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ABSTRACT

A Chebotarev-like Density Theorem in Algebraic Geometry

Armin Holschbach

Florian Pop, Advisor

For an étale Galois cover of geometrically normal, geometrically integral projec-

tive varieties of dimension d ≥ 2 over an arbitrary �eld k, we prove a Chebotarev-like

density theorem which describes the decomposition behavior of prime divisors. In

characteristic zero, the étaleness condition can be dropped. As an application, we

give a numerical criterion for such a cover to be Galois.

iv



Contents

1 Introduction 1

2 Preliminaries 6

2.1 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Picard scheme and linear systems . . . . . . . . . . . . . . . . . . . 7

2.3 Algebraic and numerical equivalence . . . . . . . . . . . . . . . . . 8

2.4 Numerical criteria for divisors . . . . . . . . . . . . . . . . . . . . . 8

3 Behavior of divisors in �nite covers 11

3.1 Finite morphisms and induced maps on divisors . . . . . . . . . . . 11

3.1.1 Pull-back . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Push-forward . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 More de�nitions and notations . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Galois closure for separable covers . . . . . . . . . . . . . . . 15

3.2.2 Split and c-split divisors . . . . . . . . . . . . . . . . . . . . 15

v



3.3 Behavior of volume in �nite covers . . . . . . . . . . . . . . . . . . 16

3.4 The scheme representing geometrically integral Cartier divisors . . . 24

3.5 Decomposition of divisors in branched covers . . . . . . . . . . . . . 25

3.6 A Chebotarev density theorem for divisors . . . . . . . . . . . . . . 28

4 Positive characteristics 30

4.1 Decomposition of divisors in étale covers . . . . . . . . . . . . . . . 30

4.2 Finite �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Applications 37

5.1 A generalization of a theorem of Bauer . . . . . . . . . . . . . . . . 37

5.2 Bauerian covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



Chapter 1

Introduction

In 1922, Nikolai Chebotarev proved his famous density theorem, which had been
conjectured in 1880 by Frobenius. It describes the decomposition behavior of prime
ideals in Galois extensions. Let us explain the context:

Let L|K be a �nite Galois extension of number �elds with Galois group G,
and let OL|OK be the corresponding rings of integers. Let p ⊂ OK a prime ideal
unrami�ed in OL, and let q ⊂ OL be a prime ideal lying above p. Then the
decomposition group Gq = {σ ∈ G|σq = q} is canonically isomorphic to the Galois
group Gal(OL/q|OK/p). The latter group contains a distinguished element: the
Frobenius automorphism, which acts on OL/q by x 7→ xNp, where Np := #OK/p.
Via the aforementioned canonical isomorphism, we can regard the Frobenius of q

as an element of G; its conjugacy class depends only on p and is denoted by
(
L|K

p

)
.

Recall that for a set P of primes of K, we de�ne its Dirichlet density to be

d(P) = lim
s↘1

∑
p∈P Np−s∑

pNp−s
, provided the limit exists.

Theorem (Chebotarev's density theorem). Let C be the conjugacy class of an ele-

ment of G. Set DCL|K = {p ⊂ OK |p unrami�ed in OL,
(
L|K

p

)
= C}. Then DCL|K has

a Dirichlet density, precisely:

d(DCL|K) =
#C

ordG
.

This theorem (and its original proof) marked one of the cornerstones of number
theory; among other things, it enabled Artin to prove his reciprocity law. Later,
the density theorem was generalized in various ways; the most general treatment
is that of Serre in [Se65]: He replaces the Galois extension of number �elds by a
generically �nite Galois cover of schemes of �nite type over Z, and the prime ideals
are replaced by the closed points of these schemes. The rest of the statement (and
the basic idea of the proof) still stay more or less the same.
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Serre's version of Chebotarev's density theorem therefore describes the decom-
position behavior of closed points, for example for varieties over �nite �elds. But
higher dimensional varieties contain more than just these closed points (and the
generic point). Thus, a very natural question to ask is whether one can give compa-
rable density results for the behavior of higher dimensional points on these varieties,
like curves or divisors.

In this thesis we will consider the decomposition behavior of divisors in Galois
covers of varieties. Let us �x some notation �rst: Let g : Z → X be a (branched)
Galois cover, i.e. a �nite dominant morphism together with a �nite group G acting
on Z such that X is (isomorphic to) the quotient variety Z/G. For any Weil prime
divisor F on Z, we set the decomposition group GF of F to be {σ ∈ G|σF = F}.
For a Weil prime divisor D on X, we de�ne the decomposition class CD of D to be
the conjugacy class of GF , where F is a Weil prime divisor on Z with g(F ) = D.1

Note that the notion of CD depends only on D, not on the choice of F over D.
As it turns out, it is possible to come up with a notion of density which gives

Chebotarev-like results for projective varieties over any �eld, not just �nite �elds.
Let us start with one version which gives the least restrictions on the cover Z → X,
but will be proven in characteristic zero only:

Theorem A (3.6.1). Let g : Z → X be a �nite branched Galois cover with Galois
group G of normal, geometrically integral projective varieties over a �eld k of char-
acteristic zero, and assume dimX = d ≥ 2. Let C be a conjugacy class of subgroups
of G, and let D be an ample divisor on X. Then for every m ∈ N, there are va-
rieties PmD and DCmD representing the geometrically integral divisors on X which
are linearly equivalent to mD, respectively those which additionally are unrami�ed
in the cover Z → X and have decomposition class C.

Assume furthermore that D is c-split in Z, i.e., there exists a Cartier divisor F
on Z with g(F ) = D and k(F ) = k(D). Then

lim
m→∞

dim DCmD
dim PmD

=
1

[G : C]d−1
,

where [G : C] is de�ned to be [G : H] for any representative H of C. Without the
assumption of D being c-split, the statement still holds if we replace D by ord(G) ·D
or regard the limit superior instead of the limit.

In this theorem, the representability statement about PmD and DCmD means that
for any arbitrary �eld extension K|k, the geometrically integral divisors on XK =
X×Spec kSpecK which are linearly equivalent tomDK correspond to the K-rational
points of PmD, and similarly for DCmD. In order to get an easier understanding of
what this means, we can consider a special case:

1Since the decomposition groups are noncyclic in general, we cannot expect to single out one

element to play the role of a Frobenius, hence the change to conjugacy classes of subgroups.

2



Corollary. Under the assumptions of Theorem A, assume furthermore that k is
algebraically closed. Then for any m ∈ N, the set of all Weil prime divisors in the
complete linear system |mD| form (the closed points of) a variety PmD.2 Also, the
set of all Weil prime divisors in the linear system |mD| with decomposition class C
form (the closed points of) a subvariety DCmD, and the quotient of the dimensions
of these two varieties converges for m→∞ as described above.

Actually, we can extend this theorem to varieties over �elds of arbitrary charac-
teristic if we put some more restrictions on the cover:

Theorem B (4.1.4). Let g : Z → X be a �nite étale Galois cover with Galois
group G of geometrically normal, geometrically integral projective varieties over
an arbitrary �eld k, and assume dimX = d ≥ 2. Let C be a conjugacy class of
subgroups of G, and let D be an ample divisor on X. Then for every m ∈ N, there
are varieties Pgn

mD and Dgn,C
mD representing the geometrically normal, geometrically

integral divisors on X which are linearly equivalent to mD, respectively those which
additionally have decomposition class C. Then

lim sup
m→∞

dim Dgn,C
mD

dim Pgn
mD

=
1

[G : C]d−1
.

If D (or any divisor in |D|) is c-split in Z, then limm→∞
dim Dgn,C

mD

dim Pgn
mD

exists, and is

equal to 1
[G:C]d−1 .

For �nite �elds, the divisors in a linear system can actually be counted, and we
get another version of Chebotarev-like density theorem:

Theorem C (4.2.5). Let g : Z → X be a �nite étale Galois cover with Galois group
G of geometrically normal, geometrically integral projective varieties over a �nite
�eld k, and assume dimX = d ≥ 2. Let C be a conjugacy class of subgroups of
G, and let D be an ample divisor on X. Then for every m ∈ N, let p#(mD) and
dcC#(mD) denote the number of geometrically normal, geometrically integral divisors
in |mD|, respectively the number of those which additionally have decomposition
class C. Then

lim sup
m→∞

log dcC#(mD)

log p#(mD)
=

1

[G : C]d−1
.

Again, if D (or any divisor in |D|) is c-split in Z, then limm→∞
log dcC#(mD)

log p#(mD)
exists,

and is equal to 1
[G:C]d−1 .

Of course, the last result is not entirely surprising once one knows theorem B,
since at least for a projective space P over a �nite �eld k = Fq, the number of

2Actually, it will be an open subvariety of PH0(X, mD).
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rational points is approximately qdimP (up to some bounded factor), so it does not
seem unreasonable that logq p#(mD) = logq #Pgn

mD(k) comes close to dim Pgn
mD.

Still, the proof will be more than just a simple variation of the proofs of theorems
A and B.

As an application, let us mention the following theorem:

Theorem (5.1.7). Let f : Y → X be a �nite (branched) cover of geometrically nor-
mal, geometrically integral projective varieties of dimension d ≥ 2 over an arbitrary
�eld k, and assume f to be étale if char k > 0. We say that a divisor D on X
(partially) splits in Y if there exists a Weil prime divisor E on Y with f(E) = D
and [k(E) : k(D)] = 1; we call D completely split in Y if there are deg(f) di�erent
divisors E over D with this property. Then the following are equivalent:

• Every Weil prime divisor D on X that is unrami�ed and splits in Y is com-
pletely split in Y .

• f : Y → X is a Galois cover.

We will now present a short outline of the proof of theorem A; the di�erence in
the proof of theorem B will be mentioned at the point where it occurs.

Concerning the existence and asymptotic behavior of the dimension of PmD,
the argument is rather simple: A Bertini-type argument proves PmD to be an open
dense subvariety of PH0(X,mD) (3.4.4), and an asymptotic Riemann-Roch theorem
(3.3.1) then describes the asymptotic behavior of its dimension.

So we can concentrate on DCmD. Fix a representative H of C, set Y = Z/H and
let h : Z → Y and f : Y → X be the corresponding quotient morphisms. Then one
can show that DCmD is an open dense subscheme of the scheme SmD,Y representing
all geometrically integral divisors linearly equivalent to mD which split in Y , i.e.
which are push-forwards f∗E of e�ective Weil divisors E on Y .3

As it turns out, it is much easier to �nd a scheme ScmD,Y representing the
geometrically integral divisors linearly equivalent to mD which are c-split in Y , i.e.
which are push-forwards f∗E of e�ective Cartier divisors E on Y .

The strategy how to construct SmD,Y from ScmD,Y is where the argument di�ers
in the proofs of theorems A and B. For varieties over �elds of characteristic 0, we
use a resolution of singularities to reduce to the case where Y is nonsingular (3.5.1);
then the notions of Cartier and Weil divisor coincide, and we can identify the two
schemes. In the context of theorem B, we use that fact that f is étale to show that
the notions of split and c-split coincide (4.1.2).

In order to get ScmD,Y , we use the classical result of Grothendieck that the
(relative) e�ective Cartier divisors on X are representable by a scheme DivX/k,
and that the push-forward map f∗ : Div(Y ) → Div(X) on Cartier divisors gives

3This notion of splitting coincides with the one mentioned before, as we will see later.
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rise to a (locally) �nite morphism f∗ : DivY/k → DivX/k. Then ScmD,Y is just the
intersection of PmD with f∗(DivY/k), and its dimension equals the dimension of the
preimage of PmD under f∗.

From there it is only a short step to see that it su�ces to give asymptotic bounds
for the dimension of the scheme Div

[E]num
Y/k representing the relative e�ective divisors

which are numerically equivalent to a given Cartier divisor E on Y , with f∗E lin-
early equivalent to mD (3.2.4), and this simpli�es even further to compare h0(Y,E)
of such E asymptotically with h0(X,mD), which is taken care of in section 3.3.

Structure of the Manuscript.

• In chapter 2 we recall some facts on divisors, their representability, and inter-
section theory.

• The proof of Theorem A is contained in chapter 3: First we construct the push-
forward morphism f∗, then we use it to de�ne and represent c-split divisors.
After an excursion to the volume of divisors and their behavior in �nite covers,
we use these facts to give upper and lower bounds on the asymptotics of
dim SmD,Y , which are then used to prove theorem A.

• Chapter 4 covers the proofs of theorems B and C; the main novelty in the
proof of theorem C is that we have to use a di�erent Bertini's theorem by
Poonen which holds over �nite �elds.

• Finally, in chapter 5 we give applications of this theory, which are mainly
centered around the theorem mentioned above.

