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Abstract. S. Zhang’s local Gross-Zagier formulae for GL2 can be inter-
preted as a fundamental lemma for some relative trace formulae. From this
point of view we prove the existence of the corresponding local transfer.
Further we construct universally defined geometric operators which realize
the behavior of Hecke operators on the analytic side. We use them to give
a proof of the local Gross-Zagier formula for GL2. We work locally and
throughout computationally.
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1. Introduction

The Gross-Zagier formula [4] is a relation between a Heegner point of discrimi-
nantD on the moduli space X0(N) and the Rankin-Selberg L-function attached
to a newform f of weight 2 and level N and a character χ of the class group of
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K = Q(
√
D), in case D is squarefree and prime to N :

L′(f, χ, s =
1

2
) = const · ĥ(cχ,f ) .

Here ĥ is the height function on Jac(X0(N)) and cχ,f is a component of the
Heegner class depending on χ and f . S. Zhang [13], [14] switches the point
of view to a local one. CM-points are studied on the corresponding Shimura
curve, modular forms are automorphic representations. The height pairing
of CM-cycles is replaced by a geometric pairing of Schwartz functions φ, ψ ∈
S(χ,G(AF,f )),

(1) < φ,ψ >=
∑
γ

mγ < φ,ψ >γ .

Here G is an inner form of PGL2, and T is the maximal subtorus given by the
quadratic extension K/F of the totally real field F. The sum is over double
cosets γ of T\G/T . The multiplicities mγ carry heavy arithmetic input. They
are global data determined by intersection numbers. The coefficients < φ,ψ >γ
are adèlic integrals, given by their local components. Here a first parallel with
a (relative) trace formula, ∑

γ

tγOγ(φ),

becomes visible. The sum is over double cosets γ again. The tamagawa numbers
tγ are global data, and the orbital integrals Oγ(φ) are computed by their local
factors. The local components of the coefficients above are (for nondegenerate
γ) given by

(2) < φ,ψ >γ =

∫
T\G

∫
T
φ(t−1γty) dt ψ̄(y) dy .

These expressions are close to orbital integrals on G relative to T (as in
Jacquet’s work on relative trace formula [6]). They can even be read as or-
bital integrals for (γ, id) on G × G relative to T × G, the action given by
(γ, δ) · (t, g) = (t−1γt, δg) (for t ∈ T , g, γ, δ ∈ G), of the function (γ, δ) 7→
φ(γδ)ψ(δ). As this is of no further use here, we call them local linking numbers
according to their origin [13].
S. Zhang [13] invents a kernel function for the L-function which satisfies a
functional equation similar to that for L. The local Fourier coefficients of the
kernel are given by products of Whittaker newforms for the theta series Π(χ)
and the Eisenstein series ΠE occuring in the Rankin convolution. They do not
depend on the cusp form anymore. (See Section 2 for concrete definitions.)
We generalize these products to get invariant linear forms on the isobaric sum
Π(χ) � ΠE defined by evaluating functions in the Kirillov models,

(Wχ,WE) 7→ Wχ(η)WE(ξ) ,

for ξ, η = 1− ξ ∈ F \ {0, 1}, Wχ ∈ K(Π(χ)), WE ∈ K(ΠE). Let W be the space
of distributions on Π(χ) � ΠE defined by these evaluations at ξ.
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Let φ ∈ S(χ,G) be essentially the characteristic function of the maximal com-
pact subgroup. Then the local Gross-Zagier formula for GL2 ([13] Lemma 4.3.1,
resp. Theorem 6.4 below) essentially states that for the newforms Wχ,new,
WE,new we have an equality

Tb (Wχ,new(η)WE,new(ξ)) = |b|−1|ξη|
1
2 < T̃bφ, φ >γ=γ(ξ) .

Here Tb is a Hecke operator indexed by b ∈ F×, and T̃bφ is a special transform
of φ. S. Zhang et al prove local Gross-Zagier formulae with no level constraints
[11] on more general Shimura curves [12].
In the language of trace formula, this is a fundamental lemma for the com-
parison of relative trace formulae. W. Zhang [15], [16] gives a general relative
trace formula approach to the Gross-Zagier problem on unitary Shimura va-
rieties. He formulates an arithmetic fundamental lemma in terms of unitary
Rapoport-Zink spaces, proving it for small degrees. Gross-Zagier fits in the
case of degree 2.

We discuss some local aspects in comparing relative trace formulae in the GL2

case. In trace formula theory, it is a non-trivial problem to find enough local
test vectors on each side at almost all places which can be compared. In the
first part of the paper, we solve this problem in the case above, i.e. establish
a transfer. We choose a parametrisation of the double cosets γ = γ(ξ) by
the projective line, ξ ∈ P1(F ), and characterize the expansion of the local
linking numbers with respect to this variable (Propositions 3.1, 3.2, 3.5). This
is very close to Jacquet’s characterization of orbital integrals [6]. The space of
distributions built by evaluating local linking numbers at ξ multiplied with the

factor |ξη|
1
2 will be denoted by L̃. On the other hand, the expansion in ξ of

the space W of distributions on Π(χ) � ΠE can be described by the theory of
automorphic forms (Propositions 2.9, 2.10). The transfer result is:

Theorem 3.6. The spaces L̃ and W have identical ξ-expansion.

The second part of the paper is concerned with more quantitative aspects. We
construct operators on the geometric side which realize the behavior of Hecke
operators on the analytic side. The existence of such operators is not surprising
but to have an explicit shape of them is appealing for several aspects. It pro-
vides a tool to produce more identities like the fundamental lemma out of given
ones, i.e. is a first step towards a general matching of orbital integrals. More-
over it makes the behavior around degenerate elements more visible. (Which
in general forces a stabilization process.) Lastly we use these general geometric
Hecke operators to rephrase S. Zhang’s local Gross-Zagier formula for GL2 and
give a shorter proof.
On the analytic side, the Hecke operators Tb are essentially given by transla-
tions by b ∈ F×. In case of a split torus T they produce logarithmic and, in
case of a quadratic character χ, even double logarithmic singularities as b→ 0,

Tb (Wχ(η)WE(ξ)) = |b|−1|ξη|
1
2χ1(bη)(c1v(bη) + c2)(c3v(bξ) + c4),
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if χ2
1 = 1 (Proposition 5.1). The geometric Hecke operators are constructed

in a simple manner to realize this pole behavior. The first natural guess is to
translate the local linking numbers as well,

< φ,

(
b 0
0 1

)
ψ >γ(ξ) .

These translations are studied in Section 4. It turns out (Theorems 4.1, 4.3)
that they do not suffice, as they do not produce the double logarithmic term
v(b)2. In Section 5 we construct an operator Sb, which essentially is a weighted
sum of translations by elements of valuations at most v(b). This operator has
good properties (Propositions 5.3, 5.4), and we get:

Theorem 5.5. The local linking numbers |b|−1|ξη|
1
2 Sb < φ,ψ >γ(ξ) and the

Whittaker products Tb (Wχ(η)WE(ξ)) have the same asymptotics in b.

Accordingly, we formulate and prove the local Gross-Zagier formula in terms
of Sb (Theorem 6.5).
Concerning concrete calculations, the case of a compact torus T is much eas-
ier than that of a noncompact one. This is due to the inner integral of the
local linking numbers having compact support in the first case. In view of the
noncompact torus we have to reduce ourselves to an arbitrary but fixed ξ to
describe the asymptotics in the translation variable b. Anyway the calculations
for the translation (Theorem 4.3) take about one hundred pages of ℘-adic in-
tegration in [9]. We sketch the outline of the proof in Section 4. Due to this
difficulty, the results on Hecke operators are of asymptotic nature.

Acknowledgements. We thank Rainer Weissauer for challenging and su-
pervising, as well as Uwe Weselmann for many useful comments, and Lynne
Walling for mentoring.

2. Terminology and preparation

2.1. Geometry. The geometric setting is that of S. Zhang [13]

2.1.1. Global data. Let F be a totally real algebraic number field and let K be
a imaginary quadratic extension of F. Further, let D be a division quaternion
algebra over F which contains K and splits at the archimedean places. Let G
denote the inner form of the projective group PGL2 over F which is given by
the multiplicative group D×,

G(F) = F×\D×.

Let T be the maximal torus of G given by K×, i.e. T(F) = F×\K×. Let AF
(resp. AK) be the adèles of F (resp. K) and let AF,f be the subset of finite adèles.
On T(F)\G(AF,f ) there is an action of T(AF,f ) from the left and an action of
G(AF,f ) from the right. The factor space T(F)\G(AF,f ) can be viewed as the
set of CM-points of the Shimura variety defined by the inverse system of

ShK := G(F)+\Hn1 ×G(AF,f )/K ,
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where K runs though sufficiently small compact open subgroups of G(AF,f ),
H1 is the upper halfplane, and n is the number of the infinite places of F. The
CM-points are embedded in ShK by mapping the coset of g ∈ G(AF,f ) to the
coset of (z, g), where z ∈ Hn1 is fixed by T.
Let S(T(F)\G(AF,f )) be the Schwartz space, i.e. the space of complex valued
functions on T(F)\G(AF,f ) which are locally constant and of compact support.
A character of T is a character χ of T(F)\T(AF,f ), that is a character of

A×K,f/K
× trivial on A×F,f/F

×. Especially, χ =
∏
χv is the product of its local

unitary components. We have

S(T(F)\G(AF,f )) = ⊕χS(χ,T(F)\G(AF,f )),

where S(χ,T(F)\G(AF,f )) is the subspace of those functions φ transforming
under T(AF,f ) by χ, i.e. for t ∈ T(AF,f ) and g ∈ G(AF,f ): φ(tg) = χ(t)φ(g).
Any such summand is the product of its local components,

S(χ,T(F)\G(AF,f )) = ⊗vS(χv,G(AFv)).

