
PARITY OF THE COEFFICIENTS OF KLEIN’S j-FUNCTION

CLAUDIA ALFES

Abstract. Klein’s j-function is one of the most fundamental modular functions
in number theory. However, not much is known about the parity of its coefficients.
It is believed that the odd coefficients are supported on “one half” of the arithmetic
progression n ≡ 7 (mod 8). Following a strategy first employed by Ono for the
partition function [9], we use twisted Borcherds products and results on the nilpo-
tency of the Hecke algebra to obtain new results on the distribution of parity for
the coefficients of j(z).

1. Introduction and statement of results

Here we consider the modular j-invariant
(1.1)

j(z) :=
E4(z)3

∆(z)
=

(
1 + 240

∑∞
n=1

n3qn

1−qn

)3

q
∏∞

n=1(1− qn)24
= q−1 + 744 + 196884q + 21493760q2 · · · ,

where q := e2πiz and z ∈ H. Its properties and connections to number theory, elliptic
curves, class field theory and moonshine are well known.

However, surprisingly little is known about the behavior of the coefficients of j(z)
modulo a prime. Perhaps the most famous congruence is due to Lehner [5]. For
primes p ≤ 11, he showed that

j(z)|U(p) ≡ 744 (mod p),

where j(z)|U(p) =
∑∞

n=−1 c(n)qn/p and the summation is only carried out over n’s that
are divisible by p. Lehner [6], [7] and Kolberg [4] later expanded on such congruences.
Serre [11] showed that congruences of the U(p)-type do not hold for primes p > 11.
Ahlgren and Ono [1] generalized Lehner’s and Serre’s result to all weakly holomorphic
modular forms (see Theorems 2 and 4 of [1]).

Here we address the parity of the coefficients of j(z) :=
∑∞

n=−1 c(n)qn. Since we
have E4(z) ≡ 1 (mod 2), (1.1) easily gives

j(z) ≡ 1

q
∏∞

n=1(1− q8n)3
≡ q−1 + q7 + q15 + q31 + · · · (mod 2).
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Therefore, the odd coefficients are supported on the arithmetic progression n ≡ 7
(mod 8). A short calculation reveals that 6.275% of the first 1,000,000 coefficients of
j(z) are odd. More generally, it is conjectured by Ono that this holds for 1/16 of the
c(n). Note that 1/16 = 0.0625.

Here we offer new results on the distribution of parity of the coefficients of j(z).
To be more precise, we let ∆ = 4 · ∆′ be a positive fundamental discriminant (i.e.
∆′ ≡ 2, 3 (mod 4) and ∆′ square-free). Then we define the following generating
functions

(1.2) J̃(∆; z) :=
∞∑
m=1

gcd(m,2)=1

c(∆′m2)
∞∑
n=1

gcd(n,∆)=1

qnm.

Theorem 1.1. We have that J̃(∆; z) is congruent modulo 2 to a weight 2 meromor-
phic modular form on Γ := SL2(Z) with integer coefficients whose poles are simple
and are supported on discriminant −4∆ CM points.

Using the theory of modular forms modulo 2, we use this result to obtain the
following result on the distribution of parity for the coefficients of j(z).

Theorem 1.2. For a prime ` ≡ 7 (mod 8), there are infinitely many odd m for which
c(`m2) is even. Moreover, the first such m is bounded by (`+ 1)(24H(−16`) + 4).

Remark. This theorem follows from the more general Theorems 1.3 and 1.4 below
using bounds for the Hurwitz- Kronecker class numbers H(−4∆), the class number of
quadratic forms of discriminant −4∆ where each class C is counted with multiplicity
1/Aut(C), and indices of standard congruence subgroups.

Remark. It follows from the proof of Theorem 1.2 that for each ` there is an odd m
satisfying

m ≤ 6H(−16`) + 1� `3/2 log(`)

such that c(`m2) is even. The strong form of Dirichlet’s theorem on primes in arith-
metic progressions implies the following estimate:

# {N ≤ X : c(N) is even } � X1/4

log(X)
.