Notation.
If X and T are varieties over a given �eld k, we denote by XT the �ber product

X ×Spec k T , which is regarded as a base change of X to a scheme over T . Similarly,
if K is a �eld extension of k, then XK denotes the K-variety X ×Spec k SpecK.

If D is a Cartier divisor on a projective k-variety X, we usually write H0(X,D)
for H0(X,OX(D)) and h0(X,D) for dimkH

0(X,D). The same holds for higher
cohomology.

k̄ always denotes an algebraic closure of the �eld k.
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Chapter 2

Preliminaries

The following will contain some base information about divisors, invertible sheaves
and equivalence classes of such that will be need later. For a more comprehensive
account of this matter, we refer to Kleiman's excellent article in [FAG05]. Most of
the results are well-known for nonsingular varieties over algebraically closed �elds,
but since we were aiming for more general results, we included them for the conve-
nience of the reader.

2.1 Divisors

Let X be a normal geometrically integral projective variety over a �eld k. We can
de�ne a functor DivX/k by setting

DivX/k(T ) :=

{
relative e�ective divisors D on XT/T,
i.e. e�ective (Cartier) divisors D on XT that are T -�at

}
.

Alternatively, one can describe the relative e�ective divisors on XT/T as the sub-
schemes D ⊂ XT for which the following holds: For any x ∈ XT , t its image in T ,
D is cut out at x by one element that is regular on the �ber Xκ(t) ([FAG05, 9.3.4]).

This functor is representable by an open subschemeDivX/k of the Hilbert scheme
HilbX/k ([FAG05, Thm 9.3.7]).

Lemma 2.1.1. Every connected component of DivX/k is proper over k.

Proof. Using the valuative criterion of properness, all we have to show is that for
a discrete valuation ring R over k with �eld of fractions K, the induced map p∗ :
DivX/k(R) → DivX/k(K) induced by p : SpecK → SpecR is an isomorphism.
Since we know that every connected component of the Hilbert scheme is proper
([FAG05, 5.1.5.(7)]), it su�ces to prove that for every coherent sheaf F on XR =
X×Spec k SpecR which is a quotient of OXR , F is a quotient of OXR by an invertible
sheaf i� p∗F is a quotient of OXK by an invertible sheaf. De�ning I to be the kernel
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of the surjection OXR → F and using the �atness of p : SpecK → SpecR, this
translates into showing the following: An ideal sheaf I on XR such that V (I) is
�at over SpecR is invertible i� p∗I is.

Since this can be checked locally, we can restrict ourselves to the case that
X = SpecA is a�ne, where A is a �nitely generated k-algebra, and I = ã for
some ideal a ⊆ AR := A ⊗k R. We have to prove that a is a principal ideal
whenever aK = a ⊗R K is. This can be seen the following way: The discrete
valuation v : K → Z corresponding to R extends canonically to a discrete valuation
vA : AK := A ⊗k K → Z with the property that v−1

A (N) = AR ⊂ AK ; this implies
that if we have two elements f, g ∈ AR with vA(f) ≤ vA(g) and f divides g in AK ,
then f divides g in AR. If a ⊂ AR is an ideal such that AR/a is �at over R and
such that aK is principal, take a generator f of aK . Without loss of generality, we
can assume v(f) = 0. Then since AR/a is torsionfree and πnf ∈ a for n ∈ N, π
a uniformizer of R, we have f ∈ a. Hence, by what we said before, f generates a.
This completes the proof.

2.2 Picard scheme and linear systems

Let Pic(X) be the Picard group of invertible sheaves. There is natural morphism
Div(X) → Pic(X) sending a divisor D to the sheaf OX(D); its kernel consists
exactly of the principal divisors.

Similarly to DivX/k, one can de�ne a relative Picard functor PicX/k by

PicX/k(T ) := Pic(XT )/Pic(T ).

Furthermore, let Pic(X/k)(fppf) be the associated sheaf in the fppf topology. The �rst
functor injects naturally into the latter ([FAG05, 9.2.2, 9.2.5, 9.3.11]). Pic(X/k)(fppf)

is representable by a separated group scheme, the Picard scheme PicX/S ([FAG05,
9.3.18.3]). The previously prescribed map of functors AX/k : DivX/k → PicX/k
induces the so-called Abel map of schemes AX/k : DivX/k → PicX/k. The Abel
map is proper, since X is geometrically integral ([FAG05, 9.4.12]).

For an invertible sheaf L on X, de�ne a subfunctor LinSysL/X/k of DivX/S by

LinSysL/X/k(T ) :=

{
relative e�ective divisors D′ on XT/T such that
OXT (D′) ' LT ⊗ f ∗TN for some invertible sheaf N on T

}
.

Then LinSysL/X/k is representable by a projective space LL/X/k over k ([FAG05,
9.3.13]). LL/X/k can also be regarded as the �ber of the Abel map over L ∈
PicX/k. Its dimension is h0(X,L) − 1. For a Cartier divisor D on X, we de-
note LinSysOX(D)/X/k by LinSysD/X/k and LOX(D)/X/k by LD/X/k or simply LD, if
no confusion can arise.
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2.3 Algebraic and numerical equivalence

Let Pic0
X/k denote the connected component of the identity inside the group scheme

PicX/k. It is a geometrically irreducible open and closed group subscheme of �nite
type ([FAG05, 9.5.3]). For an invertible sheaf L on X, the corresponding point
λ ∈ PicX/k lies in Pic0

X/k if and only if L is algebraically equivalent to OX ([FAG05,
9.5.10]), i.e. if there exist connected k-schemes Ti of �nite type, i = 1, . . . , n for some
n, geometric points si, ti of Ti with the same residue �eld, and invertible sheaves
Mi on XTi such that

Ls1 'M1,s1 ,M1,t1 'M2,s2 , . . . ,Mn−1,tn−1 'Mn,sn ,Mn,tn ' OXtn .

For a (Cartier) divisor D and a curve C ⊂ X, de�ne D · C = deg(OC(D)) and
extend by linearity to an intersection pairing between divisors and 1-cycles. Two
divisors D1, D2 are said to be numerically equivalent, D1 ≡ D2, if D1 · C = D2 · C
for every 1-cycle C. A divisor is D is numerically equivalent to 0 if and only if
OX(mD) is algebraically equivalent to OX for some nonzero m ([FAG05, 9.6.3]).

By what we have said before, it is clear that D is numerically trivial if and only
the corresponding point λ ∈ PicX/k lies in PicτX/k =

⋃
n>0 ϕ

−1
n Pic0

X/k, where ϕn is
the n-th power map. PicτX/k is an open and closed subgroup scheme of �nite type
([FAG05, 9.6.12]).

Denote the numerical equivalence class of a divisor D on X by [D]num, and let
Div

[D]num
X/k denote the preimage of Pic

[D]num
X/k := OX(D) + PicτX/k under the Abel

map. For any Cartier divisor D on X, both Div
[D]num
X/k and Pic

[D]num
X/k are �nitely

generated over k: the latter one is just a translate of PicτX/k, and the statement for
the �rst one follows since the Abel map is proper.

The Neron-Severi theorem states that the group PicXk̄/k̄(k̄)/Pic0
Xk̄/k̄

(k̄) is �nitely
generated ([SGA6, XIII.5.1]). By the above, this implies that the group of Cartier
divisors on X modulo algebraic equivalence is �nitely generated; moreover, the
Neron-Severi group N1(X) of Cartier divisors on X modulo numerical equivalence
is �nitely generated and free abelian.

2.4 Numerical criteria for divisors

The intersection product for divisors and 1-cycles mentioned above can be extended
to a more general intersection product: If D1, . . . , Dr are Cartier divisors on X with
r ≥ dimX, de�ne the intersection number

D1 · · ·Dr =

∫
X

D1 · · ·Dr

to be the coe�cient of the monomial m1 · · ·mr in the multivariate Hilbert polyno-
mial χ(X,m1D1 + . . . + mrDr). For a subscheme V of X of dimension at most s,
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set

D1 · · ·Ds · V =

∫
V

D1|V · · ·Ds|V .

This notion of an intersection product is multilinear, symmetric, takes integral val-
ues and comprises the above de�nition of intersections between divisors and curves
([De01, 1.8]). Furthermore, all of these products depend only on the numerical
classes of the divisors ([La04a, 1.1.18]).

The Nakai-Moishezon criterion gives a numerical description of ample divisors:
A Cartier divisor D is ample if and only if for every integral subscheme V of X,
one has Ddim(V ) · V > 0. In the wake of this theorem, one de�nes a Cartier divisor
to be nef i� for every integral subscheme V of X, one has Ddim(V ) · V ≥ 0. In fact,
it is su�cient to check this inequality for all integral curves on X ([De01, 1.26]).

It is useful to extend the Neron-Severi group N1(X) to a real vector space
N1(X)R = N1(X) ⊗Z R and view N1(X) as a complete lattice inside it. If one
extends the de�nition of the intersection products by linearity, then the numerical
description of ampleness and nefness allows to extend these notions to N1(X)R;
let Amp(X) ⊂ N1(X) denote the cone of all ample divisor classes, Nef(X) the
nef cone. If we de�ne N1(X) to be the group of all 1-cycles modulo numerical
equivalence, and let NE(X) ⊂ N1(X)R := N1(X) ⊗Z R the closure of the cone of
curves (generated by the e�ective 1-cycles), then Nef(X) and NE(X) are dual to
each other. By Kleiman's criterion ([De01, 1.27]), δ ∈ N1(X)R is ample if and only
if δ · z > 0 for every z ∈ NE(X), so the ample cone is open, and its closure is the
nef cone.

A Cartier divisor D on X is called big if lim infm→∞
h0(X,mD)
mdimX > 0 ([De01, 1.30]).

A divisor is big if and only if some positive multiple of it is numerically equivalent
to the sum of an ample and an e�ective divisor ([La04a, 2.2.7]). In particular,
the notion is stable under numerical equivalence, so it makes sense to speak of big
classes in N1(X). More general, one de�nes an element δ ∈ N1(X)R to be big if it
can be written in the form δ =

∑r
i=1 aiδi with ai > 0 and δi ∈ N1(X) big ([La04a,

2.2.21]). The set of all big δ ∈ N1(X)R is the big cone Big(X); it is open and convex
and contains the ample cone. Its closure is the pseudoe�ective cone Eff(X), which
is de�ned to be the closure of the convex cone generated by the classes of e�ective
divisors ([La04a, 2.2.26]).

Lemma 2.4.1. The pseudoe�ective cone has a compact basis, i.e. for δ ∈ Eff(X),
the set {δ′ ∈ Eff(X)|δ − δ′ ∈ Eff(X)} is compact.

Proof. If d := dim(X) is at most 1, the statement is trivial, since N1(X) is either
trivial or Z. Assume therefore that d ≥ 2. Let η1, · · · , ηρ a basis of N1(X)R
consisting of ample classes. Then for every i = 1, . . . , ρ, and every δ ∈ N1(X)R, set

degi(δ) := δ · ηi · ηd−2
1

The degi, i = 1, . . . , ρ, form a basis of the dual space of N1(X)R. Indeed, if we
assume degi(δ) = 0 ∀ i, by linearity it follows that δ2 · ηd−2

1 = δ · ηd−1
1 = 0,

9



which implies δ = 0 by [FAG05, 9.6.3 (h)⇒(b)] (the main argument is the Hodge
index theorem). Now for δ ∈ Eff(X), we have degi(δ) ≥ 0 ∀ i (if δ, η1, . . . , ηρ are
classes corresponding to integral Cartier divisors, this follows from Nakai-Moishezon
criterion; it extends by linearity and continuity). This implies that for �xed δ, the
closed set {δ′ ∈ Eff(X)|δ−δ′ ∈ Eff(X)} is a subset of the compact set {δ′ ∈ Eff(X)|
0 ≤ degi(δ

′) ≤ degi(δ) for i = 1, . . . , ρ}, hence is compact itself.

Corollary 2.4.2. De�ne a partial order on N1(X) by setting δ ≥ δ′ if the class
δ−δ′ can be represented by an e�ective divisor. Then for every given e�ective divisor
D, there are only �nitely many classes of e�ective divisors which are smaller than
[D]num.
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Chapter 3

Behavior of divisors in �nite covers

3.1 Finite morphisms and induced maps on divisors

Let X, Y be normal geometrically integral projective varieties over a �eld k.

3.1.1 Pull-back

For a generically �nite morphism f : Y → X, we de�ne pull-back morphisms
f∗ : DivX/k → DivY/k and f∗ : PicX/k → PicY/k. These morphisms �t into a
commutative diagram

DivX/k
f∗−−−→ DivY/k

AX/k

y yAY/k

PicX/k
f∗−−−→ PicY/k

The existence of these morphisms and the commutativity of the diagram follows
from the construction of natural transformations f ∗ : DivX/k → DivY/k and f ∗ :
PicX/k → PicY/k and their compatibility.