A pairing on S(χ,T(F)\G(AF,f )) can be defined as follows. For functions φ, ψ
in S(χ,T(F)\G(AF,f )) and a double coset [γ] ∈ T(F)\G(F)/T(F) define the
linking number

(3) < φ,ψ >γ :=

∫
Tγ(F)\G(AF,f )

φ(γy)ψ̄(y) dy,

where Tγ = γ−1Tγ ∩ T. For γ normalizing T we have Tγ = T. Otherwise
Tγ is trivial. We call γ nondegenerate, if it belongs to the latter case. Here
dy denotes the quotient measure of nontrivial Haar measures on G and T.
Further, let

m : T(F)\G(F)/T(F)→ C

be a multiplicity function. Then

< φ,ψ > :=
∑
[γ]

m([γ]) < φ,ψ >γ

defines a sesquilinear pairing on S(χ,T(F)\G(AF,f )). Determining the multi-
plicity function is an essential global problem, which was solved by S. Zhang
for (local) Gross-Zagier in terms of intersection numbers. Concering the par-
allels with trace formula, they take over the role of Tamagawa numbers. The
coefficients < φ,ψ >γ are the data linking global height pairings on curves and
local approaches.

2.1.2. Local data. In studying the local components of the linking numbers (3),
we restrict to the nondegenerate case. First notice that

(4) < φ,ψ >γ =

∫
T(AF,f )\G(AF,f )

∫
T(AF,f )

φ(t−1γty) dt ψ̄(y) dy.
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Assume φ =
∏
v φv and ψ =

∏
v ψv are products of local components. Then∫

T(AF,f )
φ(t−1γty) dt =

∏
v

∫
T(Fv)

φv(t
−1
v γvtvyv) dtv

as well as < φ,ψ >γ=
∏
v < φ,ψ >γ,v, where

(5) < φ,ψ >γ,v :=

∫
T(Fv)\G(Fv)

∫
T(Fv)

φv(t
−1
v γvtvyv) dtv ψ̄v(yv) dyv.

Observe that < φ,ψ >γ,v depends on the choice γ while < φ,ψ >γ does not.
An apropriate local definition is given below (Definition 2.1).
As all the following is local, we simplify notation: Let F denote a localization of
F at a finite place not dividing 2. Let K be the quadratic extension of F given
by localising K. K is either a field, K = F (

√
A), or a split algebra K = F ⊕F .

For t ∈ K, let t̄ denote the Galois conjugate of t (resp. (x, y) = (y, x) in the
split case). The local ring of F (resp. K) is oF (resp. oK). It contains the
maximal ideal ℘F (resp. ℘K , where in the split case ℘K := ℘F ⊕ ℘F ). Let πF
be a uniformizer for oF . If it can’t be mixed up, we write ℘ (resp. π) for ℘F
(resp. πF ). The residue class field of F has characteristic p and q elements.
Further, let ω be the quadratic character of F× given by the extension K/F
that is, ω(x) = −1 if x is not in the image of the the norm of K/F . Let
D := D(F ), T := T(F ) and G := G(F ). There exists ε ∈ D× such that for all
t ∈ K we have εt = t̄ε and

D = K + εK.

Let c := ε2 ∈ F×. Let N denote the reduced norm on D. Restricted to K it
equals the norm of K/F . For γ1, γ2 ∈ K we have

N(γ1 + εγ2) = N(γ1)− cN(γ2) .

D splits exactly in case c ∈ N(K×). We parametrize the double cosets [γ] ∈
T\G/T by the projective line:

Definition 2.1. Let P : T\G/T → P1(F ) be given by

P (γ1 + εγ2) :=
cN(γ2)

N(γ1)

for γ1 + εγ2 ∈ D× as above.

This is well-defined: P (t(γ1 + εγ2)t′) = P (γ1 + εγ2) for all t, t′ ∈ K×. The
non-empty fibres of P not belonging to 0 or ∞ are exactly the nondegenerate
double cosets. In case that K/F is a field extension, P is injective with range
cN(K×) ∪ {0,∞}. In case K/F split, the range of P is F×\{1} ∪ {0,∞}
and the fibres of F×\{1} are single double cosets ([6]). This is one possible
parametrization, another is ξ := P

P−1 .

Lemma 2.2. ([13] Chapter 4) Let γ ∈ D×. In the double coset TγT of G there
exists one and only one T -conjugacy class of trace zero.

Now the local components < φ,ψ >γ of the linking numbers can be declared
precisely:
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Definition 2.3. Let φ, ψ ∈ S(χ,G). For x ∈ F× define the local linking
number

< φ,ψ >x :=< φ,ψ >γ(x)

if there is a trace zero preimage γ(x) ∈ D× of x under P . If there is no
preimage, let < φ,ψ >x:= 0. Thus, for x ∈ cN := cN(K×)

< φ,ψ >x =

∫
T\G

∫
T
φ(t−1γ(x)ty) dt ψ̄(y) dy.

By unimodularity of the Haar measure on T , this definition is independent of
the choice of the element γ(x) of trace zero. In all the following we make a
general natural assumption on the character χ:

Hypothesis 2.4. The conductors of χ and ω are coprime.

The conductor f(χ) < oK of χ may be viewed as an ideal of oF : If K = F ⊕F ,
then χ = (χ1, χ

−1
1 ) for a character χ1 of F× and f(χ) = f(χ1). If K/F is a

ramified field extension, then χ is unramified, thus f(χ) ∩ oF = oF . If K/F is

an unramified field extension, then f(χ) = πc(χ)oK , where π is an uniformizing

element for K as well as F . That is, f(χ) ∩ oF = πc(χ)oF . There are some
simple properties of χ following from the Hypothesis 2.4.

Lemma 2.5. Assume 2.4. The following are equivalent:
(a) χ is quadratic.
(b) χ factorizes via the norm.

Corollary 2.6. Assume 2.4. If K/F is a ramified field extension, then χ
is a quadratic character. If K/F is an unramified field extension and χ is
unramified, then χ = 1.

We use compatible Haar measures: Let da be a nontrivial additive Haar mea-
sure on F . Then the measure d×a of the multiplicative group F× is normalized
by

vol×(o×F ) = (1− q−1) vol(o×F ) ,

where vol (resp. vol×) is the volume associated to da (resp. d×a). The measure
on T\G is the quotient measure induced of those on G and T .

2.2. Automorphic forms. The central object on the analytic side is the
Rankin-Selberg convolution of two automorphic representations. Gross-Zagier
formulae describe the central order of its L-function.
Let Π1 be a cuspidal representation of GL2(AF) with trivial central character
(i.e. an irreducible component of the discrete spectrum of the right translation
on L2(GL2(F)\GL2(AF)), 1)) and conductor N . Further, let Π(χ) be the irre-
ducible component belonging to χ of the Weil representation of GL2(AF) for
the norm form of K/F (e.g. [2] §7). It has conductor f(χ)2f(ω) and central
character ω. The Rankin-Selberg convolution of Π1 and Π(χ) produces ([5])
the Mellin transform

Ψ(s,W1,W2,Φ) =

∫
Z(F )N(F )\GL2(F )

W1(g)W2(eg)fΦ(s, ω, g) dg



8 KATHRIN MAURISCHAT

for Whittaker functions W1 of Π1 (resp. W2 of Π(χ)) for an arbitrary nontrivial

character of F . Here e :=

(
−1 0
0 1

)
. For a function Φ ∈ S(F 2) let

fΦ(s, ω, g) = |det g|s
∫
F×

Φ ((0, t)g) |t|2sω(t) d×t .

fΦ belongs to the principal series Π(|·|s−
1
2 , ω|·|

1
2
−s). There is an adèlic analogue.

Analytical continuation of Ψ leads to the L-function, the greatest common
divisor of all Ψ. It is defined by newforms φ for Π1 and θχ of Π(χ) as well as

a special form E of ΠE := Π(|·|s−
1
2 , ω|·|

1
2
−s):

L(s,Π1 ×Π(χ)) =

∫
Z(AF) GL2(F)\GL2(AF)

φ(g)θχ(g)E(s, g) dg

=

∫
Z(AF) GL2(F)\GL2(AF)

Wφ(g)Wθχ(g)fE(s, ω, g) dg,

where Wφ etc. denotes the associated Whittaker function. For places where
c(χ)2c(ω) ≤ v(N), the form E (resp. WE) is the newform of the Eisenstein
series. As Π1 and Π(χ) are selfdual, the functional equation is

L(s,Π1 ×Π(χ)) = ε(s,Π1 ×Π(χ))L(1− s,Π1 ×Π(χ)) .

In [13] (Chap. 1.4) an integral kernel Ξ(s, g) is constructed which has a func-
tional equation analogous to that of L and for which

L(s,Π1 ×Π(χ)) =

∫
Z(AF) GL2(F)\GL2(AF)

φ(g)Ξ(s, g) dg.

We do not report the construction of this kernel, but we remark that the kernel
depends on the newform of the theta series Π(χ) as well as the Eisenstein series
ΠE , but not on the choice of Π1. Its local nonconstant Fourier coefficients are
defined by

(6) W (s, ξ, η, g) := Wθ(

(
η 0
0 1

)
g)WE(s,

(
ξ 0
0 1

)
g).

Here η := 1− ξ. These Fourier coefficients are exactly those analytic functions
which are compared to special local linking numbers in the local Gross-Zagier
formula ([13] Lemma 4.3.1). We get ride of the restriction to newforms in (6)
by reading it in the Kirillov models of the representations: Starting from the
Whittaker model W(Π, ψ) of an irreducible admissible representation Π for an
additive character ψ, the Kirillov space K(Π) is given by

W(Π, ψ) → K(Π),

W 7→ k : (a 7→W

(
a 0
0 1

)
).

Proposition 2.7. ([3], I.36) Let Π be an infinite dimensional irreducible ad-
missible representation of GL2(F ). The Kirillov space K(Π) is generated by the
Schwartz space S(F×) along with the following stalks around zero:
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(a) If Π is supercuspidal, this stalk is zero.
(b) If Π = Π(µ1, µ2) is a principle series representation, then it is given by
representatives of the form

•
(
|a|

1
2 c1µ1(a) + |a|

1
2 c2µ2(a)

)
1℘n(a), if µ1 6= µ2,

• |a|
1
2µ1(a) (c1 + c2v(x)) 1℘n(a), if µ1 = µ2.

Here c1, c2 ∈ C.
(c) If Π = Π(µ1, µ2) is special, it is given by representatives

• |a|
1
2µ1(a)1℘n(a), if µ1µ

−1
2 = |·|,

• |a|
1
2µ2(a)1℘n(a), if µ1µ

−1
2 = |·|−1.