Theorem 1.3. The following are true:

(1) There are infinitely many odd m for which c(∆′m2) is even if there is at least
one such m. Moreover, if there are any m, then the first one is bounded by
12H(−4∆)+2

12
[Γ : Γ0(4∆′)].

(2) There are infinitely many odd m for which c(∆′m2) is odd if there is at least
one such m. Moreover, if there are any m, then the first one is bounded by
1
12

(12H(−4∆) + 2) .

Theorem 1.4. Suppose that ∆′0 is square free and that ` - ∆′0 is a prime such that
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(1) 4∆′0` is a fundamental discriminant and ∆′0` ≡ 7 (mod 8).
(2) ` > 1

12
(12H(−16∆′0`) + 2) [Γ : Γ0(4∆′0)].

Then there are infinitely many odd m for which c(∆′0`m
2) is even.

Remark. For any fixed ∆′0 as above, all but finitely many primes ` with ∆′0` ≡ 7
(mod 8) satisfy the conditions in Theorem 1.4.

To obtain these results, we consider the logarithmic derivatives of twisted Borcherds
products defined by Zagier [14]. We are then able to interpret the coefficients of j(z)
as the coefficients of weight 2 meromorphic modular forms modulo 2. Employing a
strategy of Ono [9] using results on nilpotency and the distribution of parity holding
for modular forms of integer weight then yields our results.

The paper is organized as follows. In Section 2 we present necessary background
information on Borcherds products and the nilpotency of the Hecke algebra. In
Section 3 we prove the results about the coefficients of j(z).
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2. Borcherds products and modular forms modulo 2

2.1. A twisted Borcherds product. In [14] Zagier considers the traces of the mod-
ular j-invariant. He shows that they are connected to certain basis elements of the
space of weakly holomorphic modular forms of weight 1/2 on Γ0(4) satisfying the
Kohnen plus space condition. More explicitly, for every negative discriminant −d,
there is a unique (and easily constructable) fd in that space, whose Fourier expansion
at the cusp ∞ is given by

(2.1) fd(z) = q−d +
∑
n≥1

n≡0,1(4)

cd(n)qn.

The fd’s form a basis of this space. In particular, f4 is given by

(2.2) f4(z) = f0(z) · j(4z)− 746 · f0(z)− 2 · f3(z),

where f0(z) := θ(z) =
∑

n∈Z q
n2

is the ordinary Jacobi theta series.
As before we let ∆ be a positive fundamental discriminant which is congruent to 0

modulo 4.
We then define the function

(2.3) P∆(X) :=
∏

b (mod ∆)

(1− e2πib/∆X)(
∆
b ),
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where
(

∆
b

)
denotes the Kronecker symbol. Then the statement Theorem 7 of [14]

reads as follows (see also Section 8.1 of [2]).

Theorem 2.1. The twisted Borcherds product

Ψ∆(z, fd) :=
∞∏
m=1

P∆(qm)cd(∆m2)

is a meromorphic modular form of weight 0 for the group SL2(Z) whose divisor on
X(1) is supported on CM points of discriminant −∆d.

Using this result we can easily obtain Theorem 1.1.

Proof of Theorem 1.1. We let Θ := q d
dq

. Then Θ(Ψ∆(z, fd)) is a weight 2 meromor-

phic modular form on Γ. Therefore, the logarithmic derivative Θ(Ψ∆(z,fd))
Ψ∆(z,fd)

is a weight

2 meromorphic modular form on Γ whose poles are simple and are supported at the
Γ-CM points of discriminant −∆d.

Using (2.3) it is not hard to show that

Θ(P∆(qm))

P∆(qm)
= −
√

∆m
∞∑
n=1

(
∆

n

)
qnm.

We now let d = 4. For the logarithmic derivative of Ψ∆(z) we obtain

(2.4) F(∆; z) := − 1√
∆

Θ(Ψ∆(z))

Ψ∆(z)
=

∞∑
m=1

mc4(∆m2)
∞∑
n=1

(
∆

n

)
qnm.

Since, by (2.2), f4(z) ≡ j(4z) (mod 2) we have that c4(4m) ≡ c(m) (mod 2), which
implies

c4(∆m2) ≡ c(∆′m2) (mod 2).