In fact, both these transformations are well-known: For a invertible sheaf L on
XT , the sheaf-theoretic pull-back f ∗L is an invertible sheaf on YT ; the induced map
is f ∗ : Pic(XT ) → Pic(YT ) is a group homomorphism, behaves functorially and
hence gives rise to a natural transformation f ∗ : PicX/k → PicY/k.

Similarly, for any relative e�ective Cartier divisor D ∈ PicX/k(T ), D is given by
a collection of (Ui, ri), where U = (Ui)i is an open covering of XT , and ri ∈ OXT (Ui)
such that

• rj|Ui∩Uj ∈ ri|Ui∩UjOXT (Ui ∩ Uj)× ∀ i, j,

• for all i, ri is regular on Xκ(t) for any t ∈ pr2(Ui) ⊂ T .
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Now we claim that the collection of (f−1(Ui), f
#(ri)) corresponds to a relative

e�ective divisor f ∗D ∈ PicY/k(T ).
In fact, the only fact that is not obvious is that for all i, f#(ri) is regular on

Yκ(t) for every t ∈ pr2(Ui) . But since we assumed X and Y to be geometrically
integral, all Xκ(t), Yκ(t) are integral, so all we have to show the image f#(ri) of
f#(ri) in K(Yκ(t)) is nonzero for any t ∈ pr2(Ui). But this is trivial, since for any
such t, f#(ri) is the image of r̄i under the imbedding K(Xκ(t)) ↪→ K(Yκ(t)), and r̄i
is nonzero, since regular.

Obviously, this gives a natural transformation f ∗ : DivX/k → DivY/k which
preserves linear, algebraic and numerical equivalence; in particular, it is compatible
with the pull-back transformation for Picard functors.

3.1.2 Push-forward

A �nite dominant morphism f : Y → X induces push-forward morphisms f∗ :
DivY/k → DivX/k and f∗ : PicY/k → PicX/k such that the following diagram
commutes:

DivY/k
f∗−−−→ DivX/k

AY/k

y yAX/k

PicY/k
f∗−−−→ PicX/k

In order to verify this, we have to de�ne the push-forward maps on the corresponding
functors. Actually, we will only de�ne the push-forward maps f∗ : DivY/k(T ) →
DivX/k(T ) and f∗ : Pic(YT ) → Pic(XT ) for any T over k; the functoriality and the
commuting of the diagram will be obvious from the de�nition. This will be done in
a way very similar to [EGAII, 6.5.5] and [EGAIV-4, 21.5.3], but since we are using
slighty di�erent conditions, we will include the construction for the convenience of
the reader.

First we need a small lemma:

Lemma 3.1.1. Let A be a normal domain over a �eld k, K its ring of fractions, L
a �nite �eld extension of K and B the normalization of A in L. If R is an arbitrary
k-algebra, then LR := L⊗kR is a �nite free module over KR := K⊗kR; we de�ne a
norm map NLR|KR : LR → KR, λ 7→ det(mλ), where mλ is the endomorphism of the
free KR-module LR given by multiplication with λ and det(mλ) is its determinant.
The restriction of NLR|KR to BR := B⊗k R ⊆ LR maps to AR := A⊗k R ⊂ KR; we
call it NBR|AR. Furthermore, β ∈ BR is regular if and only if NBR|AR(β) is regular
in AR.

Proof. The �rst statements are obvious. To show that the restriction of NLR|KR to
BR maps to AR, let M be the normal closure of L|K and C the normalization of
A in M . Let σ1 = idL, . . . , σr be the distinct embeddings of L|K into M |K, and
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let s = [L : K]i be the inseparable degree of the extension L|K. Then NLR|KR(λ) =
(
∏r

i=1 σiλ)s by [La02, proposition IV.5.6.]1, where we de�ne σi : LR → MR :=
M ⊗k R by σi(

∑
j lj ⊗ rj) =

∑
j(σilj) ⊗ rj. Since C is integrally closed, it follows

that for β ∈ BR, NLR|KR(β) lies in both KR (by construction) and CR := C ⊗k R
(since all σiβ lie in CR), hence NLR|KR(β) ∈ CR ∩KR = AR.

In order to show the regularity statement, it is enough to prove that λ ∈ LR
is regular if and only if NLR|KR(λ) = det(mλ) ∈ KR is regular. For this, we cite
[EGAIV-4, 21.5.2].

Coming back to our situation, we de�ne a map of sheavesNfT ∗OYT |OXT : f∗OYT →
OXT by virtue of the preceding lemma (glueing the local data). It is clear from the
de�nition that this morphism is multiplicative and sends 1f∗OYT to 1OXT , hence gives
a morphism of sheaves of multiplicative groups NfT ∗OYT |OXT : (f∗OYT )× → O×XT .

Given an invertible sheaf M on YT , fT ∗M is locally free over fT ∗OYT of rank
one by [EGAII, 6.1.12], so we can �nd a set of pairs {(Uλ, ηλ)}λ, where U = {Uλ}λ
is an open cover of XT and the ηλ : (fT ∗M)|Uλ

∼→ (fT ∗OYT )|Uλ are isomorphisms.
For arbitrary λ, µ, the automorphism ηλ|Uλ∩Uµ ◦ ηλ|−1

Uλ∩Uµ of (fT ∗OYT )|Uλ∩Uµ can
be canonically identi�ed with an element ωλµ ∈ (fT ∗OYT )(Uλ ∩ Uµ)×, giving a
1-cocycle (ωλµ) of U with values in (fT ∗OYT )×. By the properties of the norm,
(NfT ∗OYT |OXT (ωλµ)) is a 1-cocycle of U with values in O×XT , corresponding (uniquely
up to isomorphism) to an invertible sheaf L =: NYT |XT (M) of XT .

This de�nes a map NYT |XT : Pic(YT ) → Pic(XT ). By looking at the properties
of the norm, one can easily deduce that this actually is a group homomorphism and
that furthermore the projection formulaNYT |XT ((fT )∗L) = L⊗n holds. In particular,
we get a group homomorphism

NY |X(T ) : PicY/k(T )→ PicX/k(T ),

which �nally yields a morphism f∗ := NY |X : PicY/k → PicX/k .
Now consider a relative e�ective Cartier divisor E ∈ DivY/k(T ). Then E is given

by a collection of (Vi, si), where V = (Vi)i is an open covering of YT , si ∈ OYT (Vi),
such that the following properties hold:

• sj|Vi∩Vj ∈ si|Vi∩VjOYT (Vi ∩ Vj)× for every i, j,

• for all i, si is regular on Yκ(t) for any t ∈ pr2(Ui) ⊂ T .

Since f is a�ne, we can assume the Vi to be of the form Vi = f−1
T (Ui), where

U = (Ui)i is an open covering of XT ; this allows us to consider si as an element
of (fT ∗OYT )(Ui). Thus we can de�ne ri := NfT ∗OYT |OXT (si) ∈ OXT (Ui) ∀ i. The
multiplicativity of the norm immediately implies rj|Ui∩Uj ∈ ri|Ui∩UjOXT (Ui ∩ Uj)×
for all i, j, and by the last part of the lemma above, ri is regular on Yκ(t) for any

1The cited proposition only claims it in the case where R = k, but the proof carries over to

general R.
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i and any t ∈ pr2(Ui). Therefore, the collection (Ui, ri) de�nes a relative e�ective
divisor, which we will denote by f∗E.

So to every E ∈ DivY/k(T ), we can assign a D := f∗E ∈ DivX/k(T ); from the
properties of the norm map one can easily deduce that this assignment is well-
de�ned, gives a homomorphism of monoids and is functorial. We therefore get a
morphism

f∗ : DivY/k → DivX/k .

The push-forward map f∗ on divisors preserves linear, algebraic and numerical
equivalence, in particular, the diagram in the beginning of this subsection commutes.

Remark 3.1.2. For a �nite dominant morphism f : Y → X of normal varieties over
a �eld k, one can de�ne a push-forward map f∗ : Z1(Y )→ Z1(X) on Weil divisors
by setting f∗W := [k(W ) : k(f(W ))]f(W ) for a Weil prime divisor W on Y and
extending linearly ([Fu98, section 1.4]). It is easy to see that the restriction of this
map to the Cartier divisors on Y is just the map de�ned above.

3.1.3 Properties

As mentioned earlier, we have NYT |XT ((fT )∗L) = L⊗n for any L ∈ PicX/k(T ), where
n = deg f . Similarly, we obviously have f∗(f ∗D) = nD for any D ∈ DivX/k(T ).
Therefore, the maps f∗ ◦ f∗ : PicX/k → PicX/k and f∗ ◦ f∗ : DivX/k → DivX/k are
just the nth power maps on these monoid schemes.

The composition f ∗ ◦ f∗ : DivY/k → DivY/k is a little more complicated. If
f : Y → X is a Galois cover with Galois group G, then G also acts on DivY/k per
natural transformations, and (f ∗ ◦ f∗)(E) =

∑
σ∈G σE for E ∈ DivY/k(T ), as can

be derived from the proof of lemma 3.1.1. In the general case, we can still derive
that (f ∗ ◦ f∗)(E)− E ∈ DivY/k(T ), i.e. is e�ective.

Proposition 3.1.3. The morphism f∗ : DivY/k → DivX/k is proper in the local
sense: For any open subscheme V of DivX/k having only �nitely many connected
components, the restricted map f−1

∗ V→ V is proper.

Proof. We can assume k to be algebraically closed. It will be enough to consider
the case V = Div

[D]num
X/k of DivX/k; then f−1

∗ (V) is the disjoint union of Div
[E]num
Y/k

for all classes [E]num which map to [D]num under f∗. But this union is only a �nite
union: Using the notation of corollary 2.4.2, [E]num ≤ [f ∗D]num for every such
[E]num, and there are only �nitely many such classes. Now using the fact that all
these Div

[E]num
Y/k are of �nite type over k, we immediately get that the map is of

�nite type.
All that is left to show is that for [E]num ∈ N1(Y ), [D]num ∈ N1(X) with

f∗[E]num = [D]num, the restricted morphism f∗ : Div
[E]num
Y/k → Div

[D]num
X/k is proper.

But both the domain and the target are proper over k, so this follows from [Ha77,
II.4.8 (e)].
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3.2 More de�nitions and notations

3.2.1 Galois closure for separable covers

The only purpose of this short section is to describe a context and �x a notation
that will be used at several parts of this thesis.

Let f : Y → X be a separable cover of normal varieties over k. Let L|k(X) be
the Galois closure of k(Y )|k(X), and let Z be the normalization of X in L. Set
G = Gal(L|k(X), then G acts on Z, and Z/G ∼= X. Similarly, for H = Gal(L|k(Y )
we have Z/H ∼= Y . De�ne g : Z → X and h : Z → Y to be the corresponding
quotient morphisms.

3.2.2 Split and c-split divisors

Assume f : Y → X is a �nite cover of normal geometrically integral projective
varieties over a �eld k.

De�nition 3.2.1. Let D be a relative e�ective Cartier divisor on XT/T .

1. We say that D is c-split if there exists a relative e�ective Cartier divisor E
on YT/T such that D = f∗E. If there are n = deg(f) di�erent such Ei and
E1 + . . .+ En = f ∗D, we say D is completely c-split.

2. If T is the spectrum of a �eld, we say that D is split if there is an e�ective
Weil divisor EW on YT such that f∗EW is the Weil divisor associated to D.
Analogously, de�ne completely split divisors.

Remark 3.2.2. a) If D splits, D is a prime divisor if and only if EW is a Weil prime
divisor and k(EW ) = k(D). In this case, the notion of complete splitting above
coincides with the usual notion of complete splitting in Hilbert decomposition
theory.

b) In this context, assume E is a Cartier prime divisor on Y that does not lie in
the branch locus. Then f : Y → X factors through a unique intermediate cover

Y
f ′′−→ Y ′

f ′−→ X such that for E ′W = f ′′(E), we have f ′′∗E = deg(f ′′)E ′W and
f ′∗E

′
W = f(E) � in other words, such that [k(Y ) : k(Y ′)] = [k(E) : k(f ′′(E))] =

[k(E) : k(f(E))].

This is trivial if k(Y )|k(X) is inseparable, since then it is rami�ed everywhere.
So we can assume that k(Y )|k(X) is separable. Using the notation of section
3.2.1, choose a Weil prime divisor FW on ZT such that h(FW ) = E and set
Y ′ = Z/H ′ with H ′ = HGFW . Then Y → X factors through Y ′, and we have

[k(E) : k(f ′′(E))] = [(GFW ∩H ′) : (GFW ∩H)] = [HGFW : H] = [k(Y ) : k(Y ′)]

and [k(E) : k(f(E))] = [(GFW∩G) : (GFW∩H)] = [HGFW : H] = [k(Y ) : k(Y ′)].
The uniqueness is clear from the construction.