Definition 2.8. Let Π(χ) be the theta series and ΠE be the Eisenstein series
at the central place s = 1

2 . The products

W (ξ, η) = Wθ(η)WE(ξ)

of Kirillov functions Wθ ∈ K(Π(χ)) and WE ∈ K(Π(1, ω)) are called Whit-
taker products. As η = 1 − ξ, they define linear forms on the isobaric sum
Π(χ) � ΠE . We denote the corresponding space of distributions by W.

Being a component of a Weil representation, the theta series Π(χ) is completely
described ([7] §1, [2] §7). Adèlically, it is a Hilbert modular form of conductor
f(χ)2f(ω) and of weight (1, . . . , 1) at the infinite places. If K = F ⊕F is split,
then χ = (χ1, χ

−1
1 ) and Π(χ) = Π(χ1, ωχ

−1
1 ) = Π(χ1, χ

−1
1 ) is a principle series

representation. If K/F is a field extension and χ does not factorize via the
norm, then Π(χ) is supercuspidal. While if χ = χ1 ◦N, it is the principle series
representation Π(χ1, χ

−1
1 ω) = Π(χ1, χ1ω), as χ2

1 = 1 by Lemma 2.5. Thus, by
Proposition 2.7:

Proposition 2.9. Let Π(χ) be the theta series and let K(Π(χ)) be its Kirillov
space. It is a function space in one variable η generated by S(F×) along with
the following stalks around zero:

• The zero function, if K/F is a field extension and χ 6= 1.

• |η|
1
2χ1(η) (a1 + a2ω(η)), if K/F is a field extension and χ2 = 1.

• |η|
1
2

(
a1χ1(η) + a2χ

−1
1 (η)

)
, if K/F is split and χ2

1 6= 1,

• |η|
1
2χ1(η) (a1 + a2v(η)), if K/F is split and χ2

1 = 1.

We collect some properties of principal series. For an automorphic form f ∈
Π(µ1|·|s−

1
2 , µ2|·|

1
2
−s) there is Φ ∈ S(F 2) such that

(7) f(s, g) = µ1(det g)|det g|s
∫
F×

Φ ((0, t)g) (µ1µ
−1
2 )(t)|t|2s d×t.

Conversely, any Φ ∈ S(F 2) defines a form fΦ ∈ Π(|·|s−
1
2 , ω|·|

1
2
−s) in that way

([1] Chap. 3.7). The Whittaker function belonging to f (in a Whittaker model
with unramified character ψ) is given by the first Fourier coefficient

Wf (s, g, ψ) =

∫
F
f(s,

(
0 −1
1 0

)(
1 x
0 1

)
g)ψ̄(x) dx.
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Read off in the Kirillov model, the form for s = 1
2 is given by evaluation at

g =

(
a 0
0 1

)
, thus

Wf (a) := Wf (
1

2
,

(
a 0
0 1

)
, ψ).

For unramified µi the newform is obtained by choosing

φ(x, y) = 1oF (x)1oF (y)

in (7). Thus,

Wnew(a) = µ1(a)|a|
1
2

∫
F

∫
F×

1oF (at)1oF (xt)µ1µ
−1
2 (t)|t| d×t ψ̄(x) dx

= µ1(a)|a|
1
2 1oF (a) vol(oF ) vol×(o×F )

0∑
j=−v(a)

µ1µ
−1
2 (πj)

= |a|
1
2 1oF (a) vol(oF ) vol×(o×F )

{
µ1(aπ)−µ2(aπ)
µ1(π)−µ2(π) , if µ1 6= µ2

µ1(a)(v(a) + 1), if µ1 = µ2

.(8)

By Proposition 2.7 we have:

Proposition 2.10. At s = 1
2 the Eisenstein series ΠE is the principle series

representation Π(1, ω). Its Kirillov space as a function space in the variable ξ
is generated by S(F×) along with the following stalks around zero:

• |ξ|
1
2 (a1 + a2ω(ξ)), if K/F is a field extension,

• |ξ|
1
2 (a1 + a2v(ξ)), if K/F is split.

For a finite set S of places of F, let ôSF :=
∏
v/∈S oFv and AS :=

∏
v∈S Fv · ôSF .

We recall a property of Hecke operators.

Proposition 2.11. ([13] Chapter 2.4) Let µ be a character of A×/F×. Let
φ ∈ L2(GL2(F)\GL2(A), µ), and let Wφ be the Whittaker function of φ in some
Whittaker model. Let S be the finite set of infinite places and of those finite
places v for which φv is not invariant under the maximal compact subgroup
GL2(oFv). For b ∈ ôSF ∩ A× define

H(b) :=
{
g ∈M2(ôSF) | det(g)ôSF = bôSF

}
.

Then the following Hecke operator Tb is well defined for g ∈ GL2(AS):

TbWφ(g) :=

∫
H(b)

Wφ(gh) dh.

If y ∈ ôSF and (b, yf ) = 1, then

TbWφ(g

(
y 0
0 1

)
) = |b|−1Wφ(g

(
yb 0
0 1

)
).

That is, the action of the Hecke operator Tb on some Whittaker product is
essentially translation by b:

(9) TbW (ξ, η) = |b|−2W (bξ, bη).
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3. Expansion of local linking numbers

Let L denote the space of distributions defined by the local linking numbers
< φ,ψ >x for φ, ψ ∈ S(χ,G). We desribe the expansion in x ∈ F× of L. The
characterizing properties are close to those satisfied by the orbital integrals of
[6], and Propositions 3.1 and 3.2 are influenced by the methods there. We
distinguish whether the torus T is compact or not.

Proposition 3.1. Let K = F (
√
A) be a field extension and let ω be the as-

sociated quadratic character. Let φ, ψ ∈ S(χ,G). The local linking number
< φ,ψ >x is a function of x ∈ F× with the following properties:
(a) It is zero on the complement of cN.
(b) It is zero on a neighborhood of 1 ∈ F×.
(c) There is a locally constant function A1 on a neighborhood U of 0 depending
on φ such that for all 0 6= x ∈ U : < φ,ψ >x= A1(x)(1 + ω(cx)).
(d) There is an open set V containing zero such that for all x−1 ∈ V ∩ cN

< φ,ψ >x = δ(χ2 = 1)χ1(
A

c
)χ1(x)

∫
T\G

φ(εy)ψ̄(y) dy.

Here the character χ1 of F× is given by χ = χ1 ◦ N if χ2 = 1. Especially, the
local linking number vanishes in a neighborhood of infinity if χ2 6= 1.

Proposition 3.2. Let K = F ⊕F be a split algebra. Let χ = (χ1, χ
−1
1 ) and let

φ, ψ ∈ S(χ,G). The local linking number < φ,ψ >x is a function of x ∈ F×
with the following properties:
(a) It is zero on a neighborhood of 1 ∈ F×.
(b) It is locally constant on F×.
(c) There is an open set U 3 0 and locally constant functions A1, A2 on U
depending on φ and ψ such that for 0 6= x ∈ U : < φ,ψ >x= A1(x)+A2(x)v(x).
(d) There is an open set V containing zero and locally constant functions B1, B2

on V depending on φ and ψ such that for x−1 ∈ V :

< φ,ψ >x =

{
χ1(x)(B1(x−1) +B2(x−1)v(x)), if χ2

1 = 1
χ1(x)B1(x−1) + χ−1

1 (x)B2(x−1), if χ2
1 6= 1

.

For χ2
1 = 1, the function B2 is nonzero only if id ∈ suppφ(suppψ)−1.

We need two lemmas.

Lemma 3.3. Let φ ∈ S(χ,G).
(a) For each y ∈ G there is an open set V 3 y such that for all g ∈ supp(φ)y−1

and all ỹ ∈ V
φ(gỹ) = φ(gy).

(b) Let C ⊂ G be compact. For each g ∈ G there is an open set U 3 g such
that for all g̃ ∈ U and all y ∈ TC

(10)

∫
T
φ(t−1g̃ty) dt =

∫
T
φ(t−1gty) dt.
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Proof of Lemma 3.3. (a) It is enough to prove the statement for y = id. As φ
is locally constant, for every g ∈ G there is an open set Ug 3 id with φ(gUg) =
φ(g). Let C ⊂ G be compact such that suppφ = TC. We cover C by finitely
many gUg and choose U to be the intersection of those Ug. Then φ(gU) = φ(g)
for all g ∈ TC.
(b) It is enough to prove the statement for y ∈ C rather than y ∈ TC, as a
factor s ∈ T just changes the integral by a factor χ(s). By (a) there is an open
set Vy 3 y such that φ(t−1gtỹ) = φ(t−1gty) for ỹ ∈ Vy and t−1gt ∈ supp(φ)y−1.
Take finitely many y ∈ C such that the Vy cover C. It is enough to find open
sets Uy 3 g for these y so that Equation (10) is fulfilled. Then ∩Uy is an open
set such that (10) is satisfied for all y ∈ TC. Write g = g1 + εg2 and describe
a neighborhood Uy of g by k1, k2 > 0 depending on y and the obstructions
|g̃i − gi| < ki, i = 1, 2, for g̃ lying in Uy. Write t−1g̃t = g1 + εg2tt̄

−1 + (g̃1 −
g1) + ε(g̃2 − g2)tt̄−1. As φ is locally constant, we may choose k1, k2 depending
on y such that

φ(t−1g̃t) = φ((g1 + εg2tt̄
−1)y) = φ(t−1gty).

These constants are independent from t as |(g̃2 − g2)tt̄−1| = |g̃2 − g2|. �

Lemma 3.4. Let φ ∈ S(F ⊕ F ).
(a) There are A1, A2 ∈ S(F ) such that∫

F×
φ(a−1y, a) d×a = A1(y) +A2(y)v(y).

(b) Let η be a nontrivial (finite) character of F×. There are B1, B2 ∈ S(F )
and m ∈ Z such that for 0 6= y ∈ ℘m∫

F×
φ(a−1y, a)η(a) d×a = B1(y) +B2(y)η(y).