Combined with the fact that
(

∆
n

)
= 0 if gcd(n,∆) 6= 1, we obtain

F(∆; z) ≡
∞∑
m=1

gcd(m,2)=1

c(∆′m2)
∞∑
n=1

gcd(n,∆)=1

qnm (mod 2).

�

2.2. Local nilpotency and the distribution of odd coefficients. Here we recall
several results about the nilpotency of the Hecke algebra on modular forms modulo
2 and the distribution of odd coefficients. All of these can be found in [8] and [9].

Let f(z) be an integer weight modular form on Γ0(N) with integer coefficients. If
f(z) 6≡ 0 (mod 2), then we say that f(z) has degree of nilpotency i if there are primes
p1, p2, . . . , pi−1 not dividing 2N for which

f(z) | Tp1 | Tp2 | · · · | Tpi−1
6≡ 0 (mod 2),
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and if for every set of primes `1, `2, . . . `i not dividing 2N we have

f(z) | T`1 | T`2 | · · · | T`i ≡ 0 (mod 2).

It is known that the action of Hecke algebras on spaces of modular forms with
integer coefficients is locally nilpotent modulo 2. In particular, this result was proven
by Tate [13] for modular forms of integer weight on SL2(Z). His result was later
generalized by Ono and Taguchi [10]. Moreover, Ono proved the following results.

Lemma 2.2 (Lemma 3.2 of [9]). Suppose that f(z) =
∑∞

n=1 a(n)qn ∈ Sk(Γ0(N) with
integer coefficients has degree of nilpotency i > 0. Then the following are true:

(1) There are primes p1, p2, . . . , pi−1 not dividing 2N , and an integer n0 such that

a(n0M
2p1p2 · · · pi−1) ≡ 1 (mod 2)

for every integer M ≥ 1 that is coprime to 2p1p2 · · · pi−1N .
(2) If `1, `2, . . . `i are primes not dividing 2N , then

a(n`1`2 · · · `i) ≡ 0 (mod 2)

for every n coprime to `1, `2, . . . `i.

Theorem 2.3 (Theorem 3.3 of [9]). If f(z) =
∑∞

n=1 a(n)qn ∈ Sk(Γ0(N)) has integer
coefficients, then the following are true:

(1) A positive proportion of the primes p ≡ −1 (mod 2N) have the property that

f(z)| Tp ≡ 0 (mod 2).

(2) Suppose that n0 is an integer coprime to N with the property that

a(n0p1p2 · · · pi−1) ≡ 1 (mod 2),

where p1, p2, . . . , pi−1 are primes which do not divide 2n0N . If M is an integer
coprime to 2N and gcd(r,M) = 1, then

# {m ≤ X : a(n0m) ≡ 1 (mod 2) and m ≡ r (mod M)} � X

logX
(log logX)i−2.

3. Proof of Theorems 1.2, 1.3, and 1.4

Here we prove Theorems 1.2, 1.3, and 1.4 where we argue analogously to Ono in
[9].

We let HD(X) be the usual discriminant −D Hilbert class polynomial.

Lemma 3.1. There is a holomorphic modular form of weight 12H(−4∆) + 2 on Γ
with integer coefficients which is congruent to

J̃(∆; z)H4∆(j(z))∆(z)H(−4∆) (mod 2).



6 CLAUDIA ALFES

Proof. Let F(∆; z) be as in (2.4). Then F(∆; z) is a meromorphic modular form with
integer coefficients which is congruent to J̃(∆; z) modulo 2. Moreover, its poles are
simple and are supported on SL2(Z)-CM points of discriminant−4∆. Since H4∆(j(z))
has a zero of the same order at each such CM point and ∆(z)H(−4∆) accounts for the
poles at ∞ introduced by H4∆(j(z)), the claim follows. �

Proof of Theorem 1.3. We first prove (1). Assume that all c(∆′m2) for odd m are
odd, which implies

(3.1) J̃(∆; z) ≡
∞∑
m=1

gcd(m,2)=1

∞∑
n=1

gcd(n,∆)=1

qmn (mod 2).