15



c) Still in the same context, assume E is a Cartier prime divisor on Y outside
branch locus such that f∗E = deg(f) · f(E), or in other words, such that [k(E) :
k(f(E))] = [k(Y ) : k(X)]. Again, construct the `Galois closure' Z → X as in
section 3.2.1, using the same notation. Then h∗E is G-invariant.

Indeed, if we split h∗E = FW,1 + . . . + FW,r into a sum of distinct Weil prime
divisors FW,i, i = 1, . . . , r, then necessarily g(FW.i) = f(E) ∀ i, so all FW,i are
conjugated under G. On the other hand, the above condition on E implies that
[G : H] = deg(f) = [GFW,1 : HFW,1 ] = [GFW,1 : GFW,1 ∩ H] = [HGFW,1 : H], so
HGFW,1 = G. Therefore, the number of di�erent conjugates of FW,1 under G is
[G : GFW,1 ] = [H : HFW,1 ] = r. Thus, the action of G just permutes the FW,i,
hence �xes h∗E.

Proposition/De�nition 3.2.3. Let D be a Cartier divisor on X. De�ne a sub-
functor S̃cD/(Y→X)/k of LinSysD/X/k by

S̃cD/(Y→X)/k(T ) :=
{
D′ ∈ LinSysD/X/k(T )|D′ is c-split in YT

}
.

S̃cD/(Y→X)/k is representable by the closed subscheme

S̃cD,Y = S̃cD/(Y→X)/k := LD/X/k ∩ f∗DivY/k

of LD. (We will use the simpler notation unless there is a possible ambiguity about
what the base scheme might be.) We denote its (�nite) dimension by s̃Yc (D) =
s̃c(D).

We can �nd an easy upper bound for s̃c(D):

Lemma 3.2.4. s̃c(D) ≤ max{dim Div
[E]num
Y/k | f∗[E]num = [D]num}.

Proof. This is clear, since S̃cD,Y lies in the image of
⋃
f∗[E]num=[D]num

Div
[E]num
Y/k under

f∗.

3.3 Behavior of volume in �nite covers

Let k be a �eld, X be a projective variety over k of dimension d, D be a Cartier
divisor on X. Then the following generalization of the one-dimensional Riemann-
Roch theorem holds:

Proposition 3.3.1 (asymptotic Riemann-Roch).

a) We have h0(X,mD) = O(md), or more generally h0(X,F(mD)) = O(md) for
any coherent sheaf F on X.
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b) If D is nef, we have

h0(X,mD) =

∫
X
Dd

d!
·md +O(md−1).

Proof. [De01, 1.31]

This proposition suggests the following

De�nition 3.3.2. For any Cartier divisor D on X, we de�ne its volume to be

vol(D) = volX(D) = lim sup
m→∞

h0(X,mD)

md/d!
.

Proposition 3.3.3. a) For every nef divisor D, we have vol(D) =
∫
X
Dd.

b) For a ∈ N, we have vol(aD) = ad vol(D).

c) A Cartier divisor D is big if and only if vol(D) > 0.

d) The volume increases in e�ective directions, i.e. if D,E ∈ Div(X) and E is
e�ective, then vol(D + E) ≥ vol(D).

Part b) of the last proposition allows one to extend the notion of the volume
in a unique way to Q-Cartier divisors, so that all these properties still hold on the
Div(X)Q.

Proposition 3.3.4. Let D be a big divisor on X. Then for all integers m� 0, the
map Div

[mD]num
X/k → Pic

[mD]num
X/k is surjective.

Proof. Without loss of generality , we can assume k to algebraically closed. It is
enough to prove that for m� 0, we have

h0(X,mD +N) > 0 ∀ N ≡ 0.

Actually, if we prove this for one divisor D, we prove it for every divisor of the
form D + E, where E is an e�ective divisor. Therefore, we can restrict ourselves
to only consider ample divisors D. In this case, on the one hand we have Fujita's
vanishing theorem [La04a, 1.4.35, 1.4.36], which tells us that there is an m(D) such
that for all m > m(D), hi(X,mD + N) > 0 ∀ N ≡ 0, i > 0, and on the other
hand χ(mD + N) = χ(mD) for any numerically trivial N . Taking these two facts
together, we get for m > m(D):

h0(X,mD +N) = χ(X,mD +N) = χ(X,mD) = h0(X,mD),

from which the assertion follows by the ampleness of D.
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Corollary 3.3.5. The volume only depends on the numerical equivalence class.

Proof. Let D, D′ be two numerically equivalent divisors. If D is not big, so is D′,
and both vol(D) and vol(D′) are 0 by part c) of proposition 3.3.3. Hence, we can
assume that D (and hence also D′) is big. By proposition 3.3.3 b), it is enough
to prove vol(aD) = vol(aD′) for some positive integer a. Replacing D and D′ by
aD and aD′ if necessary, we can assume that h0(X,D + N) > 0 for any N ≡ 0
by proposition 3.3.4. In particular, this is true for N = m(D′ −D), m ∈ N. Thus
h0(X,mD′)) = h0(X, (m− 1)D + (D +m(D′ −D))) ≥ h0(X, (m− 1)D). Dividing
by md

d!
and taking the limes superior on both sides then yields vol(D′) ≥ vol(D).

By symmetry, we also have vol(D) ≥ vol(D′), so we get the desired equality.

Now we investigate the behavior of volume in �nite covers.

Lemma 3.3.6. Let f : Y → X be a proper, dominant, generically �nite morphism
of projective varieties over k. For any D ∈ Div(X), we have

volY (f ∗D) = deg(f) volX(D).

Proof. By the projection formula,

H0(Y,OY (mf ∗D)) = H0(X, f∗(OY (mf ∗D))) ∼= H0(X, (f∗OY )(mD)),

so we restrict our attention to f∗OY . There is an open dense subset U of X such
that f∗OY is free of rank n = deg(f), so (f∗OY )|U ' OnU . This isomorphism gives
an injection f∗OY ↪→ KnX , where KX is the sheaf of total quotients rings of OX . Let
G = f∗OY ∩ OnX and de�ne G1 and G2 by the exact sequences of sheaves

0→ G → f∗OY → G1 → 0,

0→ G → OnX → G2 → 0.

The supports of G1 and G2 do not meet U , hence have dimension less than d. Using
proposition 3.3.1 a) and the long exact sequence of cohomology, this implies

h0(Y,OY (mf ∗D)) = h0(X, (f∗OY )(mD)) = h0(X,OnX(mD)) +O(md−1)

= n · h0(X,OX(mD)) +O(md−1),

from which the assertion follows.

Proposition 3.3.7 (log-concavity of the volume). If D,D′ are big divisors on X,
then

vol(D)
1
d + vol(D′)

1
d ≤ vol(D +D′)

1
d .
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Proof. The proof is the same as the one in [La04b, 11.4.9], but we include it for
completeness, since there it is only claimed in characteristic zero.

For ample divisors D1, . . . , Dd, we have the generalized inequality of Hodge type(∫
X

D1 · · ·Dd

)d
≥
(∫

X

Dd
1

)
· · ·
(∫

X

Dd
d

)
,

which follows easily from the 2-dimensional Hodge inequality ([La04a, 1.6.1, 1.6.5]).
If D and D′ are ample divisors, this implies in particular(

vol(D)
1
d + vol(D′)

1
d

)d
=
[(∫

X

Dd
) 1
d

+
(∫

X

D′d
) 1
d
]d

=
d∑
j=0

(
d

j

)(∫
X

Dd
) j
d
(∫

X

D′d
) d−j

d

≤
d∑
j=0

(
d

j

)(∫
X

Dj ·D′d−j
)

=

∫
X

(D +D′)d = vol(D +D′),

so the assertion holds in the case of ample divisors and, for that matter, also for
ample Q-divisors. In the general case, we use Fujita's approximation theorem,
originally proven in the characteristic zero case in [Fuj94] and extended to any
characteristic in [Ta07]:

Given any big divisor D on X and every ε > 0, there exists a modi�cation
µ : X ′ → X and a decomposition π∗D = A+ E in Div(X ′)Q, where A is an ample
Q-divisor and E is an e�ective Q-divisor, such that volX′(A) > volX(D)− ε.

Now in our situation, we �x ε > 0 and construct a simultaneous Fujita approx-
imation

µ : X ′ → X, µ∗D = A+ E, µ∗D′ = A′ + E ′,

with volX′(A)
1
d > volX(D)

1
d − ε

2
and volX′(A

′)
1
d > volX(D′)

1
d − ε

2
. Then since

µ∗(D +D′)− (A+ A′) is e�ective, we have

volX(D +D′)
1
d = volX′(µ

∗(D +D′))
1
d

≥ volX′(A+ A′)
1
d

≥ volX′(A)
1
d + volX′(A

′)
1
d

≥ volX(D)
1
d + volX(D′)

1
d − ε.

As ε↘ 0, the proposition follows.

Proposition 3.3.8. Let k be a �eld, f : Y → X be a �nite, dominant morphism of
normal projective varieties over k of dimension d, and let E ∈ Div(Y ), D ∈ Div(X)
such that f∗E = D. Then

volY (E) ≤ 1

deg(f)d−1
volX(D).
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Proof. If k(Y )|k(X) is separable, use the notation of section 3.2.1. Then we have∑
σ̄∈G/H

σh∗E = g∗D ∈ Div(Z),

since both divisors are G-invariant and have the same image under g∗ = f∗h∗:

g∗
∑

σ̄∈G/H
σh∗E = (G : H) · g∗h∗E = (G : H) · f∗h∗h∗E

= (G : H) · ord(H) · f∗E
= ord(G) ·D = g∗g

∗D

(here we use the fact that Div(X)Q = (Div(Z)Q)G, compare e.g. with [Fu98, 1.7.6]).
We obviously have volZ(h∗E) = volZ(σh∗E) ∀ σ ∈ G, so by propositions 3.3.6 and
3.3.7 we get

(ord(G) volX(D))
1
d = volZ(g∗D)

1
d = volZ

( ∑
σ̄∈G/H

σh∗E
) 1
d

≥
∑

σ̄∈G/H

volZ

(
σh∗E

) 1
d

= (G : H) volZ(h∗E)
1
d

= (G : H) · (ord(H) volY (E))
1
d

Taking dth powers yields volX(D) ≥ (G : H)d−1 volY (E) = (deg f)d−1 volY (E).
In the case that k(Y )|k(X) is purely inseparable, the norm Nk(Y )|k(X) just raises

every element of k(Y ) to the qth power, where q = deg(f); therefore

volX(D) =
1

deg(f)
volY (f ∗f∗E) =

1

deg(f)
volY (qE) =

qd

deg(f)
volY (E)

= (deg f)d−1 volY (E).

In the general case, we can split f : Y → X into �nite covers Y → X ′ →
X, where X ′ is a normal projective variety, k(Y )|k(X ′) is purely inseparable and
k(X ′)|k(X) is separable. The assertion then follows by composition.

Actually, in the following we will need a seemingly stronger, but in fact equivalent
result. For this, let us �rst �x some

Notation. Let D ∈ Div(X) be any Cartier divisor that is not numerically trivial.
We de�ne

DivD(Y ) = {E ∈ Div(Y )|f∗E ∼ mD for some m ∈ Z} ⊂ Div(Y ),

ΛD = N1
D(Y ) = {η ∈ N1(Y )|f∗η ∈ Z · [D]num} ⊂ N1(Y ).
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N1
D(Y )R is a subspace of N1(Y )R, containing ΛD as a complete lattice.
For E ∈ DivD(Y ), de�ne its degree deg(E) ∈ Z by f∗E =: deg(E)D. This

induces maps deg : N1
D(Y ) → Z and deg : N1

D(Y )R → R. Let HD be the a�ne
hyperplane {η ∈ N1

D(Y )R| deg η = 1} in N1
D(Y )R. Then the intersection of HD with

the pseudoe�ective cone Eff(Y ) in N1(Y )R is compact, since it is a closed subset of
the set {η ∈ Eff(Y )|f ∗[D]num − η ∈ Eff(Y )}, which is compact by lemma 2.4.1.

Proposition 3.3.9. In the context of proposition 3.3.8, let D ∈ Div(X) be a big
divisor. Then

lim sup
m→∞

max{h0(Y,E)|E ∈ Div(Y ), f∗E ≡ mD}
md/d!

≤ 1

deg(f)d−1
vol(D).

Proof. Set C := 1
deg(f)d−1 vol(D). Assume there exist an ε > 0 and divisors Ei on Y

with [Ei]num ∈ N1
D(Y ) of degree mi, mi →∞, such that

h0(Y,Ei)

md
i /d!

≥ C(1 + ε) ∀ i.