Proof of Lemma 3.4. (a) Any φ ∈ S(F⊕F ) is a finite linear combination of the
following elementary functions: 1℘n(a)1℘n(b), 1x+℘n(a)1℘n(b), 1℘n(a)1z+℘n(b),
1x+℘n(a)1z+℘n(b) for suitable n ∈ Z and v(x), v(z) > n. It is enough to prove
the statement for these functions. We get∫

F×
1℘n(a−1y)1℘n(a) d×a = 1℘2n(y)v(yπ−2n+1) vol×(o×F ).

Thus, if 0 ∈ suppφ the integral has a pole at y = 0, otherwise it hasn’t:∫
F×

1x+℘n(a−1y)1℘n(a) d×a = 1℘v(x)+n(y) vol×(1 + ℘n−v(x)),∫
F×

1℘n(a−1y)1z+℘n(a) d×a = 1℘v(z)+n(y) vol×(1 + ℘n−v(z))

and ∫
F×

1x+℘n(a−1y)1z+℘n(a) d×a = 1xz(1+℘m)(y) vol×(1 + ℘m),

where m := n−min{v(x), v(z)}.
(b) Similar computations to those of (a). �
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Proof of Proposition 3.1. (a) is clear by definition.
(b) Assume 1 ∈ cN, otherwise this property is trivial. We have to show that
for all γ with P (γ) ∈ U , where U is a sufficiently small neighborhood of 1,∫

T\G

∫
T
φ(t−1γty) dtψ̄(y) dy = 0.

We show that the inner integral is zero. Let C ⊂ G be compact such that
suppφ ⊂ TC. Then φ vanishes outside of TCT . It is enough to show that there
is k > 0 such that |P (γ)−1| > k holds for all γ ∈ TCT . Assume there isn’t such
k. Let (γi)i be a sequence such that P (γi) tends to 1. Multiplying by elements
of T and enlarging C occasionally (this is possible as T is compact), we assume
γi = 1 + εti = zici, where ti ∈ T , ci ∈ C, zi ∈ Z. Then P (γi) = ctit̄i = 1 + ai,
where ai → 0. We have det γi = 1− ctit̄i = −ai as well as det γi = z2

i det ci. As
C is compact, (zi)i is forced to tend to zero. This implies γi → 0 contradicting
γi = 1 + εti.
(c) A coset γ ∈ F×\D× of trace zero has a representative of the form γ =√
A+ εγ2 (by abuse of notation). Thus,

< φ,ψ >x =

∫
T\G

∫
T
φ((
√
A+ εγ2tt̄

−1)y) dt ψ̄(y) dy.

As φ ∈ S(χ,G), there exists an ideal ℘mK of K such that for all y ∈ G and

all l ∈ ℘mK one has φ((
√
A + εl)y) = φ(

√
Ay). Let x = P (γ) be near zero, i.e.

x belongs to an ideal U of F given by the obstruction that cll̄
−A ∈ U implies

l ∈ ℘mK . For such x we have

< φ,ψ >x = volT (T )χ(
√
A)

∫
T\G

φ(y)ψ̄(y) dy.

So if 〈·, ·〉 denotes the L2-scalar product, we have

< φ,ψ >x =
1

2
volT (T )χ(

√
A)〈φ, ψ〉(1 + ω(cx)).

(d) Let γ =
√
A+ εγ2 denote a trace zero preimage of x under P . Then∫
T
φ(t−1γty) dt = χ(γ2)

∫
T
φ((
√
Aγ−1

2 + t−1t̄ε)y) dt.

By Lemma 3.3 there exists k > 0 such that for |γ2| > k and for y ∈ suppψ we

have φ((
√
Aγ−1

2 + t−1t̄ε)y) = φ(t−1t̄εy). Thus, for |x| > |cA−1|k2,

< φ,ψ >x = χ(γ2)

∫
T
χ(t−1t̄) dt

∫
T\G

φ(εy)ψ̄(y) dy.

As χ(t−1t̄) defines the trivial character of T if and only if χ2 = 1, the statement
follows by noticing that in this case χ(γ2) = χ1(Axc ). �
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Proof of Proposition 3.2. There is an isomorphism from D× to GL2(F ) given

by embedding K× diagonally and sending ε to

(
0 1
1 0

)
. Then P is given by

P

(
a b
c d

)
=
bc

ad
.

The only value not contained in the image of P is 1. A preimage of x 6= 1 of
trace zero is

γ(x) =

(
−1 x
−1 1

)
.

(a) We show that for φ ∈ S(χ,G) there is a constant k > 0 such that for all
γ ∈ suppφ: |P (γ) − 1| > k. By Bruhat-Tits decomposition, G = PGL2(F ) =
TNN ′∪TNwN , where N is the group of uniponent upper triangular matrices,

N ′ its transpose and w =

(
0 −1
1 0

)
. Thus, there is c > 0 such that

suppφ ⊂ T

{(
1 u
0 1

)(
1 0
v 1

)
| |u| < c, |v| < c

}
⋃
T

{(
1 u
0 1

)
w

(
1 v
0 1

)
| |u| < c, |v| < c

}
.

On the first set P we have P = uv
1+uv . On the second one we have P = uv−1

uv .

Thus, for all γ ∈ suppφ we have |P (γ)− 1| ≥ min{1, c−2}. Next we show that
there is a constant k > 0 such that |P (γ) − 1| > k for all γy ∈ suppφ for all
y ∈ suppψ. This implies that < φ,ψ >x= 0 in the neighborhood |x − 1| < k
of 1. There is such a constant ky for any y ∈ suppψ. By Lemma 3.3(a) this
constant is valid for all ỹ in a neighborhood Vy. Modulo T the support of ψ
can be covered by finitely many Vy. The minimum of the associated ky is the
global constant we claimed.
(b) By Lemma 3.3(b), there is for every x ∈ F×\{1} a neighborhood Ux such
that for all y ∈ suppψ the inner integral∫

T
φ(t−1γ(x̃)ty) dt

is constant in x̃ ∈ Ux. Even more the local linking number is locally constant
on F×\{1}. By (a) it is locally constant in x = 1 as well.
For (c) and (d) we regard the inner integral separately first. For representatives
we have

t−1γ(x)t =

(
a−1 0
0 1

)(
−1 x
−1 1

)(
a 0
0 1

)
=

(
(x− 1) 0

0 1

)(
1 x

a(x−1)

0 1

)(
1 0
−a 1

)
∈ K×NN ′

=

(
1−x
a 0
0 −a

)(
1 a

x−1
0 1

)
w

(
1 −a−1

0 1

)
∈ K×NwN.
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As suppφ is compact modulo T , the intersections suppφ ∩NN ′ and suppφ ∩
NwN are compact. We write φy for the right translation of φ by y. Then φy is a
sum φy = φy1 +φy2, φyi ∈ S(χ,G), with suppφy1 ⊂ TNN ′ and suppφy2 ⊂ TNwN .
Using the transformation under T by χ, we can actually regard φyi , i = 1, 2, as
functions on F ⊕ F identifying N with F . Thus, φyi ∈ S(F ⊕ F ). Then we get∫

T
φ(t−1γ(x)ty) dt = χ1(x− 1)

∫
F×

φy1(
x

a(x− 1)
,−a) d×a(11)

+ χ1(1− x)

∫
F×

χ1(a−2)φy2(
a

x− 1
,−a−1) d×a.

(c) We have χ1(x− 1) = χ1(−1) if x ∈ ℘c(χ1), where c(χ1) is the leader of χ1.
By lemma 3.4, the first integral of (11) for small x equals

A1(
x

x− 1
) +A2(

x

x− 1
)v(

x

x− 1
),

where A1, A2 are locally constant functions on a neighborhood of zero depend-
ing on y. Then Ãi(x) := Ai(

x
x−1) are locally constant functions on a neighbor-

hood U1 of zero as well. The second integral of (11) is constant on a neighbor-
hood U2 of x = 0 depending on y, as φy2 is locally constant for (x− 1)−1 → −1.

Thus, the complete inner integral can be expressed on Uy := ℘c(χ1) ∩ U1 ∩ U2

as

Ay(x) := Ã1(x) + Ã2(x)v(x) +B.

By lemma 3.3(a), there is a neighborhood Vy of y where the inner integral is
constant. Take Vy that small that ψ is constant there, too, and cover suppψ
modulo T by finitely many such Vy, y ∈ I, for some finite set I. The local
linking number for x ∈ U = ∩y∈IUy now is computed as

< φ,ψ >x =
∑
y∈I

volT\G(TVy)ψ̄(y)Ay(x).

That is, there are locally constant functions B1, B2 on U such that for x ∈ U

< φ,ψ >x = B1(x) +B2(x)v(x).

(d) Let x−1 ∈ ℘c(χ1). Then χ1(x − 1) = χ(x). As φy1 is locally constant,
the first integral of (11) equals a locally constant function A1(x−1) for x−1

in a neighborhood U1 of zero depending on y. For the second integral, we
distinguish whether χ2

1 = 1 or not. Let η := χ2
1 6= 1. Applying lemma 3.4(b),

we get locally constant functions A2, A3 on a neigborhood U2 of zero depending
on y such that the second integral equals A2(x−1) + χ2

1(x−1)A3(x−1). Thus,

for fixed y the inner integral for x−1 ∈ Uy = U1 ∩ U2 ∩ ℘c(χ1) is

Ay(x) :=

∫
T
φy(t−1γ(c)t) dt = χ1(x)

(
A1(x−1) +A2(x−1) +A3(x−1)χ−1

1 (x)
)
.

Proceeding as in (c), we get the assertion. Let χ2
1 = 1. By lemma 3.4(a), we

have locally constant functions A2, A3 on a neighborhood U2 of zero such that
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for x−1 ∈ U the second integral of (11) is given by A2(x−1) + A2(x−1)v(x).

Thus, for x−1 ∈ Uy := U1 ∩ U2 ∩ ℘c(χ1) the inner integral is given by

Ay(x) := χ1(x)
(
A1(x−1) +A2(x−1) +A3(x−1)v(x)

)
.