We also have the classical identity

Ω(z) :=
η(4z)8

η(2z)4
=

∞∑
n=1

gcd(n,2)=1

∑
2-d|n

dqn = q + 4q3 + 6q5 + · · · ,

where η(z) := q1/24
∏∞

n=1(1 − qn) is Dedekind’s eta-function. It is well known that
Ω(z) is a modular form of weight 2 for Γ0(4). It obviously satisfies

Ω(z) ≡
∞∑
m=1

gcd(m,2)=1

∞∑
n=1

gcd(n,2)=1

qmn (mod 2).

Then it is easily seen that

(3.2) Ω(∆; z) :=
∑

1≤δ|∆′
gcd(2,δ)=1

Ω(δz) ≡
∞∑
m=1

gcd(m,2)=1

∞∑
n=1

gcd(n,∆)=1

qmn (mod 2).

In particular, we have that J̃(∆; z) ≡ Ω(∆; z) (mod 2). By combining the fact that
Ω(∆; z) is a modular form of weight 2 on Γ0(4∆′) with Lemma 3.1, it follows that

J̃(∆; z)H4∆(j(z))∆(z)H(−4∆) ≡ Ω(∆; z)H4∆(j(z))∆(z)H(−4∆) (mod 2)

in M12H(−4∆)+2(Γ0(4∆′)). Sturm’s theorem [12] now implies that this holds if and

only if the first 12H(−4∆)+2
12

[Γ : Γ0(4∆′)] coefficients are congruent modulo 2. This
proves the bound concerning the first (if any) even value.

Now assume there are only finitely many odd m for which c(∆′m2) is even. Denote
these m by m1,m2, . . . ,ms and let m1 be the smallest of these numbers. Using (3.2)
we see that

(3.3) Ω(∆; z)− J̃(∆; z) ≡
s∑
i=1

∞∑
n=1

gcd(n,∆)=1

qmin (mod 2).
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We now define T (∆; z) to be the level 1 cusp form

(3.4) T (∆; z) :=
∞∑
n=5

t(∆;n)qn := H4∆(j(z))∆(z)H(−4∆)+5 = q5 + · · · .

Then the Hecke algebra acts locally nilpotently on T (∆; z) (see Section 2.2). The
degree of nilpotency is an integer a ≥ 2 since the first coefficient of T (∆; z) is odd.
Theorem 2.3 (2) now implies that in every arithmetic progression r (mod M), where
M is an odd integer coprime to r, that

(3.5) # {p ≤ X : t(∆; p) ≡ 1 (mod 2) and p ≡ r (mod M)} � X/ logX.

Combining the properties of Ω(∆; z) and Lemma 3.1 yields the existence of a cusp
form S(∆; z) on Γ0(4∆′) for which

(3.6) S(∆; z) =
∞∑
n=1

s(∆;n)qn ≡
(

Ω(∆; z)− J̃(∆; z)
)
T (∆; z) (mod 2).

For a positive integer N we find by using equation (3.4) that

(3.7) s(∆;N) ≡
s∑
i=1

∞∑
n=1

gcd(n,∆)=1

t(∆;N −min) (mod 2).

These sums are finite because t(∆; k) = 0 for k ≤ 5.
Theorem 2.3 (1) implies that there are infinitely many primes p for which

(3.8) s(∆;n) ≡ 0 (mod 2)

when p || n. Let p0 - m1m2 · · ·ms∆ be such a prime and let Y := p2
0∆lcm(m1, . . . ,ms).

Our construction of S(∆; z) together with (3.7) implies that

(3.9) s(∆;N + Y )− s(∆;N) ≡
s∑
i=1

∑
1≤n≤ Y

mi
gcd(n,∆)=1

t(∆;N + Y −min) (mod 2).

Using this we will construct a contradiction. Consider the arithmetic progression

(3.10) N ≡ p0 (mod p2
0).

For each pair (i, n), where 1 ≤ i ≤ s and 1 ≤ n ≤ Y
mi

, except (m1, 1) we consider
progressions of the form
(3.11)
N ≡ −(Y −min) + `1(i, n)`2(i, n) · · · `a(i, n) (mod `1(i, n)2`2(i, n)2 · · · `a(i, n)2).