Since P = HD∩Eff(Y ) is compact, after changing to a subsequence, we can assume
that the ηi = 1

mi
[Ei]num converge in P . In fact, after replacing ε by a smaller

positive number ε′ and the Ei by E ′i = Ei + bmi
n
αcf ∗D with 1 < 1 + α < d

√
1+ε
1+ε′

,

we can even assume that the ηi converge to a point in the interior of P , i.e. to a
big class η ∈ HD. We will show that in a small neighborhood of η, every rational
divisor class has volume greater than given by lemma 3.3.8.

To achieve this, choose big rational divisors classes β0, . . . , βs ∈ HD such that
the βi form a basis of N1

D(X) and η lies in the interior of the simplex Sβ ⊂ HD with
vertices βi. There exists an l � 0 such that for every i = 0, . . . , s, lβi ∈ ΛD and
every linear equivalence class mapping to lβi is e�ective (see 3.3.4). Let ΛB denote
the sublattice of ΛD generated by the lβi ∈ ΛD; since the βi form a basis of N1

D(Y ),
there is a positive integer L such that LΛD ⊆ ΛB.

After changing to a subsequence, we can assume that all ηi lie inside Sβ and all
[Ei]num = miηi ∈ ΛD have the same coset class in ΛD/ΛB. Write ηi =

∑s
j=0 µijβj

with µij > 0 and
∑s

j=0 µij = 1 ∀ i. For δ > 0 small enough, choose a big divisor

Ẽ ∈ DivD(Y ) of degree m̃ such that [Ẽ]num has the same class in ΛD/ΛB as the
[Ei]num and such that for 1

m̃
[Ẽ]num = η̃ =

∑s
j=0 µ̃jβj, one has |µij − µ̃j| < δ2 for all

j and all i� 0, |µ̃j| ≥ δ for all j (in fact, one can choose Ẽ to be one of the Ei for
i big enough).

For a �xed i, we look for a pi such that

E ′i = (1 + piL)Ẽ − Ei =
s∑
j=0

((1 + piL) m̃µ̃j −miµij)βj
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is linearly equivalent to an e�ective divisor. First of all, since [E ′i]num ∈ ΛB, we have
(1 + piL) m̃µ̃j −miµij ∈ Zl ∀ j. For any n0, . . . , ns ∈ N with at least one nj > 0,
any linear equivalence class mapping to

∑s
j=0 njlβj contains an e�ective divisor by

our condition on l, so a su�cient condition on pi is

(1 + piL) m̃µ̃j −miµij > 0 ∀ j

Since miµij
m̃µ̃j

< mi
m̃

(1 + δ2

µ̃j
) ≤ mi

m̃
(1 + δ), this is ful�lled for any pi ∈ N such that

1 + piL ≥ mi
m̃

(1 + δ). If we take pi to be the smallest such integer, then we have
1 + piL <

mi
m̃

(1 + δ) + L < mi
m̃

(1 + 2δ) for i� 0.
Because (1 + piL)Ẽ − Ei is linear equivalent to an e�ective divisor, we have

h0(Y, (1 + piL)Ẽ) ≥ h0(Y,Ei) > C(1 + ε)
md
i

d!
> C

1 + ε

(1 + 2δ)d
m̃d

d!
(1 + piL)d

for i � 0. As i → ∞, we get vol(Ẽ) ≥ C 1+ε
(1+2δ)d

m̃d > Cm̃d for δ small enough, in
contradiction to proposition 3.3.8 (and 3.3.3 b)).

Corollary 3.3.10. In the above context, let D be a big divisor and D′ be an e�ective
divisor on X. Then

lim sup
m→∞

max{h0(Y,E)|E ∈ Div(Y ), f∗E ≡ mD +D′}
md/d!

≤ 1

deg(f)d−1
vol(D).

Proof. Set h(D̃) := max{h0(Y,E)|E ∈ Div(Y ), f∗E ≡ D̃} and let n := deg(f).
Since f∗f ∗D̃′ = nD̃′ for any divisor D̃′ on X, we have h(D̃) ≤ h(D̃+nD̃′) for every
e�ective divisor D̃′.

Fix an integer l ∈ {0, . . . , n − 1}. For our assertion, it will be enough to prove
that for any choice of l, we have

lim sup
m→∞,m≡lmod n

h(mD +D′)

md/d!
≤ 1

nd−1
vol(D).

Now �x a big integer m0 ≡ l mod n. For all m ≥ m0, m ≡ l mod n, we can �nd
am ∈ N, bm ∈ {0, 1, . . . ,m0 − 1}, such that m −m0 = (amm0 − bm)n or, in other
words, m+ bmn = (1 + amn)m0. By our observation above, we have

h(mD +D′) ≤ h
(
(m+ bmn)D + (1 + amn)D′

)
= h

(
(1 + amn)(m0D +D′)

)
.
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Thus

lim sup
m→∞,m≡lmod n

h(mD +D′)

md/d!
≤ lim sup

m→∞,m≡lmod n

h
(
(1 + amn)(m0D +D′)

)
md/d!

=
1

md
0

· lim sup
m→∞,m≡lmod n

h
(
(1 + amn)(m0D +D′)

)
(1 + amn)d/d!

≤ 1

md
0

· lim sup
m̃→∞

h
(
m̃(m0D +D′)

)
m̃d/d!

≤ 1

md
0n

d−1
vol (m0D +D′) by proposition 3.3.9

=
1

nd−1
vol
(
D +

1

m0

D′
)
.

As m0 →∞, we get the desired inequality by the continuity of the volume ([La04a,
2.2.25]).

Corollary 3.3.11. In the above context, let D be a big divisor and D′ be an e�ective
divisor on X. For the dimension s̃c(mD +D′) of the scheme S̃cmD+D′,Y de�ned in
section 3.2.2, we have

lim sup
m→∞

s̃c(mD +D′)

md/d!
≤ 1

deg(f)d−1
vol(D).

Proof. We can assume k to be algebraically closed. By lemma 3.2.4, we have

s̃c(mD +D′) ≤ max{dim Div
[E]num
Y/k | f∗E ≡ mD +D′}.

So we have to give upper bounds for the dimension of the Div
[E]num
Y/k . For �xed E,

consider the Abel map W := Div
[E]num
Y/k → Pic

[E]num
Y/k =: V . Then by [EGAIV-2,

5.6.7], we have
dimW ≤ dimV + max

v∈V
{dimWv}.

Because of the upper semicontinuity of the dimension of the �ber ([EGAIV-3,
13.1.5]), it is actually enough to take the maximum only over the closed points
of V . But the closed points correspond to invertible sheaves L that are numerically
equivalent to L(E), and the corresponding �bers VL are just the schemes LL/X/k
(see section 2.2), hence have dimension h0(X,L)− 1. Therefore

dim Div
[E]num
Y/k ≤ dim PicτY/k−1 + max

E′≡E
{h0(X,E ′)}

and

s̃c(mD +D′) ≤ dim PicτY/k−1 + max{h0(Y,E)|E ∈ Div(Y ), f∗E ≡ mD +D′}.

Now the claim follows directly from the last corollary.
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3.4 The scheme representing geometrically integral

Cartier divisors

To a point z ∈ DivX/k, we can associate an e�ective Cartier divisor D(z) of Xk(z)

which corresponds to the unique map Spec k(z) → DivX/k with image {z}. Con-
sider the set

U = {z ∈ DivX/k |D(z) is geometrically integral}.

Proposition/De�nition 3.4.1. The set U is an open subset of DivX/k. We de�ne
GIDivX/k to be the open subscheme of DivX/k corresponding to U ; it represents
the functor GIDivX/k de�ned by

GIDivX/k(T ) = {D ∈ DivX/k(T )|Dt geometrically integral ∀ t ∈ T}.

Proof. Let D be a relative e�ective divisor on XT/T , ϕ : T → DivX/k be the
corresponding morphism. Then we claim

ϕ−1(U) = {t ∈ T |Dt is geometrically integral }. (3.4.1)

In fact, Dt corresponds to the morphism Spec k(t)→ DivX/k given by the compo-
sition of the natural morphism Spec k(t)→ T and ϕ, so by the de�nition of U , Dt

is geometrically integral if and only if ϕ(t) ∈ U .
Now D is proper and �at over T , so by [EGAIV-3, 12.2.4 (vii)] the set of all

t ∈ T for which Dt is geometrically integral is open in T , i.e. ϕ−1(U) is an open
subset of T . For T = DivX/k, ϕ = idDivX/k , this shows that U is open.

If we switch back to arbitrary T again, (3.4.1) implies that D ∈ GIDivX/k(T ) if
and only if ϕ(T ) ⊆ U , proving the last assertion.

Remark 3.4.2. IfK is any algebraically closed �eld extension of k, then GIDivX/k(K)
is just the set of Cartier divisors on XK that correspond to a Weil prime divisor,
or in other words, the set of locally principal Weil prime divisors on XK .

De�nition 3.4.3. For a given Cartier divisor D on X, we de�ne PD and ScD,Y to
be the scheme-theoretic intersections

PD = PD/X/k = LD/X/k ∩GIDivX/k

ScD,Y = ScD/(Y→X)/k = S̃cD/(Y→X)/k ∩GIDivX/k

Let sYc (D) = sc(D) and p(D) denote the dimensions of ScD,Y and PD, respectively.

PD represents the geometrically integral divisors that are linearly equivalent to
D, whereas ScD,Y represents those which addditionally are c-split in Y .

Since PD is an open subscheme of LD, its dimension is h0(X,D)− 1 unless it is
empty. Of course, we are looking for nontrivial cases; by the following proposition,
some are given by very ample divisors:
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Proposition 3.4.4 (Bertini's theorem). Assume dimX > 1. Let D be a very ample
Cartier divisor on X. Then PD is nonempty.

Proof. It is enough to prove that PD(k̄) is nonempty. But this corresponds to the
set of integral divisors in the linear system |Dk̄|. By Bertini's theorem, the generic
member of |Dk̄| is irreducible ([Fl99, 3.4.10]) and reduced ([Fl99, 3.4.14]), hence
integral.

By proposition 3.3.1, we have

Corollary 3.4.5. Assume dimX ≥ 2, and let D be a (very) ample divisor and D′

be an arbitrary divisor on X. Then

p(mD +D′) =

∫
X
Dd

d!
·md +O(md−1).

3.5 Decomposition of divisors in branched covers

In this section, assume k is a �eld of characteristic zero. Let f : Y → X be a
�nite (branched) cover of normal geometrically integral projective varieties over k;
assume that dimY = dimX =: d ≥ 2.

Proposition/De�nition 3.5.1. Let D be a big Cartier divisor on X. Then there
exists a (possibly reducible) closed subvariety SD,Y of PD such that for every �eld
extension K/k, SD,Y (K) is the set of all geometrically integral divisors on XK that
are linearly equivalent to DK and split in YK . Denote the dimension of SD,Y by
sY (D) = s(D). Then

lim sup
m→∞

s(mD)

md/d!
≤ 1

deg(f)d−1
vol(D).

Proof. Since all divisors considered here are geometrically integral, we can base
change to the algebraic closure of k without changing the statement. So assume
that k is algebraically closed.

If Y (and hence every YK) is nonsingular, the notions of Weil and Cartier divi-
sors coincide, so SD,Y = ScD,Y and the statement follows from proposition 3.3.11.
Otherwise, let ν : Y ′ → Y be a resolution of singularities, and let X ′ the pushout
of Spec k(X) ← Spec k(Y ) ↪→ Y ′.2 The morphism f ◦ ν : Y ′ → X factors through
X ′, giving a commutative diagram

Y ′
ν−−−→ Y

f ′

y yf
X ′

µ−−−→ X
2Locally, X ′ is glued from a�ne open subschemes Spec(Bi ∩k(X)), where the SpecBi form an

open a�ne cover of Y .
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with a �nite cover f ′ : Y ′ → X ′ and a modi�cation µ : X ′ → X. X ′ is Q-factorial:
For every Weil divisor D′ on X ′, nD′ is Cartier, where n = deg(f). To see this, we
can assume D′ to be a Weil prime divisor. Then there exists a Weil prime divisor
E ′ on Y ′ lying over D′ (i.e., f ′(E ′) = D′), and f ′∗E

′ = [K(E ′) : K(D′)]D′. Since E ′

is Cartier and [K(E ′) : K(D′)]|n, so is nD′.
Now if a prime Cartier divisor D̃ ∈ Div(XK) splits in YK , then its strict trans-

form splits in Y ′K ; but unfortunately, strict transforms do not preserve linear equiv-
alence, so we have to deal with the pullback µ∗D̃ instead, which equals the strict
transform plus some exceptional divisor. Though µ∗D̃ does not have to split in Y ′K ,
we can say the following: Let D′1, . . . , D

′
r be the exceptional Weil prime divisors of

X ′ → X, and let N = {(ni)i ∈ {0, . . . , n−1}r|
∑r

i=1 niD
′
i is Cartier}. Then for any

D̃ ∈ Div(XK), there exists an (ni)i ∈ N such that µ∗D̃ +
∑r

i=1 ni(D
′
i)K is the sum

of the strict transform of D̃ and the n-fold of a Weil divisor on X ′K with support in
the exceptional locus of X ′K → XK , and by what we said above, D̃ splits in YK if
and only if this µ∗D̃ +

∑r
i=1 ni(D

′
i)K splits in Y ′K (although this divisor will not be

prime any more in general, even if all ni are zero).
Let S(ni) ⊂ PD/X/k denote the preimage of S̃c(µ∗D+

Pr
i=1 niD

′
i)/(Y

′→X′)/k under the
map

PD/X/k ↪→ LD/X/k
µ∗→ Lµ∗D/X′/k

+
Pr
i=1 niD

′
i−−−−−−→ L(µ∗D+

Pr
i=1 niD

′
i)/X

′/k,

and set SD,Y =
⋃

(ni)∈N S(ni). Then SD,Y is a closed subset of PD/X/k, and if we
give it the reduced closed subscheme structure, then we just proved that for any
K|k, SD,Y (K) gives the set of all D′ ∈ PD(K) which split in YK .