The term A3(x−1)v(x) by lemma 3.4(a) is obtainted from functions φy2(a, b)
having the shape 1℘n(a)1℘n(b) around zero. Those function can only occur
if y is contained in suppφ. Again proceeding as in part (c), the local linking
number for x−1 in a sufficently small neighborhood U of zero is

< φ,ψ >x = χ1(x)
(
B1(x−1) +B2(x−1)v(x)

)
,

where B1, B2 are locally constant on U and B2 doesn’t vanish only if id ∈
(suppφ)(suppψ)−1. �

The above properties of the local linking numbers describe them completely:

Proposition 3.5. The properties (a) to (d) of Proposition 3.1 resp. 3.2 char-
acterize L: Given a function H on F× satisfying these properties, there are
φ, ψ ∈ S(χ,G) such that H(x) =< φ,ψ >x.

We first describe the construction in general before going into detail in the
case of a field extension K/F . The case of a split algebra K = F ⊕ F will be
omitted, as it is similar and straightforward after the case of a field extension.
A complete proof can be found in [9], Chapter 2. We choose a describtion of a
function H satisfying the properties (a) to (d),

H(x) = 1cN(x)
(
A0(x)1V0(x) +A1(x)1V1(x) +

M∑
j=2

H(xj)1Vj (x)
)
,

where Vj = xj(1 + ℘
nj
F ), j = 2, . . . ,M , are open sets in F× on which H is

constant. Similarly,

V0 = ℘n0
F resp. V1 = F\℘−n1

are neighborhoods of 0 (resp. ∞) where H is characterized by A0 (resp. A1)
according to property (c) (resp. (d)). We may assume nj > 0 for j = 0, . . . ,M
and Vi ∩ Vj = ∅ for i 6= j. Then we construct a function ψ and functions φj ,
j = 0, . . . ,M , in S(χ,G) such that suppφi ∩ suppφj = ∅ if i 6= j and such that

< φj , ψ >x= H(xj)1Vj (x) resp. < φj , ψ >x= Aj(x)1Vj (x).

There is essentially one possibility to construct such functions in S(χ,G): Take
a compact open subset C of G which is fundamental for χ, that is if t ∈ T
and c ∈ C as well as tc ∈ C, then χ(t) = 1. Then the function φ = χ ·1C given
by φ(tg) = χ(t)1C(g) is well defined in S(χ,G) with support TC. The function
ψ is then chosen as ψ = χ · 1U , where U is a compact open subgroup of G that
small that for j = 0, . . . ,M

P (P−1(Vj)U) = Vj ∩ cN .

For j ≥ 2 we take Cj compact such that CjU is fundamental and P (CjU) = Vj
and define φj := H(xj) ·χ ·1CjU . The stalks of zero and infinity are constructed
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similarly. As the local linking numbers are linear in the first component and
as the supports of the φj are disjoint by construction, we get

H(x) =<
M∑
j=0

φj , ψ >x .

Proof of Proposition 3.5 in the case K a field. Let K = F (
√
A). Let the func-

tion H satisfying (a) to (d) of Prop. 3.1 be given by

H(x) = 1cN(x)
(
A0(x)1V0(x) +A1(x)1V1(x) +

M∑
j=2

H(xj)1Vj (x)
)
,

where

V0 = ℘n0 and A0(x) = a0,

V1 = F\℘−n1 and A1(x) =

{
χ1(x)a1, if χ2 = 1

0, if χ2 6= 1
,

Vj = xj(1 + ℘nj ) for j = 2, . . . ,M,

with a0, a1, H(xj) ∈ C, and nj > 0 for j = 0, . . . ,M . We further assume

n0 − v(
c

A
) > 0, n1 + v(

c

A
) > 0 and both even,

as well as Vi ∩ Vj = ∅ for i 6= j. Let

ñ0 =

{
1
2(n0 − v( cA)), if K/F unramified
n0 − v( cA), if K/F ramified

,

ñ1 =

{
1
2(n1 + v( cA)), if K/F unramified
n1 + v( cA), if K/F ramified

,

as well as for j = 2, . . . ,M

ñj =

{
nj , if K/F unramified
2nj , if K/F ramified

.

Then N(1 + ℘
ñj
K ) = 1 + ℘

nj
F , j ≥ 2. Here ℘K is the prime ideal of K. Define

U := 1 + ℘kK + ε℘mK ,

where k > 0 and m > 0 are chosen such that

k ≥ c(χ), m ≥ c(χ)

k ≥ ñj , m ≥ ñj + 1, for j = 0, . . . ,M,

m ≥ c(χ) + 1− 1

2
v(xj), for j = 2, . . . ,M,

m ≥ ñj + 1 +
1

2
|v(xj)|, for j = 2, . . . ,M.(12)

As k,m > 0 and k,m ≥ c(χ), U is fundamental. Define

ψ := χ · 1U .
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To realize the stalks for xj , j ≥ 2, let
√
A+ εγj be a preimage of xj ,

P (
√
A+ εγj) =

cN(γj)

−A
= xj .

The preimage of Vj is

P−1(Vj) = T
(√
A+ εγj(1 + ℘

ñj
K )
)
T = T

(√
A+ εγj(1 + ℘

ñj
K ) N1

K

)
.

Let Cj :=
√
A+ εγj(1 + ℘

ñj
K ) N1

K . The compact open set

CjU =
√
A(1 + ℘kK) + cγ̄j℘

m
K + ε

(
γj(1 + ℘kK + ℘

ñj
K ) N1

K +
√
A℘mK

)
.

is fundamental, due to the choices (12): We have to check that if t ∈ T , c ∈ Cj ,
and tc ∈ CjU , then χ(t) = 1 (observe that U is a group). Let

tc = t
√
A+ εt̄γj(1 + π

ñj
K c1)l ∈ CjU.

The first component forces t ∈ 1 + ℘kK + c
A γ̄j℘

m
K , for which χ(t) = 1, by (12).

For the image of CjU we find again by (12)

P (CjU) =
cN(γj) N(1 + ℘kK + ℘

ñj
K + ℘mK

√
A
γj

)

−AN(1 + ℘kK + c√
A
γ̄j℘mK)

= Vj .

So the functions φj := χ · 1CjU ∈ S(χ,G) are well defined. We compute

< φj , ψ >x =

∫
T\G

∫
T
φj(t

−1γ(x)ty) dt ψ̄(y) dy.

The integrand doesn’t vanish only if there is s ∈ K× such that

st−1γ(x)t = s
√
A+ εs̄γ2(x)tt̄−1 ∈ CjU.

The first component implies s ∈ 1 + ℘
ñj
K . The second one implies γ2(x) ∈

γj(1 + ℘
ñj
K ) N1

K , which is equivalent to x ∈ Vj . In this case we take s = 1 and
get

< φj , ψ >x = 1Vj (x)

∫
T\G

∫
T

1 dt ψ̄(y) dy = 1Vj (x) volT (T ) volG(U).

Normalizing φ̃j :=
H(xj)

volT (T ) volG(U)φj , we get H|Vj (x) =< φ̃j , ψ >x.

For the stalk at zero, we find P (C0) = ℘n0
F ∩ cN, where C0 :=

√
A + ε℘ñ0

K .
The preimage P−1(V0) equals TC0T = TC0. The open and compact set C0U
is easily seen to be fundamental and to satisfy P (C0U) = V0 ∩ cN . Define
φ0 := χ · 1C0U and compute the local linking number < φ0, ψ >x. It doesn’t
vanish only if there is s ∈ K× such that

st−1γ(x)t = s
√
A+ εs̄γ2(x)tt̄−1 ∈ C0U.

This forces γ2(x) ∈ ℘ñ0
K . Then we take s = 1 and get

< φ0, ψ >x = 1V0∩cN(x) volT (T ) volG(U).
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That is, H|V0(x) = a0 =< a0
volT (T ) volG(U)φ0, ψ >x. It remains to construct the

stalk at infinity in case χ2 = 1. Thus, χ = χ1◦N. The preimage of V1 = F\℘−n1
F

is given by

P−1(V1) = T
(√
A+ ε(℘ñ1

K )−1
)
T = T

(√
A℘ñ1

K + εN1
K

)
.

Take C1 =
√
A℘ñ1

K + εN1
K to get a fundamental compact open set

C1U =
√
A℘ñ1

K + c℘mK + ε
(
N1
K(1 + ℘kK) +

√
A℘m+ñ1

K

)
,

By the choices (12) we get P (C1U) = V1∩ cN. Taking φ1 := χ ·1C1U this time,
we get H|V1(x) = a1

volT (T ) volG(U) < φ1, ψ >x. �

We use the parametrization ξ = x
x−1 . The properties of the local linking num-

bers (Propositions 3.1 and 3.2) transform accordingly. Let L̃ be the space of

distributions made up by evaluating the mutiple |ξη|
1
2 < φ,ψ >γ(ξ) of local

linking numbers at ξ ∈ F× for φ, ψ ∈ S(χ,G). This is the space of test vectors
of the geometric side, while the space W of analytic test vetors is given by
evaluation of Whittaker products. We have the following transfer:

Theorem 3.6. Assume ω(−ξη) = 1 if D is split, resp. ω(−ξη) = −1 if D is a

division algebra. The spaces of test vectors L̃ andW have identical ξ-expansion.

Proof of Theorem 3.6. The space W is characterized by Propositions 2.9 and
2.10. Comparing it with L̃ (Propositions 3.1 resp. 3.2) yields the claim. For
example, by Prop. 2.9 for K/F split and χ2

1 6= 1, the Whittaker products for
ξ → 1 (η → 0) are given by

|ξη|
1
2
(
a1χ1(η) + a2χ

−1
1 (η)

)
,

which corresponds to Prop. 3.2 (d). For ξ → 0 (η → 1) we apply Prop. 2.10:

The Whittaker products have the shape |ξη|
1
2 (a1 + a2v(ξ)). This is prop-

erty (c) of Prop. 3.2. Away from ξ → 1 and ξ → 0, the Whittaker products
are locally constant with compact support. This is equivalent to (a) and (b) of
Prop. 3.2. �

4. Translated linking numbers

In the remaining, the quaternion algebra D is assumed to be split, that is
G = F×\D× is isomorphic to the projective group PGL2(F ). The aim is to
give an operator on the local linking numbers realizing the Hecke operator
on the analytic side. As the analytic Hecke operator essentially is given by
translation by b ∈ F× (Proposition 2.11), the first candidate for this study is
the translation by b,

< φ,

(
b 0
0 1

)
ψ >x =

∫
T\G

∫
T
φ(t−1γ(x)ty) dt ψ̄(y

(
b 0
0 1

)
) dy.