Choose distinct odd primes `j(i, n) which are coprime to p0m1 · · ·ms∆ such that the
system in (3.10) and (3.11) has a solution of the form N ≡ r0 (mod M∆), where
gcd(r0 + Y −m1,M∆) = 1. This solution exists by the Chinese Remainder Theorem.
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By (3.5) there are infinitely many primes p of the form Np + Y − m1 for which
t(∆;Np + Y −m1) ≡ 1 (mod 2). These p satisfy :

(1) We have that p0 || Np and p0 || (Np + Y ) (because p2
0 | Y ).

(2) For each (i, n) with 1 ≤ i ≤ s and 1 ≤ n ≤ Y
mi

, except (m1, 1) we obtain

Np + Y −min ≡ `1(i, n)`2(i, n) · · · `a(i, n) (mod `1(i, n)2`2(i, n)2 · · · `a(i, n)2).

By (3.8) we now see that s(∆;Np + Y ) and s(∆;Np) are both even. Lemma 2.2
(2) implies that each summand in (3.9) is even, except t(∆;Np + Y − m1), since
T (∆; z) has degree of nilpotency a. But since t(∆;Np + Y −m1) is odd, we obtain
the contradiction 0 ≡ 1 (mod 2) in (3.9). Therefore, there must be infinitely many
odd m with the property that c(∆′m2) is even unless there is no such m.

To prove the second part of the theorem, observe that if c(∆′m2) is even for all odd
m then J̃(∆; z)H4∆(j(z))∆(z)H(−4∆) is trivial. Together, Lemma (3.1) and Sturm’s
bound now imply the bound 1

12
(12H(−4∆) + 2) on the first m (if there are any).

Now suppose that J̃(∆; z) 6≡ 0 (mod 2) but only finitely many c(∆′m2) are odd.
Then we see that

J̃(∆; z) ≡
s∑
i=1

∞∑
n=1

gcd(∆′,n)=1

qmin (mod 2)

and since this is the series in (3.3) the proof of the second part follows mutatis
mutandis by replacing (Ω(∆; z)− J̃(∆; z))T (∆; z) with J̃(∆; z)T (∆; z) in (3.6). �

Proof of Theorem 1.4. Assume on the contrary that c(∆′0`m
2) is odd for every odd

m. As before we see that

(3.12) J̃(∆0`; z) ≡ Ω(∆0`; z) =
∑

1≤δ|∆′0`
gcd(2,δ)=1

Ω(δz) (mod 2)

where ∆0 = 4∆′0. The fact Ω(δz) is a holomorphic modular form of weight 2 on
Γ0(4δ) together with Lemma 3.1 implies that

∞∑
n=1

a(n)qn :=

J̃(∆0`; z)−
∑

1≤δ|∆′0
gcd(2,δ)=1

Ω(δz)

H4∆0`(j(z))∆(z)H(−4∆0`)

is congruent to a weight 2 + 12H(−4∆0`) holomorphic modular form on Γ0(4∆′0)
modulo 2. Using (3.12) we see that

∞∑
n=1

a(n)qn ≡ H4∆0`(j(z))∆(z)H(−4∆0`)
∑

1≤δ|∆′0
gcd(2,δ)=1

Ω(δ`z) ≡ q` + · · · (mod 2).
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This contradicts Sturm’s bound [12] for the first odd coefficient, which implies

` ≤ 1

12
(12H(−16∆′0`) + 2) [Γ : Γ0(4∆′0)] .

�

Proof of Theorem 1.2. We let ∆′0 := 1 in Theorem 1.4. If ` ≡ 7 (mod 8) is a prime
for which

(3.13) ` > 6H(−16`) + 1

then the claim follows from Theorem 1.4. Dirichlet’s class number formula implies
that for the classical class number

h(−`) < 1

π

√
` log(`).

Since here H(−16`) = 4h(−`) (see for example page 273 of [3]) (3.13) holds for
all ` ≥ 4023. The theorem follows from applying Theorem 1.3 (1) to each prime
` < 4023. �
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