Universität Heidelberg

20. November 2017

Mathematisches Institut Prof. Dr. Winfried Kohnen Johann Franke

Funktionentheorie 2 - Übungsblatt 5

Wintersemester 2017/18

Aufgabe 1 (4 Punkte)

Zeigen Sie, dass für alle c > 0 und alle x > 0 gilt:

$$e^{-x} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) x^{-s} ds.$$

Hinweis: Integrieren Sie zunächst über das Rechteck R(n, T) mit den Ecken $c \pm i T$ und $\frac{1}{2} - n \pm i T$ für T > 0, $n \in \mathbb{N}$ und lassen Sie zuerst T und dann n gegen unendlich gehen.

Aufgabe 2 (0 Punkte)

Die Gaußsche ψ -Funktion ist gegeben durch $\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)}$. Zeigen Sie folgende Aussagen:

- (a) ψ ist auf \mathbb{C} meromorph mit lauter einfachen Polen in $S = \{-n \mid n \in \mathbb{N}_0\}$ und zugehörigen Residuen $\operatorname{res}_{z=-n} \psi = -1$,
- (b) $\psi(z) = -\gamma \frac{1}{z} \sum_{\nu=1}^{\infty} (\frac{1}{z+\nu} \frac{1}{\nu})$ (mit der Euler-Mascheroni Konstante γ),
- (c) $\psi(z+1) \psi(z) = \frac{1}{z}$,
- (d) $\psi(1-z) \psi(z) = \pi \cot \pi z$,
- (e) $\psi'(z) = \sum_{\nu=0}^{\infty} \frac{1}{(z+\nu)^2}$ und die Reihe konvergiert absolut $\forall z \in \mathbb{C} \setminus S$.

Aufgabe 3 (0 Punkte)

- (a) Es seien X und Y Riemannsche Flächen und $f \in \operatorname{Hol}(X,Y)$ nicht-konstant. Es sei zudem $a \in X$ ein Punkt und b := f(a). Dann gibt es eine natürliche Zahl k und Karten $\varphi : U_1 \to V_1$ sowie $\psi : U_2 \to V_2$ von X resp. Y, so dass
 - a) $f(U_1) \subset U_2$
 - b) $a \in U_1$ und $\varphi(a) = 0$
 - c) $b \in U_2$ und $\psi(b) = 0$

Abgabe: Montag, 27.11, bis spätestens 11 Uhr ct. in den Tutorenbriefkästen in INF 205 im ersten Stock.

- d) $F := \psi \circ f \circ \varphi^{-1} : V_1 \to V_2$ ist gegeben durch $F(z) = z^k$.
- (b) Seien X und Y Riemannsche Flächen sowie $f \in \text{Hol}(X,Y)$ nicht-konstant. Dann ist f eine offene Abbildung.
- (c) Ist X unter selben Voraussetzungen wie in (b) kompakt, so auch Y und f ist surjektiv.
- (d) Folgern Sie den Fundamentalsatz der Algebra.