Let

(13) Iφ(y) =

∫
T
φ(t−1γ(x)ty) dt
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be its inner integral. Here the difference between the case of a compact torus
and that of a noncompact one becomes crucial. Fixing x and viewing the trans-
lated linking number as a function of b alone, we describe the behavior in the
compact case in a few lines. In the noncompact case our computational ap-
proach makes up one hundred pages. Refering to [9], this case is only sketched.

4.1. The compact case. Let K = F (
√
A) be a field extension of F . So T

is compact. As functions φ ∈ S(χ,G) have compact support modulo T , the
set Tγ(x)T · suppφ is compact. Left translation by t′ ∈ T yields Iφ(t′y) =
χ(t′)Iφ(y). Thus, the inner integral Iφ itself is an element of S(χ,G). Choose
the following isomorphism of D× = (K + εK)× with GL2(F ):

ε 7→
(

0 −A
1 0

)
,

K× 3 t = a+ b
√
A 7→

(
a bA
b a

)
.

Let M =

{(
y1 y2

0 1

)
| y1 ∈ F×, y2 ∈ F

}
be the mirabolic subgroup of the stan-

dard Borel group. It carries the right invariant Haar measure d×y1 dy2. As the
map K××M → GL2(F ), (t,m) 7→ t ·m, is a homeomorphism ([8] Section 2.2),
we may normalize the quotient measure dy on T\G such that dy = d×y1 dy2.
We identify φ ∈ S(χ,G) with a function in S(F× × F ),

φ(y1, y2) := φ

(
y1 y2

0 1

)
.

φ being locally constant with compact support, there are finitely many points
(z1, z2) ∈ F× × F and m > 0 such that

φ(y1, y2) =
∑

(z1,z2)

φ(z1, z2)1z1(1+℘m)(y1)1z2+℘m(y2).

Applying this for Iφ and ψ,

Iφ(y1, y2) =
∑

(z1,z2)

Iφ(z1, z2)1z1(1+℘m)(y1)1z2+℘m(y2),

ψ(y1, y2) =
∑

(w1,w2)

ψ(w1, w2)1w1(1+℘m)(y1)1w2+℘m(y2),

we compute the translated local linking number

< φ,

(
b 0
0 1

)
ψ >x =

∫
T\G

Iφ(y)ψ̄(y

(
b 0
0 1

)
) dy

=
∑

(z1,z2),(w1,w2)

Iφ(z1, z2)ψ̄(w1, w2)1z2+℘m(w2)1w1
z1

(1+℘m)(b)

· vol×(1 + ℘m) vol(℘m).

We have proved:
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Theorem 4.1. Let T be compact. For fixed x, the translated local linking

number < φ,

(
b 0
0 1

)
ψ >x is a locally constant function of b ∈ F× with compact

support.

We give an explicit example used later on.

Example 4.2. ([9], Bsp. 4.8) Let K/F be an unramified field extension and
let χ = 1. Then φ = χ · 1GL2(oF ) is well defined in S(χ,G) and

< φ,

(
b 0
0 1

)
φ >x · vol−1 =

1N \(1+℘)(x)1o×
F

(b) + 11+℘(x)
(
1(1−x)o×

F
(b) + 1(1−x)−1o×

F
(b)
)
q−v(1−x),

where vol := volT (T ) vol×(o×F ) vol(oF ).

4.2. The noncompact case. Let K = F⊕F be a split algebra. The character
χ is of the form χ = (χ1, χ

−1
1 ) for a character χ1 of F×. As in the proof of

Proposition 3.2, G = TNN ′∪TNwN . Both of these open subsets are invariant

under right translation by

(
b 0
0 1

)
. Choose coset representatives for T\TNN ′

of the form

y =

(
1 y2

0 1

)(
1 0
y3 1

)
as well as coset representatives for T\TNwN of the form

y =

(
1 y1

0 1

)
w

(
1 0
y4 1

)
.

Any function ψ ∈ S(χ,G) can be split into a sum ψ = ψ1 + ψ2, ψi ∈ S(χ,G),
with suppψ1 ⊂ TNN ′ (resp. suppψ2 ⊂ TNwN). The function ψ1 can be
viewed as an element of S(F 2) in the variable (y2, y3). Choose the quotient
measure dy on T\TNN ′ such that dy = dy2 dy3 for fixed Haar measure dyi
on F . Proceed analogously for ψ2. For fixed x the inner integral Iφ (13) is a
locally constant function in y. Its support is not compact anymore, but Iφ is
the locally constant limit of Schwartz functions. This is the reason for this case
being that more elaborate than the case of a compact torus. The shape of the
translated linking numbers is given by the following theorem.

Theorem 4.3. Let T be a noncompact torus. For fixed x, the translated local

linking number < φ,

(
b 0
0 1

)
ψ >x is a function in b ∈ F× of the form

χ−1
1 (b)

(
1℘n(b)|b|(a+,1v(b) + a+,2) +A(b) + 1℘n(b−1)|b|−1(a−,1v(b) + a−,2)

)
+ χ1(b)

(
1℘n(b)|b|(c+,1v(b) + c+,2) + C(b) + 1℘n(b−1)|b|−1(c−,1v(b) + c−,2)

)
,

with suitable constants a±,i, c±,i ∈ C, integral n > 0 and functions A,C ∈
S(F×).
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Sketch of proof of Theorem 4.3. This is done by brute force computations in
[9] Chapter 8. We will outline the reduction to ℘-adic integration here. We
choose the functions φ, ψ locally as simple as possible: z ∈ suppφ belongs to
TNN ′ or TNwN . We restrict to z ∈ TNN ′, the other case is done similarly.
There is a representative (

1 + z2z3 z2

z3 1

)
of z modulo T and an open set

Uz =

(
1 + z2z3 z2

z3 1

)
+

(
℘m ℘m

℘m ℘m

)
such that φ|Uz = φ(z). Choosing m that large that Uz is fundamental, φ locally
has the shape φz := χ ·1Uz up to some multiplicative constant. For the exterior
function ψ proceed similarly. It is enough to determine the behavior of the
translated local linking numbers for functions of this type, i.e.∫

T\G

∫
T
φz(t

−1γ(x)ty) dt ψ̄z̃(y

(
b 0
0 1

)
) dy.

According to whether z2 or z3 is zero or not, and suppψ ⊂ TNN ′ or suppψ ⊂
TNwN , there are 23 = 8 types of integrals to be done ([9] Chapters 5.2 and
8). For later use we include an explicit example.

Example 4.4. ([9], Bsp. 5.2) Let T be noncompact. Let χ = (χ1, χ1), where χ1

is unramified and quadratic. Then φ = χ · 1GL2(oF ) is well-defined in S(χ,G).

The translated local linking number < φ,

(
b 0
0 1

)
φ >x is given by

χ1(1− x)χ1(b) vol×(o×F ) vol(oF )2 ·[
1F×\(1+℘)(x)

(
1o×

F
(b)
(
|v(x)|+ 1

)
(1 + q−1) + 1℘(b)|b|

(
4v(b) + 2|v(x)|

)
+1℘(b−1)|b−1|

(
−4v(b) + 2|v(x)|

))

+ 11+℘(x)

(
1℘v(1−x)+1(b)|b|

(
4v(b)− 4v(1− x)

)
+1v(1−x)o×

F
(b)|b|+ 1v(1−x)o×

F
(b−1)|b−1|

+1℘v(1−x)+1(b−1)|b−1|
(
−4v(b)− 4v(1− x)

))]
.
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5. A geometric Hecke operator

We construct operators on the local linking numbers that realize the asymp-
totics (b→ 0) of the Hecke operators on Whittaker products. The asymptotics
of the second is as follows.

Proposition 5.1. The Whittaker products W (bξ, bη) have the following behav-
ior for b→ 0 and fixed ξ = x

x−1 , η = 1− ξ.

(a) In case of a compact Torus T and χ not factorizing via the norm,

W (bξ, bη) = 0.

In case of a compact Torus T and χ = χ1 ◦N,

W (bξ, bη) = |b||ξη|
1
2χ1(bη) (c1 + c2ω(bξ))

(
c31℘m∩(1−x) N(b) + c41℘m∩(1−x)zN(b)

)
,

where z ∈ F×\N.
(b) In case of a noncompact Torus T ,

W (bξ, bη) =

{
|b||ξη|

1
2

(
c1χ1(bη) + c2χ

−1
1 (bη)

)
(c3v(bξ) + c4)) , if χ2

1 6= 1

|b||ξη|
1
2χ1(bη) (c1v(bη) + c2) (c3v(bξ) + c4) , if χ2

1 = 1
.

Here, ci ∈ C, i = 1, . . . , 4.

Proof of Proposition 5.1. For b → 0 both arguments bξ and bη tend to zero.
The stated behaviors are collected from Propositions 2.9 and 2.10. �

Notice that the translation by b of the local linking numbers underlies this
asymptotics (Theorems 4.1 and 4.3), but it does not realize the leading terms
in case χ is quadratic. In case of a noncompact torus T , the leading term is
v(b)2, while translation only produces v(b). In case of a compact torus, the
translated linking numbers have compact support, while the Hecke operator
on Whittaker products has not. In the following, we make the additional
“completely unramified” assumption which is satisfied at almost all places.

Hypothesis 5.2. D is a split algebra. K/F is an unramified extension (split
or nonsplit) contained in D. The character χ is unramified.

For a noncompact torus T the translated local linking numbers (Theorem 4.3)
split into sums of the form

< φ,

(
β 0
0 1

)
ψ >x=< φ,

(
β 0
0 1

)
ψ >+

x + < φ,

(
β 0
0 1

)
ψ >−x ,

where

< φ,

(
β 0
0 1

)
ψ >±x := χ±1

1 (β)·(14) (
1℘n |β|(c±,1v(β) + c±,2) + C±(β) + 1℘n(β−1)|β|−1(d±,1v(β) + d±,2)

)
are the summands belonging to χ±1

1 respectively. In here, the constants c±,i, d±,i,
and C± ∈ S(F×) as well as n > 0 depend on φ, ψ and x. If χ1 is a quadratic
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character, these two summands coincide. To give an operator fitting all cases,
define in case of a compact torus

< φ,

(
β 0
0 1

)
ψ >±x :=< φ,

(
β 0
0 1

)
ψ >x .