Furthermore, we get an upper bound on s(D), namely

s(D) ≤ max
(ni)∈N

s̃c
(
µ∗D +

r∑
i=1

niD
′
i

)
.

Therefore, we get

lim sup
m→∞

s(mD)

md/d!
≤ max

(ni)∈N
lim sup
m→∞

s̃c
(
mµ∗D +

∑r
i=1 niD

′
i

)
md/d!

≤ 1

nd−1
vol(µ∗D)

by corollary 3.3.11. Since vol(µ∗D) = vol(D) by birational invariance of the volume
(lemma 3.3.6), we are done.

Having upper asymptotics for the behavior of s(mD), we now show that they
are also the lower asymptotics:

Lemma 3.5.2. Let D be an ample Cartier divisor on X such that s̃c(D) ≥ 0. Then

lim inf
m→∞

sc(mD)

md/d!
≥ 1

deg(f)d−1
vol(D).

26



Proof. We can assume k to be algebraically closed. Set n := deg(f). Since s̃c(D) ≥
0, there is an e�ective Cartier divisor E1 on Y such that f∗E1 ∼ D.

De�ne am ∈ N, bm ∈ {0, 1, . . . , n − 1} by m = amn + bm. Then the divisor
Em := amf

∗D + bmE1 has the property that f∗Em ∼ mD, and for m � 0, Em is
very ample. Set

Um = PEm/Y/k ∩ f∗
−1(PmD/X/k) ⊆ PEm/Y/k.

It is clear that Um is an open subscheme of PEm/Y/k; we claim that it is also dense.
Assuming this for the moment, corollary 3.4.5 implies

lim
m→∞

dim Um

md/d!
=

1

nd
vol(f ∗D),

On the other hand, by remark 3.2.2, the image of Um under the �nite morphism

f∗ : LEm/Y/k → LmD/X/k

lands in ScmD/(Y→X)/k , so sc(mD) ≥ dim Um, which proves

lim inf
m→∞

sc(mD)

md/d!
≥ 1

nd
volY (f ∗D) =

1

nd−1
volX(D)

by lemma 3.3.6.
So all that is left to show is that Um is dense in PEm/Y/k � in other words, that

Um is nonempty. To do this, assume the converse, i.e. f∗(PEm/Y/k) ∩PmD/X/k = ∅.
For the moment, also assume that Y → X has no proper intermediate covers
Y → Y ′ → X. Then our assumption implies by remark 3.2.2 b) that for every
E ′ ∈ PEm/Y/k(k), we have f∗E ′ = deg(f) · f(E ′); if we construct the Galois closure
Z → X of Y → X as in section 3.2.1, then h∗E ′ is G-invariant by remark 3.2.2 c).
So the proper morphism h∗ : DivY/k → DivZ/k maps PEm/Y/k into the subscheme
of G-invariant points of DivZ/k; since this subscheme is closed, it actually contains
the image of LEm/Y/k. Thus the di�erence of any two divisors in |Em| is div(f) for
some f ∈ K(Z)G = K(X), and since the set of all those f generates K(Y ) (because
Em is ample), we get K(Y ) = K(X), hence Y = X and f = idX , which gives a
contradiction to the assumption f∗(PEm/Y/k) ∩PmD/X/k = ∅.

In the more general case, we get f ′′∗ (PEm/Y/k) ∩ Pf ′′∗ Em/Y
′/k 6= ∅ for every inter-

mediate cover Y
f ′′−→ Y ′

f ′−→ X such that Y → Y ′ has no proper intermediate covers.
This implies that

Vm = PEm/Y/k ∩
⋂

Y
f ′′−→Y ′

f ′−→X

f ′′∗
−1

(Pf ′′∗ Em/Y
′/k)

is dense in PEm/Y/k, where Y
′ runs through the intermediate covers mentioned

before; using remark 3.2.2 b) again, we can see that Vm = Um, which �nishes the
proof.
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Proposition 3.5.3. Let D be an ample Cartier divisor on X such that s̃c(D) ≥ 0.
Then

lim
m→∞

s(mD)

md/d!
= lim

m→∞

sc(mD)

md/d!
= lim

m→∞

s̃c(mD)

md/d!
=

1

deg(f)d−1
vol(D).

Proof. This follows immediately from corollary 3.3.11, proposition 3.5.1, lemma
3.5.2 and the fact that sc(mD) ≤ min(s(mD), s̃c(mD)).

Proposition 3.5.4. Let D be an ample Cartier divisor on X with sc(D) ≥ 0. Then
dc(mD) := sc(mD)

p(mD)
and d(mD) := s(mD)

p(mD)
converge as m approaches ∞, and

lim
m→∞

dc(mD) = lim
m→∞

d(mD) =
1

deg(f)d−1
.

Proof. This follows directly from corollary 3.4.5 and proposition 3.5.3.

Remark 3.5.5. In the last proposition (and the ones before that), we can drop the
condition sc(D) ≥ 0 if we rephrase our assertion. Given any ample Cartier divisor
D on X, nD c-splits in Y , where n = deg(f); proposition 3.5.1 and lemma 3.5.2
prove that in this case,

lim sup
m→∞

d(mD) = lim
m→∞

d(mnD) =
1

deg(f)d−1
,

with analogous statements for dc.

3.6 A Chebotarev density theorem for divisors

Assume that Z → X is a �nite (branched) Galois cover with Galois group G of
varieties of dimension d ≥ 2 over a �eld k of characteristic zero. Let us recall the
notion of a decomposition group: For a point z ∈ Z, the decomposition group of
z is just the stabilizer Gz = {σ ∈ G|σz = z} of z. To de�ne the decomposition
class Cx of a point x ∈ X, choose a point z ∈ Z lying over x and let Cx be Gz

modulo conjugation (so Cx is a conjugacy class of subgroups of G instead of an
actual subgroup).

Theorem 3.6.1. Given a conjugacy class C of subgroups of G and an ample divisor
D on X, there exist a subvariety DCD of PD representing the normal, geometrically
integral divisors that are linearly equivalent to D, are unrami�ed in Z → X and
have decomposition class C. If H < G is any representative of C, DCD can be realized

as an open subvariety of SD,Z/H . If we set dC(D) :=
dim DCD
p(D)

, then

lim sup
m→∞

dC(mD) = lim
m→∞

dC(maD) =
1

[G : C]d−1
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for some positive integer a. We can always take a = ordG (even a = ord C 3); if
some e�ective divisor linearly equivalent to D is c-split in Z, we can take a = 1.

Proof. The proof basically comes down to the following claim:

DCD
!

= SD,Z/H\

( ⋃
H′�H

SD,Z/H′ ∪ {rami�ed locus}

)

The rami�ed locus contains �nitely many closed points, hence does not in�uence
the dimension. The comparison of the asymptotic behavior of all sZ/H

′
(mD) then

gives the assertion, once the claim is proven.
To show the claim, �x Y = Z/H and let f, g, h be the quotient morphisms Y →

X, Z → X, Z → Y , as usual. Take any Weil prime divisor D′ ∈ X unrami�ed in Z,
let F ′ be a prime divisor lying above D′, and let E ′ = h(F ′). Since D′ is unrami�ed,
we have [k(F ′) : k(D′)] = ordGF ′ and [k(F ′) : k(E ′)] = ordHF ′ = ord(GF ′ ∩H), so
g∗F

′ = ordGF ′D
′ and h∗F ′ = ord(GF ′ ∩ H)E ′. This implies f∗E ′ =

ordGF ′
ord(GF ′∩H)

D′,

where ordGF ′
ord(GF ′∩H)

= 1 ⇔ GF ′ < H. Therefore, D′ is split in Y if and only some
representantive of CD′ is a subgroup of H. If we use the same argument for all
Y ′ = Z/H ′ with H ′ < H, we get that an unrami�ed Weil prime divisor D′ is
split in Y = Z/H, but not in any Y ′ = Z/H ′ with H ′ � H if and only if H is a
representative of the decomposition class CD′ . This proves the claim.

Remark 3.6.2. The only reason why we restricted ourselves to characteristic zero in
this section is the fact that we use resolution of singularities in the proof. Therefore,
these results also hold for surfaces and threefolds in chararacteristic p (using [Ab98]).

3Here we set ord C := ordH for any representative H of C; similarly, we set [G : C] := [G : H].
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Chapter 4

Positive characteristics

4.1 Decomposition of divisors in étale covers

The title of this chapter might be misleading, since the results in this section are
valid in any characteristic. The only di�erence to the results in the last section is
that we have to add another condition on our morphism. Therefore, in the following,
let f : Y → X be a �nite étale cover of geometrically normal and geometrically
integral projective varieties over a �eld k, and assume dimY = dimX =: d ≥ 2.

Remark 4.1.1. a) The condition that Y is geometrically normal can be omitted
since it follows automatically from the fact that X is geometrically normal and
f is étale ([Mi80, I.3.17]).

b) Instead of demanding that f is étale, we could use the seemingly weaker condition
that f is unrami�ed � an unrami�ed cover f : Y → X is automatically étale
because X is normal ([Mi80, I.3.20]).

c) Since f is unrami�ed, k(Y )|k(X) has to be separable.

The big improvement compared to the situation in section 3.5 is that the notion
of split and c-split divisors coincide:

Proposition 4.1.2. Let D be a geometrically normal and geometrically integral
divisor on X, assume D splits in Y . Then D is c-split in Y.

Proof. By assumption, there exists a Weil divisor E on Y such that f∗E is the Weil
divisor corresponding to D. We claim that E is locally principal. In fact, since f |E :
E → D is �nite and birational and D is geometrically normal and geometrically
integral, f |E is an isomorphism, hence f ∗D → D has a section D

∼=−→ E ⊂ f ∗D. But
f ∗D → D is a base change of f : Y → X and therefore étale (and separated); by
[Mi80, I.3.12] this implies that E is a connected component of f ∗D. Since f ∗D is
locally principal, so is E.
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Proposition/De�nition 4.1.3. There exists an open subscheme GNDivX/k of
DivX/k representing the functor GNDivX/k de�ned by

GNDivX/k(T ) =
{
D ∈ DivX/k(T )

∣∣∣ Dt geometrically normal and
geometrically integral ∀ t ∈ T

}
.

For a given Cartier divisor D on X, we de�ne Pgn
D and Sgn

D,Y to be the scheme-
theoretic intersections

Pgn
D = LD ∩GNDivX/k

Sgn
D,Y = S̃cD,Y ∩GNDivX/k

For an arbitrary �eld extension K|k, Pgn
D (K) represents the set of all geometrically

normal and geometrically integral divisors on XK that are linearly equivalent to
DK , and Sgn

D,Y (K) represents the subset of divisors in Pgn
D (K) which additionally

split in YK .
Let sgnY (D) = sgn(D) and pgn(D) denote the dimensions of Sgn

D,Y and Pgn
D , re-

spectively. If D is very ample, then pgn(D) = h0(X,D)− 1 ≥ 0.

Proof. The proof of the existence of GNDivX/k is basically the same as the proof of
the existence of GIDivX/k in proposition 3.4.1, it just additionally uses [EGAIV-3,
12.2.4 (iv)]. The representation statements follow mostly from the de�nitions; only
for Sgn

D,Y , we have to use proposition 4.1.2. As for the nonemptyness of Pgn
D , the

proof of proposition 3.4.4 applies; the cited proposition [Fl99, 3.4.14] also includes
this result.

Now we again arrive at a Chebotarev density result. For this, assume that
Z → X is an étale Galois cover with Galois group G of varieties of dimension d ≥ 2
over a �eld k of arbitrary characteristic.

