ action

on Πρ is deduced by the actions of their single summands tr(w) on each K-irreducible

component. On these components the summands are constant given by evaluation on

the highest weight vector, for example.

Furthermore, tr(B2r), tr((B∗)2r) belong to Z(kC), so they act by constants on Πρ de-

ducible by ρ(Bjk)vh, j ≥ k. For example, if we rearrange

tr(BB) = tr(B∗B∗) =
∑
j

B2
jj +

∑
k<j

(
2BkjBjk +Bjj −Bkk

)
,
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then we get

ρ(tr(BB))vh =
∑
j

(
λ2j + (m+ 1− 2j)λj

)
vh.

For the general case notice that in any summand Bj1j2 . . . Bj2rj1 of tr(B2r) there is some

Bjnjn+1 where jn > jn+1, if not all jn are equal. So by rearranging, we can determine

the action of this summand by the action of terms of lower length.

For words w in which both E± and B,B∗ occur, the evaluation of tr(w) is not that

simple. But rearranging tr(w) (thereby producing terms of lower length satisfying again

conditions (i)–(v) above) such that all terms B,B∗ are collected on the right, they can

be evaluated first. For example, for the first two Casimirs (see Ex. 2.3) we get

Corollary 3.1. Let C1 := 1
2D2 and C2 := 1

2D4. Then

C1 =
1

2
(tr(E+E−) + tr(E−E+)) + tr(BB),

C2 =
1

2

(
tr(E+E−E+E−) + tr(E−E+E−E+) + tr(B4) + tr((B∗)4)

)
+2
(
tr(E+E−BB) + tr(E−E+B

∗B∗)
)
−
∑
i,j,k,l

{(E+)kl, (E−)ij}BjkBil

+
(m+ 1)2

2
(tr(E+E−) + tr(E−E+)),

where

1

2
(tr(E+E−) + tr(E−E+)) = tr(E+E−)− (m+ 1) tr(B),

1

2
(tr(E+E−E+E−) + tr(E−E+E−E+)) = tr(E+E−E+E−)

−1

2
(tr(E+E−) + tr(E−E+)) tr(B)− m+ 2

2

(
tr(E+E−B) + tr(E−E+B

∗)
)
.

In the case ρ = (λ, . . . , λ), we now have transparent formulae at hand. Here ρ has

dimension one, so highest and lowest weight vectors coincide and we have ρ(Bjk) =
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−λδjk. So the only components of B,B∗ left are Bjj which produce a common constant.

For example,

Πρ(C1) = Πρ(tr(E+E−)) + λm(m+ 1 + λ)

and

Πρ(C2) = Πρ(tr(E+E−E+E−)) +mλ4

+((m+ 1)2 + 2λ(m+ 1) + 2λ2)
(
Πρ(tr(E+E−) + λm(m+ 1)

)
.

Similarly it is evident that

Πρ(D2r) = 2Πρ(tr((E+E−)r)) + Πρ(P2r),

where P2r is a polynomial in tr(E+E−), . . . , tr((E+E−)r−1). So we get

Corollary 3.2. On Πρ, ρ = (λ, . . . , λ), the Casimir operators are exactly the polynomi-

als in tr(E+E−), . . . , tr((E+E−)m).

As an application, we consider modular forms on the Siegel halfplane Hm. For an

irreducible representation (V, ρ) of GLm(C) (equivalently of Km), let f : Hm → V be a

C∞-function of moderate growth satisfying

f(g.z) = ρ(cz + d)f(z)

for all g =

a b

c d

 ∈ Spm(Z), g.z = (az+ b)(cz+d)−1. That is, f is a non-holomorphic

modular form for ρ. Then f(g) = ρ∗(ci + d)f(g.i1m) defines an automorphic form

on G. If more precisely f is a modular form of weight κ, then ρ∗ = (−κ, . . . ,−κ).

By Corollary 3.2, the action of Z(gC) on such modular forms is given by evaluating

tr(E+E−), . . . , tr((E+E−)m), which are differential operators on Hm ([3], Ch. 3, 4).
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Especially, if f is holomorphic, then tr((E+E−)r)f = 0. We achieved the differential

operators given in [2] (§8, p.116) by purely algebraical means.

References

[1] Knapp, A. W., Vogan, D. A.: Cohomological Induction and Unitary Representations, Princeton

University Press, Princeton, New Jersey (1995)

[2] Maass, H.: Siegels’s Modular Forms and Dirichlet Series, Lecture Notes in Mathematics 216,

Springer, Heidelberg (1971)

[3] Weissauer, R.: Stabile Modulformen und Eisensteinreihen, Lecture Notes in Mathematics 1219,

Springer, Heidelberg (1986)

Kathrin Maurischat, Mathematics Center Heidelberg (MATCH), Heidelberg University, Im Neuen-

heimer Feld 288, 69120 Heidelberg, Germany

E-mail address: maurischat@mathi.uni-heidelberg.de


	Introduction
	1. Notation
	2. Casimir elements
	3. Applications
	References