For v(b) ≥ 0 define the operator Sb to be

(15) Sb :=
1

4

(
S+
b + S−b

)
,

where

S±b < φ,ψ >x :=
∑
s=0,1

v(b)∑
i=0

χ∓1
1 (π)i(−1)sω(b(1− x))i+s

|πv(b)−i|

· < φ,

(
π(−1)s(v(b)−i) 0

0 1

)
ψ >±x .

This “Hecke operator” is not unique. For example, the summand for s = 0
has the same properties as Sb itself. The crucial point is that an averaging
sum occurs. The operator Sb is chosen such that this sum includes negative
exponents −v(b) + i as well. This kind of symmetry will make the results on
the local Gross-Zagier formula look smoothly (Section 6.2).

Proposition 5.3. Let T be a compact torus. Then the operator Sb reduces to

Sb < φ,ψ >x =
1

2

∑
s=0,1

v(b)∑
i=0

ω(b(1− x))i+s

|πv(b)−i|
< φ,

(
π(−1)s(v(b)−i) 0

0 1

)
ψ >x .

Let x ∈ cN be fixed. For φ, ψ ∈ S(χ,G) there are constants c1, c2 ∈ C and
n ∈ N such that for v(b) ≥ n

Sb < φ,ψ >x = c11℘n∩(1−x) N(b) + c21℘n∩(1−x)zN(b).

Proposition 5.4. Let T be a noncompact torus. The operators S±b reduce to

S±b < φ,ψ >x =
∑
s=0,1

v(b)∑
i=0

χ∓1
1 (π)i(−1)s

|πv(b)−i|
< φ,

(
π(−1)s(v(b)−i) 0

0 1

)
ψ >±x .

Let x ∈ F× be fixed. For φ, ψ ∈ S(χ,G) there are constants c0, . . . , c3 ∈ C and
n ∈ N such that for v(b) ≥ n

Sb < φ,ψ >x =

{
χ−1

1 (b)
(
c3v(b) + c2

)
+ χ1(b)

(
c1v(b) + c0

)
, if χ2

1 6= 1
χ1(b)

(
c2v(b)2 + c1v(b) + c0

)
, if χ2

1 = 1
.

Theorem 5.5. For fixed x, the local linking numbers |b|−1|ξη|
1
2 Sb < φ,ψ >x

and the Whittaker products TbW (ξ, η) have the same asymptotics in b.

Proof of Theorem 5.5. Recall that TbW (ξ, η) = |b|−2W (bξ, bη). In case T com-
pact, combine Proposition 5.3 and Proposition 5.1 (a) for χ = 1. In case T
noncompact, combine Proposition 5.4 and Proposition 5.1 (b). �
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Proof of Proposition 5.3. For T compact Assumtion 5.2 induces χ = 1 by
Corollary 2.6. By Theorem 4.1, the translated linking number can be writ-
ten as

< φ,

(
β 0
0 1

)
ψ >x=

∑
i

dai |ai|sign v(ai)1ai(1+℘m)(β),

for finitely many ai ∈ F×, dai ∈ C, and some m > 0, where the sets ai(1 +℘m)
are pairwise disjoint. We may assume that in this sum all πl, −maxi|v(ai)| ≤
l ≤ maxi|v(ai)|, occur. Let n := maxi|v(ai)|+ 1. Then, for v(b) ≥ n,

Sb < φ,ψ >x =
1

2

v(b)∑
i=0

(
ω(b(1− x))i

n−1∑
l=−n+1

dπl |πl|sign(l)

|πv(b)−i|
1πl(1+℘m)(π

v(b)−i)

+ ω(b(1− x))i+1
n−1∑

l=−n+1

dπl |πl|sign(l)

|πv(b)−i|
1πl(1+℘m)(π

i−v(b))

)

=
1

2

n−1∑
l=0

ω(b(1− x))v(b)+ldπl +
1

2

0∑
l=−n+1

ω(b(1− x))v(b)+l+1dπl

= c11℘n∩(1−x) N(b) + c21℘n∩(1−x)zN(b),

where c1 := 1
2

∑n−1
l=0 (dπl + dπ−l) and c2 := 1

2

∑n−1
l=0 (−1)l(dπl − dπ−l). Notice,

that for b(1− x) ∈ zN one has ω(b(1− x))v(b) = (−1)v(b) = −ω(1− x). �

Proof of Proposition 5.4. T is noncompact, so ω = 1. First we prove this
asymptotics for the part T−b of Sb belonging to S−b and s = 0,

T−b < φ,ψ >x :=

v(b)∑
i=0

χ1(π)i

|πv(b)−i|
< φ,

(
πv(b)−i 0

0 1

)
ψ >−x .

Let n > 0 be the integer of (14). Let v(b) ≥ n. In the formula for T−b , we
distinguish the summands whether v(b)− i < n or not. If v(b)− i < n, then

< φ,

(
πv(b)−i 0

0 1

)
ψ >−x = χ−1

1 (πv(b)−i)C−(πv(b)−i).

The function C̃− defined by

C̃−(β) :=
χ−2

1 (β)

|β|
C−(β)
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belongs to S(F×). The part of T−b made up by summands satisfying v(b)−i < n
is now simplified to

v(b)∑
i=v(b)−n+1

χ1(π)i

|πv(b)−i|
< φ,

(
πv(b)−i 0

0 1

)
ψ >−x

=

v(b)∑
i=v(b)−n+1

χ1(b)C̃−(πv(b)−i) = χ1(b)
n−1∑
l=0

C̃−(πl).

In here, the last sum is independent of b. Thus, this part of T−b satisfies the
claim. In the remaining part

T(i ≤ v(b)− n) :=

v(b)−n∑
i=0

χ1(π)i

|πv(b)−i|
< φ,

(
πv(b)−i 0

0 1

)
ψ >−x

all the translated local linking numbers occuring can be written as

< φ,

(
πv(b)−i 0

0 1

)
ψ >−x = χ−1

1 (πv(b)−i)|πv(b)−i| (c−,1(v(b)− i) + c−,2) .

So

T(i ≤ v(b)− n) = χ−1
1 (b)

v(b)−n∑
i=0

χ1(π)2i (c−,1(v(b)− i) + c−,2) .

In case χ2
1 = 1, we have

T(i ≤ v(b)− n) = χ1(b)(v(b)− n+ 1)

(
c−,2 +

1

2
c−,1(v(b) + n)

)
,

which owns the claimed asymptotics. If χ2
1 6= 1, enlarge n such that χn1 = 1.

The remaining part of T−b then is

T(i ≤ v(b)− n) = (c−,1v(b) + c−,2)
χ1(bπ)− χ−1

1 (bπ)

χ1(π)− χ−1
1 (π)

− c−,1
χ1(bπ)(v(b)− n+ 1)

χ1(π)− χ−1
1 (π)

+ c−,1
χ1(bπ2)− 1

(χ1(π)− χ−1
1 (π))2

.

Thus, the claim is satisfied in case χ2
1 6= 1. The other parts of Sb satisfy the

claimed asymptotics as well: If T+
b denotes the part of Sb belonging to S+

b and

s = 0, then the statement for T+
b follows from the proof for T−b replacing there

χ−1
1 by χ1, C− by C+, and c−,i by c+,i, where the constants are given by (14).

For s = 1 notice that

χ1(π)i(−1)sχ−1
1 (π(−1)s(v(b)−i)) = χ1(b)χ1(π)−2i.

So the claim follows from the proof for s = 0 if there we substitute χ1 by χ−1
1

as well as c±,i by d±,i of (14). �
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6. Local Gross-Zagier formula

We report on Zhang’s local Gross-Zagier formulae for GL2 [13] using our no-
tations in order to compare them directly with the results given by the opera-
tor Sb. We include short proofs of S. Zhang’s results.

6.1. S. Zhang’s local Gross-Zagier formula. The local Gross-Zagier for-
mula compares the Whittaker products of local newforms with a local linking
number belonging to a very special function φ ([13] Chapter 4.1),

φ = χ · 1R× ,

where R× is the unit group of a carefully chosen order R in D. Almost every-
where, especially under Hypothesis 5.2, R× = GL2(oF ) and the function φ is
well-defined. The specially chosen local linking number then is

< T̃bφ, φ >x,

where the geometric Hecke operator T̃b is defined as follows ([13] 4.1.22 et sqq.).
Let

H(b) := {g ∈M2(oF ) | v(det g) = v(b)}.

Then

T̃bφ(g) :=

∫
H(b)

φ(hg) dh.

This operator is well-defined on φ = χ ·1GL2(oF ), but not generally on S(χ,G).

In our construction of the universal operator Sb we followed the idea that T̃b

reflects summation over translates by coset representatives, as

H(b) =
⋃(

y1 0
0 y3

)(
1 y2

0 1

)
GL2(oF ),

where the union is over representatives (y1, y3) ∈ oF × oF with v(y1y3) = v(b)

and y2 ∈ ℘−v(y1)\oF .

Lemma 6.1. ([13] Lemma 4.2.2) Let K/F be a field extension and assume
Hypothesis 5.2. Let φ = χ · 1GL2(oF ). Then

< T̃bφ, φ >x = vol(GL2(oF ))2 volT (T )1N(x)1 1−x
x

(oF∩N)(b)1(1−x)(oF∩N)(b).

Lemma 6.2. ([13] Lemma 4.2.3) Let K/F be split, let χ = (χ1, χ
−1
1 ) be an

unramified character, and let φ = χ · 1GL2(oF ). In case χ2
1 6= 1,

< T̃bφ, φ >x =
χ1(b(1− x)−1π)− χ−1

1 (b(1− x)−1π)

χ1(π)− χ−1
1 (π)

vol(GL2(oF ))2 vol×(o×F )

· 1 1−x
x

oF∩(1−x)oF
(b)1F×(x)

(
v(b) + v(

x

1− x
) + 1

)
.
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In case χ2
1 = 1,

< T̃bφ, φ >x = χ1(b(1− x)) vol(GL2(oF ))2 vol×(o×F )1 1−x
x

oF∩(1−x)oF
(b)

· 1F×(x)
(
v(b)− v(1− x) + 1

)(
v(b) + v(

x

1− x
) + 1

)
.