Theorem 4.1.4. Given a conjugacy class C of subgroups of G and an ample divi-
sor D on X, there exist a subvariety Dgn,C

D of Pgn
D representing the geometrically

normal, geometrically integral divisors that are linearly equivalent to D and have
decomposition class C. If H < G is any representative of C, Dgn,C

D can be realized

as an open subvariety of Sgn
D,Z/H . If we set dgnC (D) :=

dim Dgn,C
D

pgn(D)
, then

lim sup
m→∞

dgnC (mD) = lim
m→∞

dgnC (maD) =
1

[G : C]d−1

for some positive integer a. We can take a = ord C; if some divisor linearly equiva-
lent to D is split in Z, we can take a = 1.

Proof. Using Dgn,C
D = Sgn

D,Z/H\
⋃
H′�H Sgn

D,Z/H′ (which is proved in the proof of the-

orem 3.6.1) and pgn(mD) = md

d!
vol(D) + O(md−1), it is enough to prove that for
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a �nite étale cover f : Y → X of geometrically normal and geometrically integral
k-varieties of dimension d ≥ 2,

lim sup
m→∞

sgn(mD)

md/d!
= lim

m→∞

sgn(mnD)

(mn)d/d!
=

1

nd−1
vol(D),

where sgn = sgnY and n = deg(f).
The upper inequality lim supm→∞

sgn(mD)
md/d!

≤ 1
nd−1 vol(D) follows from corollary

3.3.11 and the fact that Sgn
D,Y ⊂ S̃cD,Y . So it remains to show that for a very ample

divisor with s̃c(D) ≥ 0, we have

lim inf
m→∞

sgn(mD)

md/d!
≥ 1

nd−1
vol(D).

But this follows immediately from an analog of lemma 3.5.2 for sgn, which can be
proved similarly.

4.2 Finite �elds

The case of �nite �elds deserves some special attention, since here we can actually
count divisors. We will therefore give another de�nition of density in this case,
relying on the number of divisors in a linear series instead of its dimension. We
have to be careful in translating our previous results, though: Even though we know
PD to be an open dense subvariety of the projective space LD if D is very ample,
its number of rational points can theoretically lie anywhere between 0 and #LD(k).
Therefore, we will not be able to deduce these new results as simple corollaries from
what we have done so far.

So let us assume that k = Fq is a �nite �eld, and that f : Y → X is a cover
ful�lling the conditions in the beginning of the last section.

De�nition 4.2.1. For a given Cartier divisorD onX, let p#(D) denote the number
of geometrically normal and geometrically integral divisors in the linear system |D|.

Since p#(D) ≤ #|D| = qh
0(X,D)−1
q−1

, we know that logq p#(D) < h0(X,D); the
following proposition asserts that for mD with increasing m, this inequality gives
an asympotic:

Proposition 4.2.2. Let D be an ample divisor on X. Then

lim
m→∞

logq p#(mD)

md/d!
= vol(D).
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Proof. We will show lim infm→∞
p#(mD)

#H0(X,mD)
≥ C for some positive constant C; from

this the assertion follows easily using the de�nition of the volume.
We can assume D to be very ample. Let X ↪→ PN be the projective embedding

corresponding to the very ample linear system |D|. Then for m ≥ h0(X,OX) − 1,
the map

φm : Sm := H0(PN ,OPN (m))→ H0(X,mD)

is surjective ([Po04, 2.1]); thus

p#(mD)

#H0(X,mD)
=

#(P ∩ Sm)

#Sm
,

where P denotes the set of all f ∈ Shomog :=
⋃∞
m=0 Sm such that the scheme-

theoretic intersection Hf ∩X of the hypersurface Hf of PN de�ned by f with X is
geometrically normal and geometrically integral.

We will now give a list of conditions on f ∈ Shomog which are su�cient for f
to be in P , from this we will then deduce the asserted inequality using the Bertini
theorem over �nite �elds in [Po04]. Before doing this, let us �x some notation: Let
k̄ denote the algebraic closure of k, and let Reg(X) and Sing(X) denote the regular
resp. singular locus of X (since X is geometrically normal, Reg(X) is smooth and
codim(Sing(X), X) ≥ 2).

Using Serre's criterion, we have f ∈ P ⇔ (Hf ∩X)k̄ = (Hf )k̄ ∩Xk̄ is connected
and ful�lls R1 and S2. Now we can split this up into several su�cient conditions:

• In order for (Hf ∩X)k̄ to be connected, it su�ces by Grothendieck's connect-
edness theorem ([Fl99, 3.1.1]) that Hf is geometrically integral (here we use
that X is geometrically integral and of dimension ≥ 2, hence Xk̄ is connected
in dimension 1 by [Fl99, 3.1.3(3)]). Thus, set Q1 to be the set of all f ∈ Shomog

such that Hf is not geometrically integral.

• In order to consider Serre's condition S2, de�ne

Zr(Y ) = {y ∈ Y | codepthOY,y := dimOY,y − depthOY,y > r}

for any Noetherian scheme Y . Then Y ful�lls S2 if and only if

codim(Zr(Y ), Y ) > r + 2 for all r ≥ 0 ([EGAIV-2, 5.7.4]).

Since Xk̄ is normal, we know that codim(Zr(Xk̄), Xk̄) > r + 2 ∀ r ≥ 0.
On the other hand, if x ∈ Xk̄ lies in (Hf )k̄ (f 6= 0), then f maps to a
regular element of mx, so codepthOY,y = codepthOY,y/(f) by [EGAIV-1,
0.16.4.10(i)]; thus Zr((X ∩Hf )k̄ = Zr(Xk̄) ∩ (X ∩Hf )k̄. So in order for f to
ful�ll codim(Zr((X∩Hf )k̄), (X∩Hf )k̄) > r+2 ∀ r ≥ 0, it will be su�cient that
(Hf )k̄ intersects all irreducible components of all Zr(Xk̄) properly, i.e. (Hf )k̄
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does not contain any of the irreducible components of any Zr(Xk̄). There are
only �nitely such irreducible components, since Zr(Xk̄) is empty for r ≥ d.

Set Z to be the �nite reduced subscheme of X consisting of all closed points1

which are an irreducible component of either one of the Zr(Xk̄) or of Sing(Xk̄),
and set Q2 to be the set of all f ∈ Shomog such that (Hf )k̄ contains at least
one of the positive dimensional irreducible components of either one of the
Zr(Xk̄) or of Sing(Xk̄).

• We now turn towards the R1 property. If f /∈ Q2 and Hf ∩ Z = ∅, then
codim(Sing(Xk̄) ∩ (Hf )k̄, (X ∩ Hf )k̄) ≥ 2; thus (X ∩ Hf )k̄ has R1 if U ∩ Hf

has, where U = Reg(X). So it is su�cient that U ∩Hf is smooth of dimension
d − 1. If T ⊂ H0(Z,OZ) is the (nonempty) set of all sections which don't
vanish at any point of Z, we set

P ′ := {f ∈ Shomog : Hf ∩ U is smooth of dimension d− 1, and f |Z ∈ T}.

Putting all these pieces of information together, we have

P ⊃ P ′ − (Q1 ∪Q2).

Now using Poonen's Bertini theorem for �nite �elds ([Po04, 1.2]), we have

lim
m→∞

#(P ′ ∩ Sm)

#Sm
=

#T

#H0(Z,OZ)
ζU(d+ 1)−1 =: C > 0,

where ζU is the zeta function of U , and limm→∞
#(Q1∩Sm)

#Sm
= 0 by [Po04, 2.7]; so

we will be done as soon as we show that limm→∞
#(Q2∩Sm)

#Sm
= 0. In fact, all we

have to show is that given any irreducible subvariety W of X of positive dimension
and Q := {f ∈ Shomog|W ⊂ Hf}, then limm→∞

#(Q∩Sm)
#Sm

= 0. But #Sm
#(Q∩Sm)

=

h0(W,OW (m))
m→∞−−−→∞ by Riemann-Roch, so we are done.

De�nition 4.2.3. For a given Cartier divisor D on X, let sY#(D) = s#(D) denote
the number of geometrically normal and geometrically integral divisors in the linear
system |D| which split in Y . We set

d#(D) =
logq s#(D)

logq p#(D)
.

Proposition 4.2.4. Let D be an ample divisor on X. Then

lim sup
m→∞

d#(mD) = lim
m→∞

d#(mnD) =
1

nd−1
,

where n = deg(f).

1to be more precise, images of such points under Xk̄ → X
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Proof. The fact that lim infm→∞
logq s#(mnD)

mdnd/d!
≥ vol(D)

nd−1 follows similarly to the proof
for proposition 3.5.2 using proposition 4.2.2, so we can concentrate on the proof of
the upper bound.

By the proof of theorem 4.1.2, we know that s#(mD) ≤ #S̃cmD,Y (k). Using
the proof of lemma 3.2.4, we get that

s#(mD) ≤
∑

f∗[E]num=[mD]num

# Div
[E]num
Y/k (k). (4.2.1)

In order to give a bound on the number of summands occuring in this sum, let
us remind ourselves of the notation introduced before proposition 3.3.9: HD is the
a�ne subspace of N1(Y )R consisting of all elements which map to [D]num under
f∗ : N1(Y )R → N1(X)R. The intersection of N1(Y ) with HD is a full lattice in HD;
in particular, it de�nes a natural volume form on HD such that the fundamental
lattice has volume 1. The intersection of the pseudoe�ective cone Eff(Y ) with HD

is compact, hence has �nite volume V ; by standard combinatorial arguments, one
can deduce that

#{η ∈ Eff(Y ) ∩N1(Y )|f∗η = [mD]num} = V ml +O(ml−1), (4.2.2)

where l is the dimension of HD.
On the other hand, a k-rational point of Div

[E]num
Y/k maps to a k-rational point

of Pic
[E]num
Y/k under the Abel map; considering the �bers of this map, we get

# Div
[E]num
Y/k (k) ≤ # PicτY/k(k) · qmaxE′≡E{h0(X,E′)}. (4.2.3)

Using (4.2.2) and (4.2.3) in (4.2.1), we get

logq s#(mD) ≤ max{h0(Y,E)|E ∈ Div(Y ), f∗E ≡ mD}+ l logqm+ C

for some constant C > 0. Now using proposition 3.3.9, this implies

lim sup
m→∞

logq s#(mD)

md/d!
≤ vol(D)

deg(f)d−1
.

Theorem 4.2.5. Let Z → X be an étale Galois cover with Galois group G of
varieties of dimension d ≥ 2 over a �nite �eld k; let C be a conjugacy class C of
subgroups of G and D an ample divisor on X. Set

dC#(D) :=
logq #Dgn,C

D (k)

logq p#(D)
.

Then
lim sup
m→∞

dC#(mD) = lim
m→∞

dC#(maD) =
1

[G : C]d−1

for some positive integer a. We can take a = ord C; if some divisor linearly equiva-
lent to D is split in Z, we can take a = 1.
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Proof. The proof follows easily from proposition 4.2.4 using the fact that

s
Z/H
# (D)−

∑
H′�H

s
Z/H′

# (D) ≤ #Dgn,C
D (k) ≤ s

Z/H
# (D),

where H is a representative of C; and these inequalities are evident from the proof
of theorem 3.6.1.
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Chapter 5

Applications

In this chapter, we will consider some applications of the density theorems. All
varieties in this chapter will be projective, geometrically normal and geometrically
integral over a �eld k and have �xed dimension d ≥ 2; all morphisms will be �nite
(branched) covers, in case char k > 0 we additionally assume the morphisms to be
étale.

5.1 A generalization of a theorem of Bauer

We now turn our attention towards the comparison of split and completely split
divisors. Bauer seems to have been the �rst one to realize that Galois covers can be
identi�ed as those where the notions of split and completely split agree; he speci�ed
Galois extensions number �elds in the following way:

Theorem 5.1.1 (Bauer, [Ne92, 13.8]). Let L|K be an extension of number �elds.
If every prime ideal p of OK that is unrami�ed and split in L is completely split in
L, then L|K is Galois.

Here the notions of split and completely split are the usual ones in number
theory; they are the equivalents of our notions in the case of number �elds.

We will prove a similar result in our situation. Let f : Y → X be a cover of
varieties over k as described above. Before we go on, let us remember the notation
of section 3.2.1: Since we are either in characteristic zero, or f : Y → X is étale,
k(Y )|k(X) is separable. Let Z be the normalization of X in the Galois closure
of k(Y )|k(X), and H < G = AutX(Z) be �nite groups acting on Z such that
X = Z/G, Y = Z/H.

Proposition 5.1.2. Let K|k be an arbitrary �eld extension. For a prime Cartier
divisor D on XK, the following are equivalent:

a) D splits completely in YK,
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b) D splits completely in ZK,

c) D is unrami�ed and splits in ZK.