For the proofs of Lemma 6.1 and 6.2 we follow a hint by Uwe Weselmann.
Write

φ(x) =
∑

τ∈T (F )/T (oF )

χ(τ)1τ GL2(oF )(x).

For the Hecke operator we find

T̃b1τ GL2(oF )(x) = vol(GL2(oF ))1τb−1H(b)(x),

as b−1H(b) = {h ∈ GL2(F ) | h−1 ∈ H(b)}. As the Hecke operator is invariant

under right translations, T̃bφ(xy) = T̃bφ(x) for y ∈ GL2(oF ), we get

(16) < T̃bφ, φ >x = vol(GL2(oF ))2
∑
τ

χ(τ)

∫
T

1τb−1H(b)(t
−1γ(x)t) dt.

This formula is evaluated in the different cases for K/F .

Proof of Lemma 6.1. Let K = F (
√
A), where v(A) = 0. Choose a trace zero

γ(x) =
√
A+ ε(γ1 + γ2

√
A), where N(γ1 + γ2

√
A) = x. The conditions for the

integrands of (16) not to vanish are

τ−1b
√
A ∈ oK

τ−1bt̄−1t(γ1 + γ2

√
A) ∈ oK

det(t−1γ(x)t) = A(x− 1) ∈ b−1 N(τ)o×F .

They are equivalent to |N(τ)| = |b(1− x)| and |b| ≤ min{|1−xx |, |1− x|}. There
is at most one coset τ ∈ T (F )/T (oF ) satisfying this, and this coset exists only
if b ∈ (1− x) N. Thus,

< T̃bφ, φ >x = vol(GL2(oF ))2 volT (T )

·
(
1N \(1+℘)(x)1oF∩N(b) + 11+℘(x)1(1−x)(oF∩N)(b)

)
,

which equals the claimed result. �

Proof of Lemma 6.2. Choose γ(x) =

(
−1 x
−1 1

)
of trace zero, and set τ =

(τ1, τ2) ∈ K×/o×K as well as t = (a, 1) ∈ T . The conditions for an integrand of
(16) not to vanish are

(−τ−1
1 b, τ−1

2 b) ∈ oK ,

(−τ−1
1 a−1bx, τ−1

2 ab) ∈ oK ,

det(t−1γ(x)t) = x− 1 ∈ N(τ)b−1o×K .
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So only if v(τ2) = −v(τ1) + v(b) + v(1 − x) satisfies v(1 − x) ≤ v(τ2) ≤ v(b),
the integral does not vanish. Then the scope of integration is given by −v(b) +
v(τ2) ≤ v(a) ≤ v(τ2) + v(x)− v(1− x) and the integral equals

vol×(o×F )
(
v(b) + v(x)− v(1− x) + 1

)
1oF∩℘v(1−x)−v(x)(b).

Evaluating χ(τ) we get χ(τ) = χ1(b(1 − x))χ−2
1 (τ2), as χ is unramified. Sum-

ming up the terms of (16) yields the lemma. �

The other constituents of the local Gross-Zagier formulae are the Whittaker
products of newforms for both the Theta series Π(χ) and the Eisenstein series
Π(1, ω) at s = 1

2 . By Hypothesis 5.2, the Theta series equals Π(χ1, χ
−1
1 ) if

K/F splits, and it equals Π(1, ω) if K/F is a field extension. Thus, all occuring
representations are principal series and the newforms read in the Kirillov model
are given by (8). In case of a field extension we get

Wθ,new(a) = WE,new(a) = vol(oF ) vol×(o×F ) · |a|
1
2 1oF∩N(a) .

In case K/F splits we get

Wθ,new(a) = vol(oF ) vol×(o×F ) · |a|
1
2 1oF (a)

{
χ1(aπ)−χ−1

1 (aπ)

χ1(π)−χ−1
1 (π)

, if χ2
1 6= 1

χ1(a)(v(a) + 1), if χ2
1 = 1

,

while

WE,new(a) = vol(oF ) vol×(o×F ) · |a|
1
2 1oF (a)(v(a) + 1) .

Summing up, we get the following Lemma. Recall ξ = x
x−1 and η = 1− ξ.

Lemma 6.3. ([13] Lemma 3.4.1) Assume Hypothesis 5.2. Then the Whittaker
products for the newforms of Theta series and Eisenstein series have the fol-
lowing form up to the factor vol(oF )2 vol×(o×F )2. If K/F is a field extension,
then

Wθ,new(bη)WE,new(bξ) = |ξη|
1
2 |b|1oF (bξ)1oF (bη)

= |ξη|
1
2 |b|1 1−x

x
(oF∩N)(b)1(1−x)(oF∩N)(b).

If K/F splits and χ is quadratic, then

Wθ,new(bη)WE,new(bξ)

= |ξη|
1
2 |b|1oF (bξ)1oF (bη)χ1(bη) (v(bξ) + 1) (v(bη) + 1)

= |ξη|
1
2 |b|1 1−x

x
oF∩(1−x)oF

(b)χ1(b(1− x))
(
v(b) + v(

x

1− x
) + 1

)
·

·
(
v(b)− v(1− x) + 1

)
.
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If K/F splits and χ is not quadratic, then

Wθ,new(bη)WE,new(bξ)

= |ξη|
1
2 |b|1oF (bξ)1oF (bη) (v(bξ) + 1)

χ1(bηπ)− χ−1
1 (bηπ)

χ1(π)− χ−1
1 (π)

= |ξη|
1
2 |b|1 1−x

x
oF∩(1−x)oF

(b)
(
v(b) + v(

x

1− x
) + 1

)
·

·χ1(b(1− x)−1π)− χ−1
1 (b(1− x)−1π)

χ1(π)− χ−1
1 (π)

.

Comparing Lemma 6.1 resp. 6.2 with Lemma 6.3 we get S. Zhang’s local Gross-
Zagier formula:

Theorem 6.4. ([13] Lemma 4.3.1) Assume Hypothesis 5.2. Let Wθ,new resp.
WE,new be the newform for the Theta series resp. Eisenstein series. Let φ =
χ · 1GL2(oF ). Then up to a factor of volumes,

Wθ,new(bη)WE,new(bξ) = |ξη|
1
2 |b| < T̃bφ, φ >x= ξ

ξ−1
.

6.2. Reformulation of local Gross-Zagier. We re-prove S. Zhang’s local
Gross-Zagier formula in terms of Sb:

Theorem 6.5. Assume Hypothesis 5.2 and assume χ2
1 = 1 in case K/F splits.

Let Wθ,new resp. WE,new be the newform for the Theta series resp. Eisenstein
series. Let φ = χ · 1GL2(oF ). Then up to a factor of volumes,

Wθ,new(bη)WE,new(bξ) = |ξη|
1
2 |b|Sb < φ, φ >x +O(v(b)) ,

where in case K/F a field extension the term of O(v(b)) is actually zero, while
in case K/F split the term of O(v(b)) can be given precisely by collecting terms
in the proof of Example 4.4.

Proof of Theorem 6.5. Compare the Whittaker products for newforms given in
Lemma 6.3 with the action of the operator Sb on the local linking number
belonging to φ, given by Lemma 6.6 resp. 6.7 below. �

Lemma 6.6. Let K/F be a field extension. Assume Hypothesis 5.2. Let φ =
χ · 1GL2(oF ). Then up the factor volT (T ) vol×(o×F ) vol(oF ),

Sb < φ, φ >x = 1N(x)1 1−x
x

(oF∩N)(b)1(1−x)(oF∩N)(b).

Proof of Lemma 6.6. The translated local linking number is that of Exam-
ple 4.2. We compute the action of Sb given by Proposition 5.3. If x ∈ N \(1+℘),
then up to the factor volT (T ) vol×(o×F ) vol(oF ),

Sb < φ, φ >x =
1

2

(
ω(b(1− x))v(b) + ω(b(1− x))v(b)+1

)
= 1N(b).

If x ∈ 1 + ℘, then again up to the factor of volumes

Sb < φ, φ >x =
1

2
1℘v(1−x)(b)ω(b(1− x))v(b)−v(1−x) (1 + ω(b(1− x)))

= 1℘v(1−x)∩(1−x) N(b). �
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In case K/F we restrict ourselves to the case χ2
1 = 1.

Lemma 6.7. Let K/F be split and assume Hypothesis 5.2 as well as χ2
1 = 1.

Let φ = χ · 1GL2(oF ). Then up the factor vol×(o×F ) vol(oF )2,

Sb < φ, φ >x = χ1(b(1− x))·[
1F×\(1+℘)(x)

(
2v(b)2 + 2(|v(x)|+ 1)v(b) + (1 + q−1)(|v(x)|+ 1)

)
+11+℘(x)1℘v(1−x)(b)

(
2
(
v(b)− v(1− x) + 1

)(
v(b)− v(1− x)

)
+ 1
)]
.

Proof of Lemma 6.7. The operator Sb is given by Proposition 5.4. The trans-
lated local linking number is given by Example 4.4. As χ1 is quadratic,
Sb = 1

2S+
b . For x ∈ 1 + ℘ we compute

Sb < φ, φ >x

= χ1(b(1− x))1℘v(1−x)(b)

1 +

v(b)−v(1−x)−1∑
i=0

4(v(b)− i− v(1− x))


= χ1(b(1− x))1℘v(1−x)(b)

(
2(v(b)− v(1− x) + 1)(v(b)− v(1− x)) + 1

)
,

while for x ∈ F×\(1 + ℘),

Sb < φ, φ >x

= χ1(b(1− x))

(|v(x)|+ 1)(1 + q−1) +

v(b)−1∑
i=0

(
4(v(b)− i) + 2|v(x)|

)
= χ1(b(1− x))

(
2v(b)2 + (1 + |v(x)|)(2v(b) + 1 + q−1)

)
. �
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[6] Hervé Jacquet. Sur un résultat de Waldspurger. Ann.scient. Ec.Norm.Sup., 4(19):185–
229, 1986.
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