Proof. b)⇔ c) and b)⇒ a) are trivial, for a)⇒ b) assume that D splits completely
in YK . Let F be a Weil prime divisor on ZK with g(F ) = D. Then (σF )σ∈G runs
through all Weil prime divisors on ZK above D ([La02, VII.2.1]), and h(σF ) runs
through all Weil prime divisors on YK above D. By our assumption on D, we
have n = deg(f) di�erent Weil prime divisors on YK lying above D, so h(σF ) =
h(τσF ) ⇔ τ ∈ H. If GσF denotes the decomposition group of σF , this shows
σGFσ

−1 = GσF ⊆ H ∀ σ ∈ G, hence GF ⊆
⋂
σ∈G σ

−1Hσ. But the last group is
normal in G and contained in H, so trivial by construction of Z. Thus GF is trivial,
i.e. D splits completely in ZK .

Remark 5.1.3. Proposition 5.1.2 is not true any more if we replace complete splitting
by complete c-splitting.

As an easy a�ne example of this, consider the cone Z = SpecR with R =
C[z1, z2, z3]/(z2

1 + z2
2 + z2

3). The group G = S3 acts on Z by permutation of the zi.
Let H be the subgroup of G generated by the permutation (12), and set X = Z/G
and Y = Z/H. Then f : Y → X is a �nite cover with Galois closure g : Z → X.

Both Y and X are isomorphic to A2: If we set y1 = z1 + z2, y2 = z1z2, then
Y = SpecRH with RH = C[y1, y2, z3]/(y2

1 − 2y2 + z2
3) = C[y1, z3]; if we set x1, x2, x3

to be the elementary symmetric polynomials in z1, z2, z3, then X = SpecRG with
RG = C[x1, x2, x3]/(x2

1 − 2x2) = C[x1, x3]. In particular, X and Y are smooth, and
the notions of Weil and Cartier divisors coincide on them.

Z, on the other hand, contains Weil divisors which are not Cartier. As an
example, take the Weil prime divisor F : z1 = z2 + iz3 = 0 on Z, which is a ruling
of the cone and not a Cartier divisor by [Ha77, II.6.5.2]. Set g∗F = D. Since the
decomposition group of F is trivial, D is a (geometrically integral) Cartier divisor
on X which is completely c-split in Y , but not completely c-split in Z.

Proposition/De�nition 5.1.4. Assume char k = 0. Let D be an ample Cartier
divisor onX. Then there exists a (possibly reducible) open dense subvariety TD,Y of
SD,Z such that for every �eld extension K/k, TD,Y (K) is the set of all geometrically
integral divisors on XK that are linearly equivalent to DK and split completely in
YK . We denote its dimension by t(D).

There exists a positive integer a such that d̃(maD) := t(maD)
p(maD)

converges as m
approaches ∞, and

lim sup
m→∞

d̃(mD) = lim
m→∞

d̃(maD) =
1

ord(G)d−1
,

where G is the Galois group of the Galois closure of k(Y )|k(X).
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Proof. Using the notation from before, proposition 5.1.2 shows that we can take
TD,Y = TD,Z to be SD,Z\g∗

(⋃
σ∈G,σ 6=id{z ∈ DivZ/k |σz = z}

)
. Since G acts faith-

fully on Z, TD,Y is (open and) dense in SD,Z . The statement about the limit follows
from remark 3.5.5; it turns out that we can take a = ord(G).

Theorem 5.1.5. Assume that there exists a very ample Cartier divisor D on X
such that we have SmD,Y ⊆ TmD,Y (or just s(mD) ≤ t(mD)) for m � 0. Then
f : Y → X is a Galois cover.

Proof. By possibly choosing a positive multiple ofD, we can assume that sc(D) ≥ 0.
Then the condition implies

1

nd−1
= lim

m→∞
d(mD) ≤ lim sup

m→∞
d̃(mD) =

1

(ordG)d−1
, (5.1.1)

so [k(Z) : k(X)] = ord(G) ≤ n = [k(Y ) : k(X)]. But k(Y ) ⊆ k(Z), so k(Y ) = k(Z),
and f : Z = Y → X is a Galois cover.

Remark 5.1.6. In arbitrary characteristic, assume moreover f : Y → X to be étale.
Then Tgn

D,Y = Tgn
D,Z := Sgn

D,Z represents the geometrically normal and geometrically
integral divisors which are linearly equivalent to D and split completely in Y (the
description is simpler since there is no rami�cation), and we get similar versions of
proposition 5.1.4 and theorem 5.1.5.

Theorem 5.1.7. Let f : Y → X be a �nite cover of projective, geometrically
normal, geometrically integral varieties over a �eld k of dimension at least 2; if k
has positive characteristic, assume furthermore that f is étale. Then the following
are equivalent:

a) f is a Galois cover.

b) Every unrami�ed Weil prime divisor on Xk̄ that splits in Yk̄ is completely split.

c) There exists an ample Cartier divisor D on X such that for all m � 0, every
geometrically integral Cartier divisor on X ∈ |mD| and splits in Y is completely
split in Y .

Proof. Assume �rst char k = 0. The only nontrivial implication is c) ⇒ a), i.e.
that SmD,Y (k) ⊆ TmD,Y (k) for m � 0 already implies that f : Y → X is Galois.
But by the proof of proposition 3.5.2, SmnD,Y (where n = deg(f)) contains an open
dense subset of f∗Pmf∗D, which is unirational (thus has a dense subset of k-rational
points), so we get

dim TmnD,Y ≥ dim Pmf∗D,

which for m → ∞ leads to the desired equation (5.1.1). Then everything follows
similar to the proof of theorem 5.1.5.
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In positive characteristic, use Tgn
mnD,Y instead of TmnD,Y . The same argument

as above works as long as k is in�nite; if k is �nite, we get sZ#(mnD) ≥ 1
n
p#(mf ∗D),

so

nd

(ordG)n−1
vol(D) = lim

m→∞

logq s
Z
#(mnD)

md/d!

≥ lim
m→∞

logq p#(mf ∗D)

md/d!
= vol(f ∗D) = n vol(D),

which again leads to equation (5.1.1).

For �nite �elds, the proof of the last theorem shows that it can be decided by
counting whether f is Galois:

Theorem 5.1.8. In the situation of Theorem 5.1.7, let k be a �nite �eld. In addi-
tion to the notation used in section 4.2, let t#(D) denote the number of geometrically
normal, geometrically integral divisors linearly equivalent to a given divisor D which
additionally are completely split in Y . Then the following are equivalent:

a) f is an (étale) Galois cover.

b) There exists an ample Cartier divisor D on X such that

lim sup
m→∞

log t#(mD)

log p#(mD)
=

1

deg(f)n−1
.

Indeed, we can generalize our �rst theorem to criteria using subvarieties of higher
codimension, too. Let us �rst remark that the notion of splitting and complete
splitting make sense for any irreducible closed subvariety V of X: We say that V is
split in Y if there exists a irreducible closed subvarietyW of Y such that f(W ) = V
and k(W ) = k(V ); V is said to be completely split in Y if there are n = deg(f)
di�erent such W .

Theorem 5.1.9. Let f : Y → X be a �nite cover of projective, geometrically
normal, geometrically integral varieties over a �eld k of dimension d ≥ 2; if k has
positive characteristic, assume furthermore that f is étale. Then the following are
equivalent:

a) f is a Galois cover.

b) There exists a positive integer r < d such that every closed subvariety V of X of
codimension r that is unrami�ed and splits in Y is completely split.
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Proof. We will give the proof in the case char k = 0, the proof for char k > 0 is
similar. a) ⇒ b) is immediate, so we have to show that if Y → X is not Galois
and r < d is any positive integer, there exists a subvariety of codimension r which
is unrami�ed, split, but not completely split. If r = 1, we are done by theorem
5.1.7. Otherwise, construct the Galois cover g : Z → X of Y → X as in section
3.2.1 and take C to be the congugacy class of G. By theorem 3.6.1, we know
there exists a geometrically integral divisor D which is unrami�ed in Z and has
decomposition class C. Take X1 = D and let Y1 and Z1 be the preimages in Y and
Z, respectively. Then Z1 → X1 is a Galois cover of geometrically integral varieties
over k of dimension d − 1 > r − 1 ≥ 1. We can proceed to get closed subvarieties
X ⊃ X1 ⊃ . . . ⊃ Xr−1, such that dimXi = d − i and Zi = Xi ×X Z → Xi is a
Galois cover of geometrically integral varieties over k with Galois group G for every
i = 1, . . . , r − 1. Inside Xr−1, we can �nd a geometrically integral divisor Xr of
decomposition class C(H), again using theorem 3.6.1. Xr is a closed subvariety of
X of codimension r, and it is split in Yr−1 = Xr−1 ×X Y (and therefore in Y ) by
the proof of 3.6.1, but is not split in Zr−1 and thus not completely split in Yr−1 for
the same reasons. This �nishes the proof.

5.2 Bauerian covers

Additionally to the general conditions mentioned at the beginning of the chapter,
�x a variety X and an ample divisor D on X. De�ne the M(D) to be the monoid
consisting of all e�ective divisors on X which are linearly equivalent to some integer
multiple of D.

We have an inclusion of monoids M(D) =
⋃∞
m=0 |mD| ⊂ Div(X) ⊆ Z1(X).

De�nition 5.2.1. For any cover f : Y → X, set

S(Y ) = S(Y,D) = f∗Z
1(Y ) ∩M(D)

We call S(Y ) the Kronecker monoid for the cover Y → X.

If f is étale, we can recover all Sgn
mD,Y (k) from S(Y ), since

S(Y ) ∩GNDivX/k(k) =
∞⋃
m=0

Sgn
mD,Y (k).

Similarly, in the case char k = 0, we can recover all SmD,Y (k) from S(Y ) by inter-
secting S(Y ) with GIDivX/k(k).

Theorem 5.2.2. Let Y → X be an �nite étale Galois cover, Y ′ → X be an arbitrary
�nite étale cover. Then

S(Y ′) ⊆ S(Y ) ⇔ Y ′ → X factors through Y → X.
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Proof. The only implication which is not obvious is that S(Y ′) ⊆ S(Y ) implies that
Y ′ → X factors through Y → X. To see this, take a Galois extension L|k(X)
which contains both k(Y ) and k(Y ′) and such that k is algebraically closed in L;
let Z be the normalization of X in L. Setting G = Gal(L|k(X)), G acts on Z as
mentioned in section 3.2.1, and with H = Gal(L|k(Y ))/G, H ′ = Gal(L|k(Y ′)) < G,
we have Z/G ∼= X, Z/H ∼= Y and Z/H ′ ∼= Y ′. Let C be the congujacy class of
H ′. Using theorem 4.1.4 for in�nite �elds and theorem 4.2.5 for �nite �elds, we
get that for some m� 0, there exist a geometrically normal, geometrically integral
divisor D′ linearly equivalent to mD with decomposition class C. This implies
D′ ∈ Sgn

mD,Y ′(k), so by our assumption, we get D′ ∈ Sgn
mD,Y (k). As was explained in

the proof of theorem 3.6.1, D′ being split in Y implies that some representative of C
is a subgroup of H. Since H is normal in G, we get H ′ < H, thus Y ′ ∼= Z/H ′ → X
factors through Y ∼= Z/H → X.

Corollary 5.2.3. A Galois cover Y → X is completely described by its Kronecker
monoid.

Corollary 5.2.4. The natural transformation

{open normal subgroups of πét

1 (X)} → {submonoids of M(D)}
H 7→ S(YH)

is fully faithful. Here YH → X denotes the étale Galois cover of X corresponding
to the normal subgroup H / πét

1 (X).

De�nition 5.2.5. A cover Y → X is called Bauerian if for any other cover Y ′ → X,

S(Y ′) ⊆ S(Y )⇒ Y ′ → X factors through Y → X.

Corollary 5.2.6. Galois covers are Bauerian.

More or less all of these statements are analogs of well-known applications of the
original Chebotarev density theorem. Of course, the Chebotarev density theorem
in the original version or in the one of Serre has some even more far-reaching conse-
quences: Apart from their connections to class �eld theory, these versions are also
used in the proofs of the theorems of Neukirch, Uchida ([Uc77]) and Pop ([Pop94])
which state that if K and L are two global �elds or �elds �nitely generated over Q
with isomorphic Galois groups, then K and L are isomorphic.

It might be worthwhile to examine whether similar results can be shown using
the Chebotarev-like theorems in this thesis; on the other hand, since the results
mentioned above can hardly be regarded as pure applications of Chebotarev's den-
sity theorem (the density theorem is only used for one small step), many more
obstacles should be expected, if at all a generalization to our case is possible.
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